Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ModelArrange.hpp « libslic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 372689c39df457f9a09451d1861f20af2084f871 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP

#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>

#include <numeric>
#include <ClipperUtils.hpp>

#include <boost/geometry/index/rtree.hpp>

namespace Slic3r {
namespace arr {

using namespace libnest2d;

std::string toString(const Model& model, bool holes = true) {
    std::stringstream  ss;

    ss << "{\n";

    for(auto objptr : model.objects) {
        if(!objptr) continue;

        auto rmesh = objptr->raw_mesh();

        for(auto objinst : objptr->instances) {
            if(!objinst) continue;

            Slic3r::TriangleMesh tmpmesh = rmesh;
            tmpmesh.scale(objinst->scaling_factor);
            objinst->transform_mesh(&tmpmesh);
            ExPolygons expolys = tmpmesh.horizontal_projection();
            for(auto& expoly_complex : expolys) {

                auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
                if(tmp.empty()) continue;
                auto expoly = tmp.front();
                expoly.contour.make_clockwise();
                for(auto& h : expoly.holes) h.make_counter_clockwise();

                ss << "\t{\n";
                ss << "\t\t{\n";

                for(auto v : expoly.contour.points) ss << "\t\t\t{"
                                                    << v(0) << ", "
                                                    << v(1) << "},\n";
                {
                    auto v = expoly.contour.points.front();
                    ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
                }
                ss << "\t\t},\n";

                // Holes:
                ss << "\t\t{\n";
                if(holes) for(auto h : expoly.holes) {
                    ss << "\t\t\t{\n";
                    for(auto v : h.points) ss << "\t\t\t\t{"
                                           << v(0) << ", "
                                           << v(1) << "},\n";
                    {
                        auto v = h.points.front();
                        ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
                    }
                    ss << "\t\t\t},\n";
                }
                ss << "\t\t},\n";

                ss << "\t},\n";
            }
        }
    }

    ss << "}\n";

    return ss.str();
}

void toSVG(SVG& svg, const Model& model) {
    for(auto objptr : model.objects) {
        if(!objptr) continue;

        auto rmesh = objptr->raw_mesh();

        for(auto objinst : objptr->instances) {
            if(!objinst) continue;

            Slic3r::TriangleMesh tmpmesh = rmesh;
            tmpmesh.scale(objinst->scaling_factor);
            objinst->transform_mesh(&tmpmesh);
            ExPolygons expolys = tmpmesh.horizontal_projection();
            svg.draw(expolys);
        }
    }
}

namespace bgi = boost::geometry::index;

using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
template<class TBin>
using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;

const double BIG_ITEM_TRESHOLD = 0.02;

Box boundingBox(const Box& pilebb, const Box& ibb ) {
    auto& pminc = pilebb.minCorner();
    auto& pmaxc = pilebb.maxCorner();
    auto& iminc = ibb.minCorner();
    auto& imaxc = ibb.maxCorner();
    PointImpl minc, maxc;

    setX(minc, std::min(getX(pminc), getX(iminc)));
    setY(minc, std::min(getY(pminc), getY(iminc)));

    setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
    setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
    return Box(minc, maxc);
}

std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
        const shapelike::Shapes<PolygonImpl>& merged_pile,
        const Box& pilebb,
        const ItemGroup& items,
        const Item &item,
        double bin_area,
        double norm,            // A norming factor for physical dimensions
        // a spatial index to quickly get neighbors of the candidate item
        const SpatIndex& spatindex,
        const SpatIndex& smalls_spatindex,
        const ItemGroup& remaining
        )
{
    using Coord = TCoord<PointImpl>;

    static const double ROUNDNESS_RATIO = 0.5;
    static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;

    // We will treat big items (compared to the print bed) differently
    auto isBig = [bin_area](double a) {
        return a/bin_area > BIG_ITEM_TRESHOLD ;
    };

    // Candidate item bounding box
    auto ibb = sl::boundingBox(item.transformedShape());

