Welcome to mirror list, hosted at ThFree Co, Russian Federation.

PlaceholderParser.cpp « libslic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cc6f1c75e49be800ebdd8e5b0050bbe5ae7ef663 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
#include "PlaceholderParser.hpp"
#include <cstring>
#include <ctime>
#include <iomanip>
#include <sstream>
#include <map>
#ifdef _MSC_VER
    #include <stdlib.h>  // provides **_environ
#else
    #include <unistd.h>  // provides **environ
#endif

#ifdef __APPLE__
#include <crt_externs.h>
#undef environ
#define environ (*_NSGetEnviron())
#else
    #ifdef _MSC_VER
       #define environ _environ
    #else
     	extern char **environ;
    #endif
#endif

#include <boost/algorithm/string.hpp>

// Spirit v2.5 allows you to suppress automatic generation
// of predefined terminals to speed up complation. With
// BOOST_SPIRIT_NO_PREDEFINED_TERMINALS defined, you are
// responsible in creating instances of the terminals that
// you need (e.g. see qi::uint_type uint_ below).
//#define BOOST_SPIRIT_NO_PREDEFINED_TERMINALS

#define BOOST_RESULT_OF_USE_DECLTYPE
#define BOOST_SPIRIT_USE_PHOENIX_V3
#include <boost/config/warning_disable.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/qi_lit.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_fusion.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/spirit/repository/include/qi_distinct.hpp>
#include <boost/spirit/repository/include/qi_iter_pos.hpp>
#include <boost/variant/recursive_variant.hpp>
#include <boost/phoenix/bind/bind_function.hpp>

#include <iostream>
#include <string>

// #define USE_CPP11_REGEX
#ifdef USE_CPP11_REGEX
    #include <regex>
    #define SLIC3R_REGEX_NAMESPACE std
#else /* USE_CPP11_REGEX */
    #include <boost/regex.hpp>
    #define SLIC3R_REGEX_NAMESPACE boost
#endif /* USE_CPP11_REGEX */

namespace Slic3r {

PlaceholderParser::PlaceholderParser()
{
    this->set("version", std::string(SLIC3R_VERSION));
    this->apply_env_variables();
    this->update_timestamp();
}

void PlaceholderParser::update_timestamp(DynamicConfig &config)
{
    time_t rawtime;
    time(&rawtime);
    struct tm* timeinfo = localtime(&rawtime);
    
    {
        std::ostringstream ss;
        ss << (1900 + timeinfo->tm_year);
        ss << std::setw(2) << std::setfill('0') << (1 + timeinfo->tm_mon);
        ss << std::setw(2) << std::setfill('0') << timeinfo->tm_mday;
        ss << "-";
        ss << std::setw(2) << std::setfill('0') << timeinfo->tm_hour;
        ss << std::setw(2) << std::setfill('0') << timeinfo->tm_min;
        ss << std::setw(2) << std::setfill('0') << timeinfo->tm_sec;
        config.set_key_value("timestamp", new ConfigOptionString(ss.str()));
    }
    config.set_key_value("year",   new ConfigOptionInt(1900 + timeinfo->tm_year));
    config.set_key_value("month",  new ConfigOptionInt(1 + timeinfo->tm_mon));
    config.set_key_value("day",    new ConfigOptionInt(timeinfo->tm_mday));
    config.set_key_value("hour",   new ConfigOptionInt(timeinfo->tm_hour));
    config.set_key_value("minute", new ConfigOptionInt(timeinfo->tm_min));
    config.set_key_value("second", new ConfigOptionInt(timeinfo->tm_sec));
}

// Scalar configuration values are stored into m_single,
// vector configuration values are stored into m_multiple.
// All vector configuration values stored into the PlaceholderParser
// are expected to be addressed by the extruder ID, therefore
// if a vector configuration value is addressed without an index,
// a current extruder ID is used.
void PlaceholderParser::apply_config(const DynamicPrintConfig &rhs)
{
    const ConfigDef *def = rhs.def();
    for (const t_config_option_key &opt_key : rhs.keys()) {
        const ConfigOptionDef *opt_def = def->get(opt_key);
        if ((opt_def->multiline && boost::ends_with(opt_key, "_gcode")) || opt_key == "post_process")
            continue;
        const ConfigOption *opt = rhs.option(opt_key);
        // Store a copy of the config option.
        // Convert FloatOrPercent values to floats first.
        //FIXME there are some ratio_over chains, which end with empty ratio_with.
        // For example, XXX_extrusion_width parameters are not handled by get_abs_value correctly.
        this->set(opt_key, (opt->type() == coFloatOrPercent) ?
            new ConfigOptionFloat(rhs.get_abs_value(opt_key)) :
            opt->clone());
    }
}

