Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ModelArrange.hpp « libslic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: af4bfcf703f40a4a600248106277ec28dd40e0fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP

#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>

#include <numeric>
#include <ClipperUtils.hpp>

namespace Slic3r {
namespace arr {

using namespace libnest2d;

std::string toString(const Model& model, bool holes = true) {
    std::stringstream  ss;

    ss << "{\n";

    for(auto objptr : model.objects) {
        if(!objptr) continue;

        auto rmesh = objptr->raw_mesh();

        for(auto objinst : objptr->instances) {
            if(!objinst) continue;

            Slic3r::TriangleMesh tmpmesh = rmesh;
            tmpmesh.scale(objinst->scaling_factor);
            objinst->transform_mesh(&tmpmesh);
            ExPolygons expolys = tmpmesh.horizontal_projection();
            for(auto& expoly_complex : expolys) {

                auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
                if(tmp.empty()) continue;
                auto expoly = tmp.front();
                expoly.contour.make_clockwise();
                for(auto& h : expoly.holes) h.make_counter_clockwise();

                ss << "\t{\n";
                ss << "\t\t{\n";

                for(auto v : expoly.contour.points) ss << "\t\t\t{"
                                                    << v.x << ", "
                                                    << v.y << "},\n";
                {
                    auto v = expoly.contour.points.front();
                    ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
                }
                ss << "\t\t},\n";

                // Holes:
                ss << "\t\t{\n";
                if(holes) for(auto h : expoly.holes) {
                    ss << "\t\t\t{\n";
                    for(auto v : h.points) ss << "\t\t\t\t{"
                                           << v.x << ", "
                                           << v.y << "},\n";
                    {
                        auto v = h.points.front();
                        ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
                    }
                    ss << "\t\t\t},\n";
                }
                ss << "\t\t},\n";

                ss << "\t},\n";
            }
        }
    }

    ss << "}\n";

    return ss.str();
}

void toSVG(SVG& svg, const Model& model) {
    for(auto objptr : model.objects) {
        if(!objptr) continue;

        auto rmesh = objptr->raw_mesh();

        for(auto objinst : objptr->instances) {
            if(!objinst) continue;

            Slic3r::TriangleMesh tmpmesh = rmesh;
            tmpmesh.scale(objinst->scaling_factor);
            objinst->transform_mesh(&tmpmesh);
            ExPolygons expolys = tmpmesh.horizontal_projection();
            svg.draw(expolys);
        }
    }
}

// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
    std::vector<std::pair<Slic3r::ModelInstance*, Item>>;

ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
    ShapeData2D ret;

    auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
                    [](size_t s, ModelObject* o){
        return s + o->instances.size();
    });

    ret.reserve(s);

    for(auto objptr : model.objects) {
        if(objptr) {

            auto rmesh = objptr->raw_mesh();

            for(auto objinst : objptr->instances) {
                if(objinst) {
                    Slic3r::TriangleMesh tmpmesh = rmesh;
                    ClipperLib::PolygonImpl pn;

                    tmpmesh.scale(objinst->scaling_factor);

                    // TODO export the exact 2D projection
                    auto p = tmpmesh.convex_hull();

                    p.make_clockwise();
                    p.append(p.first_point());
                    pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );

                    // Efficient conversion to item.
                    Item item(std::move(pn));

                    // Invalid geometries would throw exceptions when arranging
                    if(item.vertexCount() > 3) {
                        item.rotation(objinst->rotation);
                        item.translation( {
                            ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
                            ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
                        });
                        ret.emplace_back(objinst, item);
                    }
                }
            }
        }
    }