    // Calculate the full bounding box of the pile with the candidate item
    auto fullbb = boundingBox(pilebb, ibb);

    // The bounding box of the big items (they will accumulate in the center
    // of the pile
    Box bigbb;
    if(spatindex.empty()) bigbb = fullbb;
    else {
        auto boostbb = spatindex.bounds();
        boost::geometry::convert(boostbb, bigbb);
    }

    // Will hold the resulting score
    double score = 0;

    if(isBig(item.area()) || spatindex.empty()) {
        // This branch is for the bigger items..

        auto minc = ibb.minCorner(); // bottom left corner
        auto maxc = ibb.maxCorner(); // top right corner

        // top left and bottom right corners
        auto top_left = PointImpl{getX(minc), getY(maxc)};
        auto bottom_right = PointImpl{getX(maxc), getY(minc)};

        // Now the distance of the gravity center will be calculated to the
        // five anchor points and the smallest will be chosen.
        std::array<double, 5> dists;
        auto cc = fullbb.center(); // The gravity center
        dists[0] = pl::distance(minc, cc);
        dists[1] = pl::distance(maxc, cc);
        dists[2] = pl::distance(ibb.center(), cc);
        dists[3] = pl::distance(top_left, cc);
        dists[4] = pl::distance(bottom_right, cc);

        // The smalles distance from the arranged pile center:
        auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
        auto bindist = pl::distance(ibb.center(), bincenter) / norm;
        dist = 0.8*dist + 0.2*bindist;

        // Density is the pack density: how big is the arranged pile
        double density = 0;

        if(remaining.empty()) {

            auto mp = merged_pile;
            mp.emplace_back(item.transformedShape());
            auto chull = sl::convexHull(mp);

            placers::EdgeCache<PolygonImpl> ec(chull);

            double circ = ec.circumference() / norm;
            double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
            score = 0.5*circ + 0.5*bcirc;

        } else {
            // Prepare a variable for the alignment score.
            // This will indicate: how well is the candidate item aligned with
            // its neighbors. We will check the alignment with all neighbors and
            // return the score for the best alignment. So it is enough for the
            // candidate to be aligned with only one item.
            auto alignment_score = 1.0;

            density = std::sqrt((fullbb.width() / norm )*
                                (fullbb.height() / norm));
            auto querybb = item.boundingBox();

            // Query the spatial index for the neighbors
            std::vector<SpatElement> result;
            result.reserve(spatindex.size());
            if(isBig(item.area())) {
                spatindex.query(bgi::intersects(querybb),
                                std::back_inserter(result));
            } else {
                smalls_spatindex.query(bgi::intersects(querybb),
                                       std::back_inserter(result));
            }

            for(auto& e : result) { // now get the score for the best alignment
                auto idx = e.second;
                Item& p = items[idx];
                auto parea = p.area();
                if(std::abs(1.0 - parea/item.area()) < 1e-6) {
                    auto bb = boundingBox(p.boundingBox(), ibb);
                    auto bbarea = bb.area();
                    auto ascore = 1.0 - (item.area() + parea)/bbarea;

                    if(ascore < alignment_score) alignment_score = ascore;
                }
            }

            // The final mix of the score is the balance between the distance
            // from the full pile center, the pack density and the
            // alignment with the neighbors
            if(result.empty())
                score = 0.5 * dist + 0.5 * density;
            else
                score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
        }
    } else {
        // Here there are the small items that should be placed around the
        // already processed bigger items.
        // No need to play around with the anchor points, the center will be
        // just fine for small items
        score = pl::distance(ibb.center(), bigbb.center()) / norm;
    }

    return std::make_tuple(score, fullbb);
}

template<class PConf>
void fillConfig(PConf& pcfg) {

    // Align the arranged pile into the center of the bin
    pcfg.alignment = PConf::Alignment::CENTER;

    // Start placing the items from the center of the print bed
    pcfg.starting_point = PConf::Alignment::CENTER;