void PlaceholderParser::apply_env_variables()
{
    for (char** env = environ; *env; ++ env) {
        if (strncmp(*env, "SLIC3R_", 7) == 0) {
            std::stringstream ss(*env);
            std::string key, value;
            std::getline(ss, key, '=');
            ss >> value;
            this->set(key, value);
        }
    }
}

namespace spirit = boost::spirit;
namespace qi = boost::spirit::qi;
namespace px = boost::phoenix;

namespace client
{
    template<typename Iterator>
    struct OptWithPos {
        OptWithPos() {}
        OptWithPos(ConfigOptionConstPtr opt, boost::iterator_range<Iterator> it_range) : opt(opt), it_range(it_range) {}
        ConfigOptionConstPtr             opt = nullptr;
        boost::iterator_range<Iterator>  it_range;
    };

    template<typename ITERATOR>
    std::ostream& operator<<(std::ostream& os, OptWithPos<ITERATOR> const& opt)
    {
        os << std::string(opt.it_range.begin(), opt.it_range.end());
        return os;
    }

    template<typename Iterator>
    struct expr
    {
                 expr() : type(TYPE_EMPTY) {}
        explicit expr(bool b) : type(TYPE_BOOL) { data.b = b; }
        explicit expr(bool b, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_BOOL), it_range(it_begin, it_end) { data.b = b; }
        explicit expr(int i) : type(TYPE_INT) { data.i = i; }
        explicit expr(int i, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_INT), it_range(it_begin, it_end) { data.i = i; }
        explicit expr(double d) : type(TYPE_DOUBLE) { data.d = d; }
        explicit expr(double d, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_DOUBLE), it_range(it_begin, it_end) { data.d = d; }
        explicit expr(const char *s) : type(TYPE_STRING) { data.s = new std::string(s); }
        explicit expr(const std::string &s) : type(TYPE_STRING) { data.s = new std::string(s); }
        explicit expr(const std::string &s, const Iterator &it_begin, const Iterator &it_end) : 
            type(TYPE_STRING), it_range(it_begin, it_end) { data.s = new std::string(s); }
                 expr(const expr &rhs) : type(rhs.type), it_range(rhs.it_range)
            { if (rhs.type == TYPE_STRING) data.s = new std::string(*rhs.data.s); else data.set(rhs.data); }
        explicit expr(expr &&rhs) : type(rhs.type), it_range(rhs.it_range)
            { data.set(rhs.data); rhs.type = TYPE_EMPTY; }
        explicit expr(expr &&rhs, const Iterator &it_begin, const Iterator &it_end) : type(rhs.type), it_range(it_begin, it_end)
            { data.set(rhs.data); rhs.type = TYPE_EMPTY; }
        ~expr() { this->reset(); }

        expr &operator=(const expr &rhs) 
        { 
            this->type      = rhs.type;
            this->it_range  = rhs.it_range;
            if (rhs.type == TYPE_STRING) 
                this->data.s = new std::string(*rhs.data.s);
            else 
                this->data.set(rhs.data);
            return *this; 
        }

        expr &operator=(expr &&rhs) 
        { 
            type            = rhs.type;
            this->it_range  = rhs.it_range;
            data.set(rhs.data);
            rhs.type        = TYPE_EMPTY;
            return *this;
        }

        void                reset()   
        { 
            if (this->type == TYPE_STRING) 
                delete data.s;
            this->type = TYPE_EMPTY;
        }