    return ret;
}

/**
 * \brief Arranges the model objects on the screen.
 *
 * The arrangement considers multiple bins (aka. print beds) for placing all
 * the items provided in the model argument. If the items don't fit on one
 * print bed, the remaining will be placed onto newly created print beds.
 * The first_bin_only parameter, if set to true, disables this behaviour and
 * makes sure that only one print bed is filled and the remaining items will be
 * untouched. When set to false, the items which could not fit onto the
 * print bed will be placed next to the print bed so the user should see a
 * pile of items on the print bed and some other piles outside the print
 * area that can be dragged later onto the print bed as a group.
 *
 * \param model The model object with the 3D content.
 * \param dist The minimum distance which is allowed for any pair of items
 * on the print bed  in any direction.
 * \param bb The bounding box of the print bed. It corresponds to the 'bin'
 * for bin packing.
 * \param first_bin_only This parameter controls whether to place the
 * remaining items which do not fit onto the print area next to the print
 * bed or leave them untouched (let the user arrange them by hand or remove
 * them).
 */
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
             bool first_bin_only,
             std::function<void(unsigned)> progressind)
{
    using ArrangeResult = _IndexedPackGroup<PolygonImpl>;

    bool ret = true;

    // Create the arranger config
    auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);

    // Get the 2D projected shapes with their 3D model instance pointers
    auto shapemap = arr::projectModelFromTop(model);

    bool hasbin = bb != nullptr && bb->defined;
    double area_max = 0;

    // Copy the references for the shapes only as the arranger expects a
    // sequence of objects convertible to Item or ClipperPolygon
    std::vector<std::reference_wrapper<Item>> shapes;
    shapes.reserve(shapemap.size());
    std::for_each(shapemap.begin(), shapemap.end(),
                  [&shapes, min_obj_distance, &area_max, hasbin]
                  (ShapeData2D::value_type& it)
    {
        shapes.push_back(std::ref(it.second));
    });

    Box bin;

    if(hasbin) {
        // Scale up the bounding box to clipper scale.
        BoundingBoxf bbb = *bb;
        bbb.scale(1.0/SCALING_FACTOR);

        bin = Box({
                    static_cast<libnest2d::Coord>(bbb.min.x),
                    static_cast<libnest2d::Coord>(bbb.min.y)
                },
                {
                    static_cast<libnest2d::Coord>(bbb.max.x),
                    static_cast<libnest2d::Coord>(bbb.max.y)
                });
    }

    // Will use the DJD selection heuristic with the BottomLeft placement
    // strategy
    using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
    using PConf = Arranger::PlacementConfig;
    using SConf = Arranger::SelectionConfig;

    PConf pcfg;     // Placement configuration
    SConf scfg;     // Selection configuration

    // Align the arranged pile into the center of the bin
    pcfg.alignment = PConf::Alignment::CENTER;

    // Start placing the items from the center of the print bed
    pcfg.starting_point = PConf::Alignment::CENTER;

    // TODO cannot use rotations until multiple objects of same geometry can
    // handle different rotations
    // arranger.useMinimumBoundigBoxRotation();
    pcfg.rotations = { 0.0 };

    // The accuracy of optimization. Goes from 0.0 to 1.0 and scales performance
    pcfg.accuracy = 0.4f;

    // Magic: we will specify what is the goal of arrangement... In this case
    // we override the default object function to make the larger items go into
    // the center of the pile and smaller items orbit it so the resulting pile
    // has a circle-like shape. This is good for the print bed's heat profile.
    // We alse sacrafice a bit of pack efficiency for this to work. As a side
    // effect, the arrange procedure is a lot faster (we do not need to
    // calculate the convex hulls)
    pcfg.object_function = [bin, hasbin](
            NfpPlacer::Pile& pile,   // The currently arranged pile
            const Item &item,
            double /*area*/,        // Sum area of items (not needed)
            double norm,            // A norming factor for physical dimensions
            double penality)        // Min penality in case of bad arrangement
    {
        using pl = PointLike;

        static const double BIG_ITEM_TRESHOLD = 0.2;
        static const double GRAVITY_RATIO = 0.5;
        static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;

        // We will treat big items (compared to the print bed) differently
        NfpPlacer::Pile bigs;
        bigs.reserve(pile.size());
        for(auto& p : pile) {
            auto pbb = ShapeLike::boundingBox(p);
            auto na = std::sqrt(pbb.width()*pbb.height())/norm;
            if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
        }