    // TODO cannot use rotations until multiple objects of same geometry can
    // handle different rotations
    // arranger.useMinimumBoundigBoxRotation();
    pcfg.rotations = { 0.0 };

    // The accuracy of optimization.
    // Goes from 0.0 to 1.0 and scales performance as well
    pcfg.accuracy = 0.65f;

    pcfg.parallel = true;
}

template<class TBin>
class AutoArranger {};

template<class TBin>
class _ArrBase {
protected:

    using Placer = TPacker<TBin>;
    using Selector = FirstFitSelection;
    using Packer = Nester<Placer, Selector>;
    using PConfig = typename Packer::PlacementConfig;
    using Distance = TCoord<PointImpl>;
    using Pile = sl::Shapes<PolygonImpl>;

    Packer pck_;
    PConfig pconf_; // Placement configuration
    double bin_area_;
    SpatIndex rtree_;
    SpatIndex smallsrtree_;
    double norm_;
    Pile merged_pile_;
    Box pilebb_;
    ItemGroup remaining_;
    ItemGroup items_;
public:

    _ArrBase(const TBin& bin, Distance dist,
             std::function<void(unsigned)> progressind,
             std::function<bool(void)> stopcond):
       pck_(bin, dist), bin_area_(sl::area(bin)),
       norm_(std::sqrt(sl::area(bin)))
    {
        fillConfig(pconf_);

        pconf_.before_packing =
        [this](const Pile& merged_pile,            // merged pile
               const ItemGroup& items,             // packed items
               const ItemGroup& remaining)         // future items to be packed
        {
            items_ = items;
            merged_pile_ = merged_pile;
            remaining_ = remaining;

            pilebb_ = sl::boundingBox(merged_pile);

            rtree_.clear();
            smallsrtree_.clear();

            // We will treat big items (compared to the print bed) differently
            auto isBig = [this](double a) {
                return a/bin_area_ > BIG_ITEM_TRESHOLD ;
            };

            for(unsigned idx = 0; idx < items.size(); ++idx) {
                Item& itm = items[idx];
                if(isBig(itm.area())) rtree_.insert({itm.boundingBox(), idx});
                smallsrtree_.insert({itm.boundingBox(), idx});
            }
        };

        pck_.progressIndicator(progressind);
        pck_.stopCondition(stopcond);
    }

    template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
        rtree_.clear();
        return pck_.executeIndexed(std::forward<Args>(args)...);
    }
};

template<>
class AutoArranger<Box>: public _ArrBase<Box> {
public:

    AutoArranger(const Box& bin, Distance dist,
                 std::function<void(unsigned)> progressind,
                 std::function<bool(void)> stopcond):
        _ArrBase<Box>(bin, dist, progressind, stopcond)
    {

        pconf_.object_function = [this, bin] (const Item &item) {

            auto result = objfunc(bin.center(),
                                  merged_pile_,
                                  pilebb_,
                                  items_,
                                  item,
                                  bin_area_,
                                  norm_,
                                  rtree_,
                                  smallsrtree_,
                                  remaining_);

            double score = std::get<0>(result);
            auto& fullbb = std::get<1>(result);

            double miss = Placer::overfit(fullbb, bin);
            miss = miss > 0? miss : 0;
            score += miss*miss;

            return score;
        };

        pck_.configure(pconf_);
    }
};

using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;

template<>
class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
public:

    AutoArranger(const lnCircle& bin, Distance dist,
                 std::function<void(unsigned)> progressind,
                 std::function<bool(void)> stopcond):
        _ArrBase<lnCircle>(bin, dist, progressind, stopcond) {

        pconf_.object_function = [this, &bin] (const Item &item) {

            auto result = objfunc(bin.center(),
                                  merged_pile_,
                                  pilebb_,
                                  items_,
                                  item,
                                  bin_area_,
                                  norm_,
                                  rtree_,
                                  smallsrtree_,
                                  remaining_);

            double score = std::get<0>(result);