        bool&               b()       { return data.b; }
        bool                b() const { return data.b; }
        void                set_b(bool v) { this->reset(); this->data.b = v; this->type = TYPE_BOOL; }
        int&                i()       { return data.i; }
        int                 i() const { return data.i; }
        void                set_i(int v) { this->reset(); this->data.i = v; this->type = TYPE_INT; }
        int                 as_i() const { return (this->type == TYPE_INT) ? this->i() : int(this->d()); }
        double&             d()       { return data.d; }
        double              d() const { return data.d; }
        void                set_d(double v) { this->reset(); this->data.d = v; this->type = TYPE_DOUBLE; }
        double              as_d() const { return (this->type == TYPE_DOUBLE) ? this->d() : double(this->i()); }
        std::string&        s()       { return *data.s; }
        const std::string&  s() const { return *data.s; }
        void                set_s(const std::string &s) { this->reset(); this->data.s = new std::string(s); this->type = TYPE_STRING; }
        void                set_s(std::string &&s) { this->reset(); this->data.s = new std::string(std::move(s)); this->type = TYPE_STRING; }
        
        std::string         to_string() const 
        {
            std::string out;
            switch (type) {
            case TYPE_BOOL:   out = boost::to_string(data.b); break;
            case TYPE_INT:    out = boost::to_string(data.i); break;
            case TYPE_DOUBLE: out = boost::to_string(data.d); break;
            case TYPE_STRING: out = *data.s; break;
            default:          break;
            }
            return out;
        }

        union Data {
            // Raw image of the other data members.
            // The C++ compiler will consider a possible aliasing of char* with any other union member,
            // therefore copying the raw data is safe.
            char         raw[8];
            bool         b;
            int          i;
            double       d;
            std::string *s;

            // Copy the largest member variable through char*, which will alias with all other union members by default.
            void set(const Data &rhs) { memcpy(this->raw, rhs.raw, sizeof(rhs.raw)); }
        } data;

        enum Type {
            TYPE_EMPTY = 0,
            TYPE_BOOL,
            TYPE_INT,
            TYPE_DOUBLE,
            TYPE_STRING,
        };

        Type type;

        // Range of input iterators covering this expression.
        // Used for throwing parse exceptions.
        boost::iterator_range<Iterator>  it_range;

        expr unary_minus(const Iterator start_pos) const
        { 
            switch (this->type) {
            case TYPE_INT :
                return expr<Iterator>(- this->i(), start_pos, this->it_range.end());
            case TYPE_DOUBLE:
                return expr<Iterator>(- this->d(), start_pos, this->it_range.end()); 
            default:
                this->throw_exception("Cannot apply unary minus operator.");
            }
            assert(false);
            // Suppress compiler warnings.
            return expr();
        }

        expr unary_not(const Iterator start_pos) const
        { 
            switch (this->type) {
            case TYPE_BOOL :
                return expr<Iterator>(! this->b(), start_pos, this->it_range.end());
            default:
                this->throw_exception("Cannot apply a not operator.");
            }
            assert(false);
            // Suppress compiler warnings.
            return expr();
        }

        expr &operator+=(const expr &rhs)
        { 
            if (this->type == TYPE_STRING) {
                // Convert the right hand side to string and append.
                *this->data.s += rhs.to_string();
            } else if (rhs.type == TYPE_STRING) {
                // Conver the left hand side to string, append rhs.
                this->data.s = new std::string(this->to_string() + rhs.s());
                this->type = TYPE_STRING;
            } else {
                const char *err_msg = "Cannot add non-numeric types.";
                this->throw_if_not_numeric(err_msg);
                rhs.throw_if_not_numeric(err_msg);
                if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
                    double d = this->as_d() + rhs.as_d();
                    this->data.d = d;
                    this->type = TYPE_DOUBLE;
                } else
                    this->data.i += rhs.i();
            }
            this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
            return *this;
        }

        expr &operator-=(const expr &rhs)
        { 
            const char *err_msg = "Cannot subtract non-numeric types.";
            this->throw_if_not_numeric(err_msg);
            rhs.throw_if_not_numeric(err_msg);
            if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
                double d = this->as_d() - rhs.as_d();
                this->data.d = d;
                this->type = TYPE_DOUBLE;
            } else
                this->data.i -= rhs.i();
            this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
            return *this;
        }