        // Candidate item bounding box
        auto ibb = item.boundingBox();

        // Calculate the full bounding box of the pile with the candidate item
        pile.emplace_back(item.transformedShape());
        auto fullbb = ShapeLike::boundingBox(pile);
        pile.pop_back();

        // The bounding box of the big items (they will accumulate in the center
        // of the pile
        auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);

        // The size indicator of the candidate item. This is not the area,
        // but almost...
        auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;

        // Will hold the resulting score
        double score = 0;

        if(itemnormarea > BIG_ITEM_TRESHOLD) {
            // This branch is for the bigger items..
            // Here we will use the closest point of the item bounding box to
            // the already arranged pile. So not the bb center nor the a choosen
            // corner but whichever is the closest to the center. This will
            // prevent unwanted strange arrangements.

            auto minc = ibb.minCorner(); // bottom left corner
            auto maxc = ibb.maxCorner(); // top right corner

            // top left and bottom right corners
            auto top_left = PointImpl{getX(minc), getY(maxc)};
            auto bottom_right = PointImpl{getX(maxc), getY(minc)};

            auto cc = fullbb.center(); // The gravity center

            // Now the distnce of the gravity center will be calculated to the
            // five anchor points and the smallest will be chosen.
            std::array<double, 5> dists;
            dists[0] = pl::distance(minc, cc);
            dists[1] = pl::distance(maxc, cc);
            dists[2] = pl::distance(ibb.center(), cc);
            dists[3] = pl::distance(top_left, cc);
            dists[4] = pl::distance(bottom_right, cc);

            auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;

            // Density is the pack density: how big is the arranged pile
            auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;

            // The score is a weighted sum of the distance from pile center
            // and the pile size
            score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;

        } else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
            // If there are no big items, only small, we should consider the
            // density here as well to not get silly results
            auto bindist = pl::distance(ibb.center(), bin.center()) / norm;
            auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
            score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
        } else {
            // Here there are the small items that should be placed around the
            // already processed bigger items.
            // No need to play around with the anchor points, the center will be
            // just fine for small items
            score = pl::distance(ibb.center(), bigbb.center()) / norm;
        }

        // If it does not fit into the print bed we will beat it
        // with a large penality. If we would not do this, there would be only
        // one big pile that doesn't care whether it fits onto the print bed.
        if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;

        return score;
    };

    // Create the arranger object
    Arranger arranger(bin, min_obj_distance, pcfg, scfg);

    // Set the progress indicator for the arranger.
    arranger.progressIndicator(progressind);

    // Arrange and return the items with their respective indices within the
    // input sequence.
    auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());

    auto applyResult = [&shapemap](ArrangeResult::value_type& group,
            Coord batch_offset)
    {
        for(auto& r : group) {
            auto idx = r.first;     // get the original item index
            Item& item = r.second;  // get the item itself

            // Get the model instance from the shapemap using the index
            ModelInstance *inst_ptr = shapemap[idx].first;

            // Get the tranformation data from the item object and scale it
            // appropriately
            auto off = item.translation();
            Radians rot = item.rotation();
            Pointf foff(off.X*SCALING_FACTOR + batch_offset,
                        off.Y*SCALING_FACTOR);

            // write the tranformation data into the model instance
            inst_ptr->rotation = rot;
            inst_ptr->offset = foff;
        }
    };

    if(first_bin_only) {
        applyResult(result.front(), 0);
    } else {

        const auto STRIDE_PADDING = 1.2;

        Coord stride = static_cast<Coord>(STRIDE_PADDING*
                                          bin.width()*SCALING_FACTOR);
        Coord batch_offset = 0;

        for(auto& group : result) {
            applyResult(group, batch_offset);

            // Only the first pack group can be placed onto the print bed. The
            // other objects which could not fit will be placed next to the
            // print bed
            batch_offset += stride;
        }
    }

    for(auto objptr : model.objects) objptr->invalidate_bounding_box();

    return ret && result.size() == 1;
}

}
}
#endif // MODELARRANGE_HPP