            auto isBig = [this](const Item& itm) {
                return itm.area()/bin_area_ > BIG_ITEM_TRESHOLD ;
            };

            if(isBig(item)) {
                auto mp = merged_pile_;
                mp.push_back(item.transformedShape());
                auto chull = sl::convexHull(mp);
                double miss = Placer::overfit(chull, bin);
                if(miss < 0) miss = 0;
                score += miss*miss;
            }

            return score;
        };

        pck_.configure(pconf_);
    }
};

template<>
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
    AutoArranger(const PolygonImpl& bin, Distance dist,
                 std::function<void(unsigned)> progressind,
                 std::function<bool(void)> stopcond):
        _ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
    {
        pconf_.object_function = [this, &bin] (const Item &item) {

            auto binbb = sl::boundingBox(bin);
            auto result = objfunc(binbb.center(),
                                  merged_pile_,
                                  pilebb_,
                                  items_,
                                  item,
                                  bin_area_,
                                  norm_,
                                  rtree_,
                                  smallsrtree_,
                                  remaining_);
            double score = std::get<0>(result);

            return score;
        };

        pck_.configure(pconf_);
    }
};

template<> // Specialization with no bin
class AutoArranger<bool>: public _ArrBase<Box> {
public:

    AutoArranger(Distance dist, std::function<void(unsigned)> progressind,
                 std::function<bool(void)> stopcond):
        _ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
    {
        this->pconf_.object_function = [this] (const Item &item) {

            auto result = objfunc({0, 0},
                                  merged_pile_,
                                  pilebb_,
                                  items_,
                                  item,
                                  0,
                                  norm_,
                                  rtree_,
                                  smallsrtree_,
                                  remaining_);
            return std::get<0>(result);
        };

        this->pck_.configure(pconf_);
    }
};

// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
    std::vector<std::pair<Slic3r::ModelInstance*, Item>>;

ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
    ShapeData2D ret;

    auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
                    [](size_t s, ModelObject* o){
        return s + o->instances.size();
    });

    ret.reserve(s);

    for(auto objptr : model.objects) {
        if(objptr) {

            auto rmesh = objptr->raw_mesh();

            for(auto objinst : objptr->instances) {
                if(objinst) {
                    Slic3r::TriangleMesh tmpmesh = rmesh;
                    ClipperLib::PolygonImpl pn;

                    tmpmesh.scale(objinst->scaling_factor);

                    // TODO export the exact 2D projection
                    auto p = tmpmesh.convex_hull();

                    p.make_clockwise();
                    p.append(p.first_point());
                    pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );

                    // Efficient conversion to item.
                    Item item(std::move(pn));

                    // Invalid geometries would throw exceptions when arranging
                    if(item.vertexCount() > 3) {
                        item.rotation(objinst->rotation);
                        item.translation( {
#if ENABLE_MODELINSTANCE_3D_OFFSET
                            ClipperLib::cInt(objinst->get_offset(X) / SCALING_FACTOR),
                            ClipperLib::cInt(objinst->get_offset(Y) / SCALING_FACTOR)
#else
                            ClipperLib::cInt(objinst->offset(0)/SCALING_FACTOR),
                            ClipperLib::cInt(objinst->offset(1)/SCALING_FACTOR)
#endif // ENABLE_MODELINSTANCE_3D_OFFSET
                        });
                        ret.emplace_back(objinst, item);
                    }
                }
            }
        }
    }

    return ret;
}

class Circle {
    Point center_;
    double radius_;
public:

    inline Circle(): center_(0, 0), radius_(std::nan("")) {}
    inline Circle(const Point& c, double r): center_(c), radius_(r) {}

    inline double radius() const { return radius_; }
    inline const Point& center() const { return center_; }
    inline operator bool() { return !std::isnan(radius_); }
    inline operator lnCircle() {
        return lnCircle({center_(0), center_(1)}, radius_);
    }
};

enum class BedShapeType {
    BOX,
    CIRCLE,
    IRREGULAR,
    WHO_KNOWS
};

struct BedShapeHint {
    BedShapeType type;
    /*union*/ struct {  // I know but who cares...
        Circle circ;
        BoundingBox box;
        Polyline polygon;
    } shape;
};