        expr &operator*=(const expr &rhs)
        { 
            const char *err_msg = "Cannot multiply with non-numeric type.";
            this->throw_if_not_numeric(err_msg);
            rhs.throw_if_not_numeric(err_msg);
            if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
                double d = this->as_d() * rhs.as_d();
                this->data.d = d;
                this->type = TYPE_DOUBLE;
            } else
                this->data.i *= rhs.i();
            this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
            return *this;
        }

        expr &operator/=(const expr &rhs)
        {
            this->throw_if_not_numeric("Cannot divide a non-numeric type.");
            rhs.throw_if_not_numeric("Cannot divide with a non-numeric type.");
            if ((this->type == TYPE_INT) ? (rhs.i() == 0) : (rhs.d() == 0.))
                rhs.throw_exception("Division by zero");
            if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
                double d = this->as_d() / rhs.as_d();
                this->data.d = d;
                this->type = TYPE_DOUBLE;
            } else
                this->data.i /= rhs.i();
            this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
            return *this;
        }

        static void to_string2(expr &self, std::string &out)
        {
            out = self.to_string();
        }

        static void evaluate_boolean(expr &self, bool &out)
        {
            if (self.type != TYPE_BOOL)
                self.throw_exception("Not a boolean expression");
            out = self.b();
        }

        static void evaluate_boolean_to_string(expr &self, std::string &out)
        {
            if (self.type != TYPE_BOOL)
                self.throw_exception("Not a boolean expression");
            out = self.b() ? "true" : "false";
        }

        // Is lhs==rhs? Store the result into lhs.
        static void compare_op(expr &lhs, expr &rhs, char op, bool invert)
        {
            bool value = false;
            if ((lhs.type == TYPE_INT || lhs.type == TYPE_DOUBLE) &&
                (rhs.type == TYPE_INT || rhs.type == TYPE_DOUBLE)) {
                // Both types are numeric.
                switch (op) {
                    case '=':
                        value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ? 
                            (std::abs(lhs.as_d() - rhs.as_d()) < 1e-8) : (lhs.i() == rhs.i());
                        break;
                    case '<':
                        value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ? 
                            (lhs.as_d() < rhs.as_d()) : (lhs.i() < rhs.i());
                        break;
                    case '>':
                    default:
                        value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ? 
                            (lhs.as_d() > rhs.as_d()) : (lhs.i() > rhs.i());
                        break;
                }
            } else if (lhs.type == TYPE_BOOL && rhs.type == TYPE_BOOL) {
                // Both type are bool.
                if (op != '=')
                    boost::throw_exception(qi::expectation_failure<Iterator>(
                        lhs.it_range.begin(), rhs.it_range.end(), spirit::info("*Cannot compare the types.")));
                value = lhs.b() == rhs.b();
            } else if (lhs.type == TYPE_STRING || rhs.type == TYPE_STRING) {
                // One type is string, the other could be converted to string.
                value = (op == '=') ? (lhs.to_string() == rhs.to_string()) : 
                        (op == '<') ? (lhs.to_string() < rhs.to_string()) : (lhs.to_string() > rhs.to_string());
            } else {
                boost::throw_exception(qi::expectation_failure<Iterator>(
                    lhs.it_range.begin(), rhs.it_range.end(), spirit::info("*Cannot compare the types.")));
            }
            lhs.type = TYPE_BOOL;
            lhs.data.b = invert ? ! value : value;
        }
        // Compare operators, store the result into lhs.
        static void equal    (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '=', false); }
        static void not_equal(expr &lhs, expr &rhs) { compare_op(lhs, rhs, '=', true ); }
        static void lower    (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '<', false); }
        static void greater  (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '>', false); }
        static void leq      (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '>', true ); }
        static void geq      (expr &lhs, expr &rhs) { compare_op(lhs, rhs, '<', true ); }