BedShapeHint bedShape(const Polyline& bed) {
    BedShapeHint ret;

    auto x = [](const Point& p) { return p(0); };
    auto y = [](const Point& p) { return p(1); };

    auto width = [x](const BoundingBox& box) {
        return x(box.max) - x(box.min);
    };

    auto height = [y](const BoundingBox& box) {
        return y(box.max) - y(box.min);
    };

    auto area = [&width, &height](const BoundingBox& box) {
        double w = width(box);
        double h = height(box);
        return w*h;
    };

    auto poly_area = [](Polyline p) {
        Polygon pp; pp.points.reserve(p.points.size() + 1);
        pp.points = std::move(p.points);
        pp.points.emplace_back(pp.points.front());
        return std::abs(pp.area());
    };

    auto distance_to = [x, y](const Point& p1, const Point& p2) {
        double dx = x(p2) - x(p1);
        double dy = y(p2) - y(p1);
        return std::sqrt(dx*dx + dy*dy);
    };

    auto bb = bed.bounding_box();

    auto isCircle = [bb, distance_to](const Polyline& polygon) {
        auto center = bb.center();
        std::vector<double> vertex_distances;
        double avg_dist = 0;
        for (auto pt: polygon.points)
        {
            double distance = distance_to(center, pt);
            vertex_distances.push_back(distance);
            avg_dist += distance;
        }

        avg_dist /= vertex_distances.size();

        Circle ret(center, avg_dist);
        for (auto el: vertex_distances)
        {
            if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
                ret = Circle();
            break;
        }

        return ret;
    };

    auto parea = poly_area(bed);

    if( (1.0 - parea/area(bb)) < 1e-3 ) {
        ret.type = BedShapeType::BOX;
        ret.shape.box = bb;
    }
    else if(auto c = isCircle(bed)) {
        ret.type = BedShapeType::CIRCLE;
        ret.shape.circ = c;
    } else {
        ret.type = BedShapeType::IRREGULAR;
        ret.shape.polygon = bed;
    }

    // Determine the bed shape by hand
    return ret;
}

void applyResult(
        IndexedPackGroup::value_type& group,
        Coord batch_offset,
        ShapeData2D& shapemap)
{
    for(auto& r : group) {
        auto idx = r.first;     // get the original item index
        Item& item = r.second;  // get the item itself

        // Get the model instance from the shapemap using the index
        ModelInstance *inst_ptr = shapemap[idx].first;

        // Get the tranformation data from the item object and scale it
        // appropriately
        auto off = item.translation();
        Radians rot = item.rotation();
#if ENABLE_MODELINSTANCE_3D_OFFSET
        Vec3d foff(off.X*SCALING_FACTOR + batch_offset, off.Y*SCALING_FACTOR, 0.0);
#else
        Vec2d foff(off.X*SCALING_FACTOR + batch_offset, off.Y*SCALING_FACTOR);
#endif // ENABLE_MODELINSTANCE_3D_OFFSET

        // write the tranformation data into the model instance
        inst_ptr->rotation = rot;
#if ENABLE_MODELINSTANCE_3D_OFFSET
        inst_ptr->set_offset(foff);
#else
        inst_ptr->offset = foff;
#endif // ENABLE_MODELINSTANCE_3D_OFFSET
    }
}


/**
 * \brief Arranges the model objects on the screen.
 *
 * The arrangement considers multiple bins (aka. print beds) for placing all
 * the items provided in the model argument. If the items don't fit on one
 * print bed, the remaining will be placed onto newly created print beds.
 * The first_bin_only parameter, if set to true, disables this behaviour and
 * makes sure that only one print bed is filled and the remaining items will be
 * untouched. When set to false, the items which could not fit onto the
 * print bed will be placed next to the print bed so the user should see a
 * pile of items on the print bed and some other piles outside the print
 * area that can be dragged later onto the print bed as a group.
 *
 * \param model The model object with the 3D content.
 * \param dist The minimum distance which is allowed for any pair of items
 * on the print bed  in any direction.
 * \param bb The bounding box of the print bed. It corresponds to the 'bin'
 * for bin packing.
 * \param first_bin_only This parameter controls whether to place the
 * remaining items which do not fit onto the print area next to the print
 * bed or leave them untouched (let the user arrange them by hand or remove
 * them).
 * \param progressind Progress indicator callback called when an object gets
 * packed. The unsigned argument is the number of items remaining to pack.
 * \param stopcondition A predicate returning true if abort is needed.
 */
bool arrange(Model &model, coordf_t min_obj_distance,
             const Slic3r::Polyline& bed,
             BedShapeHint bedhint,
             bool first_bin_only,
             std::function<void(unsigned)> progressind,
             std::function<bool(void)> stopcondition)
{
    using ArrangeResult = _IndexedPackGroup<PolygonImpl>;

    bool ret = true;

    // Get the 2D projected shapes with their 3D model instance pointers
    auto shapemap = arr::projectModelFromTop(model);

    // Copy the references for the shapes only as the arranger expects a
    // sequence of objects convertible to Item or ClipperPolygon
    std::vector<std::reference_wrapper<Item>> shapes;
    shapes.reserve(shapemap.size());
    std::for_each(shapemap.begin(), shapemap.end(),
                  [&shapes] (ShapeData2D::value_type& it)
    {
        shapes.push_back(std::ref(it.second));
    });

    IndexedPackGroup result;

    if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);

    BoundingBox bbb(bed);

    auto& cfn = stopcondition;

    auto binbb = Box({
                         static_cast<libnest2d::Coord>(bbb.min(0)),
                         static_cast<libnest2d::Coord>(bbb.min(1))
                     },
                     {
                         static_cast<libnest2d::Coord>(bbb.max(0)),
                         static_cast<libnest2d::Coord>(bbb.max(1))
                     });

    switch(bedhint.type) {
    case BedShapeType::BOX: {

        // Create the arranger for the box shaped bed
        AutoArranger<Box> arrange(binbb, min_obj_distance, progressind, cfn);

        // Arrange and return the items with their respective indices within the
        // input sequence.
        result = arrange(shapes.begin(), shapes.end());
        break;
    }
    case BedShapeType::CIRCLE: {

        auto c = bedhint.shape.circ;
        auto cc = lnCircle(c);

        AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind, cfn);
        result = arrange(shapes.begin(), shapes.end());
        break;
    }
    case BedShapeType::IRREGULAR:
    case BedShapeType::WHO_KNOWS: {

        using P = libnest2d::PolygonImpl;

        auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
        P irrbed = sl::create<PolygonImpl>(std::move(ctour));

        AutoArranger<P> arrange(irrbed, min_obj_distance, progressind, cfn);

        // Arrange and return the items with their respective indices within the
        // input sequence.
        result = arrange(shapes.begin(), shapes.end());
        break;
    }
    };

    if(result.empty() || stopcondition()) return false;

    if(first_bin_only) {
        applyResult(result.front(), 0, shapemap);
    } else {

        const auto STRIDE_PADDING = 1.2;

        Coord stride = static_cast<Coord>(STRIDE_PADDING*
                                          binbb.width()*SCALING_FACTOR);
        Coord batch_offset = 0;

        for(auto& group : result) {
            applyResult(group, batch_offset, shapemap);

            // Only the first pack group can be placed onto the print bed. The
            // other objects which could not fit will be placed next to the
            // print bed
            batch_offset += stride;
        }
    }

    for(auto objptr : model.objects) objptr->invalidate_bounding_box();

    return ret && result.size() == 1;
}

}
}
#endif // MODELARRANGE_HPP