        enum Function2ParamsType {
            FUNCTION_MIN,
            FUNCTION_MAX,
        };
        // Store the result into param1.
        static void function_2params(expr &param1, expr &param2, Function2ParamsType fun)
        { 
            const char *err_msg = "Not a numeric type.";
            param1.throw_if_not_numeric(err_msg);
            param2.throw_if_not_numeric(err_msg);
            if (param1.type == TYPE_DOUBLE || param2.type == TYPE_DOUBLE) {
                double d = 0.;
                switch (fun) {
                    case FUNCTION_MIN:  d = std::min(param1.as_d(), param2.as_d()); break;
                    case FUNCTION_MAX:  d = std::max(param1.as_d(), param2.as_d()); break;
                    default: param1.throw_exception("Internal error: invalid function");
                }
                param1.data.d = d;
                param1.type = TYPE_DOUBLE;
            } else {
                int i = 0.;
                switch (fun) {
                    case FUNCTION_MIN:  i = std::min(param1.as_i(), param2.as_i()); break;
                    case FUNCTION_MAX:  i = std::max(param1.as_i(), param2.as_i()); break;
                    default: param1.throw_exception("Internal error: invalid function");
                }
                param1.data.i = i;
                param1.type = TYPE_INT;
            }
        }
        // Store the result into param1.
        static void min(expr &param1, expr &param2) { function_2params(param1, param2, FUNCTION_MIN); }
        static void max(expr &param1, expr &param2) { function_2params(param1, param2, FUNCTION_MAX); }

        static void regex_op(expr &lhs, boost::iterator_range<Iterator> &rhs, char op)
        {
            const std::string *subject  = nullptr;
            const std::string *mask     = nullptr;
            if (lhs.type == TYPE_STRING) {
                // One type is string, the other could be converted to string.
                subject = &lhs.s();
            } else {
                lhs.throw_exception("Left hand side of a regex match must be a string.");
            }
            try {
                std::string pattern(++ rhs.begin(), -- rhs.end());
                bool result = SLIC3R_REGEX_NAMESPACE::regex_match(*subject, SLIC3R_REGEX_NAMESPACE::regex(pattern));
                if (op == '!')
                    result = ! result;
                lhs.reset();
                lhs.type = TYPE_BOOL;
                lhs.data.b = result;
            } catch (SLIC3R_REGEX_NAMESPACE::regex_error &ex) {
                // Syntax error in the regular expression
                boost::throw_exception(qi::expectation_failure<Iterator>(
                    rhs.begin(), rhs.end(), spirit::info(std::string("*Regular expression compilation failed: ") + ex.what())));
            }
        }

        static void regex_matches     (expr &lhs, boost::iterator_range<Iterator> &rhs) { return regex_op(lhs, rhs, '='); }
        static void regex_doesnt_match(expr &lhs, boost::iterator_range<Iterator> &rhs) { return regex_op(lhs, rhs, '!'); }

        static void logical_op(expr &lhs, expr &rhs, char op)
        {
            bool value = false;
            if (lhs.type == TYPE_BOOL && rhs.type == TYPE_BOOL) {
                value = (op == '|') ? (lhs.b() || rhs.b()) : (lhs.b() && rhs.b());
            } else {
                boost::throw_exception(qi::expectation_failure<Iterator>(
                    lhs.it_range.begin(), rhs.it_range.end(), spirit::info("*Cannot apply logical operation to non-boolean operators.")));
            }
            lhs.type   = TYPE_BOOL;
            lhs.data.b = value;
        }
        static void logical_or (expr &lhs, expr &rhs) { logical_op(lhs, rhs, '|'); }
        static void logical_and(expr &lhs, expr &rhs) { logical_op(lhs, rhs, '&'); }

        static void ternary_op(expr &lhs, expr &rhs1, expr &rhs2)
        {
            bool value = false;
            if (lhs.type != TYPE_BOOL)
                lhs.throw_exception("Not a boolean expression");
            if (lhs.b())
                lhs = std::move(rhs1);
            else
                lhs = std::move(rhs2);
        }

        static void set_if(bool &cond, bool &not_yet_consumed, std::string &str_in, std::string &str_out)
        {
            if (cond && not_yet_consumed) {
                str_out = str_in;
                not_yet_consumed = false;
            }
        }

        void throw_exception(const char *message) const 
        {
            boost::throw_exception(qi::expectation_failure<Iterator>(
                this->it_range.begin(), this->it_range.end(), spirit::info(std::string("*") + message)));
        }

        void throw_if_not_numeric(const char *message) const 
        {
            if (this->type != TYPE_INT && this->type != TYPE_DOUBLE)
                this->throw_exception(message);
        }
    };

    template<typename ITERATOR>
    std::ostream& operator<<(std::ostream &os, const expr<ITERATOR> &expression)
    {
        typedef expr<ITERATOR> Expr;
        os << std::string(expression.it_range.begin(), expression.it_range.end()) << " - ";
        switch (expression.type) {
        case Expr::TYPE_EMPTY:    os << "empty"; break;
        case Expr::TYPE_BOOL:     os << "bool ("   << expression.b() << ")"; break;
        case Expr::TYPE_INT:      os << "int ("    << expression.i() << ")"; break;
        case Expr::TYPE_DOUBLE:   os << "double (" << expression.d() << ")"; break;
        case Expr::TYPE_STRING:   os << "string (" << expression.s() << ")"; break;
        default: os << "unknown";
        };
        return os;
    }

    struct MyContext {
        const DynamicConfig     *config                 = nullptr;
        const DynamicConfig     *config_override        = nullptr;
        size_t                   current_extruder_id    = 0;
        // If false, the macro_processor will evaluate a full macro.
        // If true, the macro processor will evaluate just a boolean condition using the full expressive power of the macro processor.
        bool                     just_boolean_expression = false;
        std::string              error_message;

        // Table to translate symbol tag to a human readable error message.
        static std::map<std::string, std::string> tag_to_error_message;

        static void             evaluate_full_macro(const MyContext *ctx, bool &result) { result = ! ctx->just_boolean_expression; }

        const ConfigOption*     resolve_symbol(const std::string &opt_key) const
        {
            const ConfigOption *opt = nullptr;
            if (config_override != nullptr)
                opt = config_override->option(opt_key);
            if (opt == nullptr)
                opt = config->option(opt_key);
            return opt;
        }

        template <typename Iterator>
        static void legacy_variable_expansion(
            const MyContext                 *ctx, 
            boost::iterator_range<Iterator> &opt_key,
            std::string                     &output)
        {
            std::string         opt_key_str(opt_key.begin(), opt_key.end());
            const ConfigOption *opt = ctx->resolve_symbol(opt_key_str);
            size_t              idx = ctx->current_extruder_id;
            if (opt == nullptr) {
                // Check whether this is a legacy vector indexing.
                idx = opt_key_str.rfind('_');
                if (idx != std::string::npos) {
                    opt = ctx->resolve_symbol(opt_key_str.substr(0, idx));
                    if (opt != nullptr) {
                        if (! opt->is_vector())
                            ctx->throw_exception("Trying to index a scalar variable", opt_key);
                        char *endptr = nullptr;
                        idx = strtol(opt_key_str.c_str() + idx + 1, &endptr, 10);
                        if (endptr == nullptr || *endptr != 0)
                            ctx->throw_exception("Invalid vector index", boost::iterator_range<Iterator>(opt_key.begin() + idx + 1, opt_key.end()));
                    }
                }
            }
            if (opt == nullptr)
                ctx->throw_exception("Variable does not exist", boost::iterator_range<Iterator>(opt_key.begin(), opt_key.end()));
            if (opt->is_scalar())
                output = opt->serialize();
            else {
                const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt);
                if (vec->empty())
                    ctx->throw_exception("Indexing an empty vector variable", opt_key);
                output = vec->vserialize()[(idx >= vec->size()) ? 0 : idx];
            }
        }

        template <typename Iterator>
        static void legacy_variable_expansion2(
            const MyContext                 *ctx, 
            boost::iterator_range<Iterator> &opt_key,
            boost::iterator_range<Iterator> &opt_vector_index,
            std::string                     &output)
        {
            std::string         opt_key_str(opt_key.begin(), opt_key.end());
            const ConfigOption *opt = ctx->resolve_symbol(opt_key_str);
            if (opt == nullptr) {
                // Check whether the opt_key ends with '_'.
                if (opt_key_str.back() == '_')
                    opt_key_str.resize(opt_key_str.size() - 1);
                opt = ctx->resolve_symbol(opt_key_str);
            }
            if (! opt->is_vector())
                ctx->throw_exception("Trying to index a scalar variable", opt_key);
            const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt);
            if (vec->empty())
                ctx->throw_exception("Indexing an empty vector variable", boost::iterator_range<Iterator>(opt_key.begin(), opt_key.end()));
            const ConfigOption *opt_index = ctx->resolve_symbol(std::string(opt_vector_index.begin(), opt_vector_index.end()));
            if (opt_index == nullptr)
                ctx->throw_exception("Variable does not exist", opt_key);
            if (opt_index->type() != coInt)
                ctx->throw_exception("Indexing variable has to be integer", opt_key);
			int idx = opt_index->getInt();
			if (idx < 0)
                ctx->throw_exception("Negative vector index", opt_key);
			output = vec->vserialize()[(idx >= (int)vec->size()) ? 0 : idx];
        }

        template <typename Iterator>
        static void resolve_variable(
            const MyContext                 *ctx,
            boost::iterator_range<Iterator> &opt_key,
            OptWithPos<Iterator>            &output)
        {
            const ConfigOption *opt = ctx->resolve_symbol(std::string(opt_key.begin(), opt_key.end()));
            if (opt == nullptr)
                ctx->throw_exception("Not a variable name", opt_key);
            output.opt = opt;
            output.it_range = opt_key;
        }

        template <typename Iterator>
        static void scalar_variable_reference(
            const MyContext                 *ctx,
            OptWithPos<Iterator>            &opt,
            expr<Iterator>                  &output)
        {
            if (opt.opt->is_vector())
                ctx->throw_exception("Referencing a vector variable when scalar is expected", opt.it_range);
            switch (opt.opt->type()) {
            case coFloat:   output.set_d(opt.opt->getFloat());   break;
            case coInt:     output.set_i(opt.opt->getInt());     break;
            case coString:  output.set_s(static_cast<const ConfigOptionString*>(opt.opt)->value); break;
            case coPercent: output.set_d(opt.opt->getFloat());   break;
            case coPoint:   output.set_s(opt.opt->serialize());  break;
            case coBool:    output.set_b(opt.opt->getBool());    break;
            case coFloatOrPercent:
                ctx->throw_exception("FloatOrPercent variables are not supported", opt.it_range);
            default:
                ctx->throw_exception("Unknown scalar variable type", opt.it_range);
            }
            output.it_range = opt.it_range;
        }

        template <typename Iterator>
        static void vector_variable_reference(
            const MyContext                 *ctx,
            OptWithPos<Iterator>            &opt,
            int                             &index,
            Iterator                         it_end,
            expr<Iterator>                  &output)
        {
            if (opt.opt->is_scalar())
                ctx->throw_exception("Referencing a scalar variable when vector is expected", opt.it_range);
            const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt.opt);
            if (vec->empty())
                ctx->throw_exception("Indexing an empty vector variable", opt.it_range);
            size_t idx = (index < 0) ? 0 : (index >= int(vec->size())) ? 0 : size_t(index);
            switch (opt.opt->type()) {
            case coFloats:   output.set_d(static_cast<const ConfigOptionFloats  *>(opt.opt)->values[idx]); break;
            case coInts:     output.set_i(static_cast<const ConfigOptionInts    *>(opt.opt)->values[idx]); break;
            case coStrings:  output.set_s(static_cast<const ConfigOptionStrings *>(opt.opt)->values[idx]); break;
            case coPercents: output.set_d(static_cast<const ConfigOptionPercents*>(opt.opt)->values[idx]); break;
            case coPoints:   output.set_s(to_string(static_cast<const ConfigOptionPoints  *>(opt.opt)->values[idx])); break;
            case coBools:    output.set_b(static_cast<const ConfigOptionBools   *>(opt.opt)->values[idx] != 0); break;
            default:
                ctx->throw_exception("Unknown vector variable type", opt.it_range);
            }
            output.it_range = boost::iterator_range<Iterator>(opt.it_range.begin(), it_end);
        }

        // Verify that the expression returns an integer, which may be used
        // to address a vector.
        template <typename Iterator>
        static void evaluate_index(expr<Iterator> &expr_index, int &output)
        {
            if (expr_index.type != expr<Iterator>::TYPE_INT)                
                expr_index.throw_exception("Non-integer index is not allowed to address a vector variable.");
            output = expr_index.i();
        }

        template <typename Iterator>
        static void throw_exception(const std::string &msg, const boost::iterator_range<Iterator> &it_range)
        {
            // An asterix is added to the start of the string to differentiate the boost::spirit::info::tag content
            // between the grammer terminal / non-terminal symbol name and a free-form error message.
            boost::throw_exception(qi::expectation_failure<Iterator>(it_range.begin(), it_range.end(), spirit::info(std::string("*") + msg)));
        }

        template <typename Iterator>
        static void process_error_message(const MyContext *context, const boost::spirit::info &info, const Iterator &it_begin, const Iterator &it_end, const Iterator &it_error)
        {
            std::string &msg = const_cast<MyContext*>(context)->error_message;
            std::string  first(it_begin, it_error);
            std::string  last(it_error, it_end);
            auto         first_pos  = first.rfind('\n');
            auto         last_pos   = last.find('\n');
            int          line_nr    = 1;
            if (first_pos == std::string::npos)
                first_pos = 0;
            else {
                // Calculate the current line number.
                for (size_t i = 0; i <= first_pos; ++ i)
                    if (first[i] == '\n')
                        ++ line_nr;
                ++ first_pos;
            }
            auto error_line = std::string(first, first_pos) + std::string(last, 0, last_pos);
            // Position of the it_error from the start of its line.
            auto error_pos  = (it_error - it_begin) - first_pos;
            msg += "Parsing error at line " + std::to_string(line_nr);
            if (! info.tag.empty() && info.tag.front() == '*') {
                // The gat contains an explanatory string.
                msg += ": ";
                msg += info.tag.substr(1);
            } else {
                auto it = tag_to_error_message.find(info.tag);
                if (it == tag_to_error_message.end()) {
                    // A generic error report based on the nonterminal or terminal symbol name.
                    msg += ". Expecting tag ";
                    msg += info.tag;
                } else {
                    // Use the human readable error message.
                    msg += ". ";
                    msg + it->second;
                }
            }
            msg += '\n';
            msg += error_line;
            msg += '\n';
            for (size_t i = 0; i < error_pos; ++ i)
                msg += ' ';
            msg += "^\n";
        }
    };

    // Table to translate symbol tag to a human readable error message.
    std::map<std::string, std::string> MyContext::tag_to_error_message = {
        { "eoi",                        "Unknown syntax error" },
        { "start",                      "Unknown syntax error" },
        { "text",                       "Invalid text." },
        { "text_block",                 "Invalid text block." },
        { "macro",                      "Invalid macro." },
        { "if_else_output",             "Not an {if}{else}{endif} macro." },
        { "switch_output",              "Not a {switch} macro." },
        { "legacy_variable_expansion",  "Expecting a legacy variable expansion format" },
        { "identifier",                 "Expecting an identifier." },
        { "conditional_expression",     "Expecting a conditional expression." },
        { "logical_or_expression",      "Expecting a boolean expression." },
        { "logical_and_expression",     "Expecting a boolean expression." },
        { "equality_expression",        "Expecting an expression." },
        { "bool_expr_eval",             "Expecting a boolean expression."},
        { "relational_expression",      "Expecting an expression." },
        { "additive_expression",        "Expecting an expression." },
        { "multiplicative_expression",  "Expecting an expression." },
        { "unary_expression",           "Expecting an expression." },
        { "scalar_variable_reference",  "Expecting a scalar variable reference."},
        { "variable_reference",         "Expecting a variable reference."},
        { "regular_expression",         "Expecting a regular expression."}
    };

    // For debugging the boost::spirit parsers. Print out the string enclosed in it_range.
    template<typename Iterator>
    std::ostream& operator<<(std::ostream& os, const boost::iterator_range<Iterator> &it_range)
    {
        os << std::string(it_range.begin(), it_range.end());
        return os;
    }

    // Disable parsing int numbers (without decimals) and Inf/NaN symbols by the double parser.
    struct strict_real_policies_without_nan_inf : public qi::strict_real_policies<double>
    {
        template <typename It, typename Attr> static bool parse_nan(It&, It const&, Attr&) { return false; }
        template <typename It, typename Attr> static bool parse_inf(It&, It const&, Attr&) { return false; }
    };

    // This parser is to be used inside a raw[] directive to accept a single valid UTF-8 character.
    // If an invalid UTF-8 sequence is encountered, a qi::expectation_failure is thrown.
    struct utf8_char_skipper_parser : qi::primitive_parser<utf8_char_skipper_parser>
    { 
        // Define the attribute type exposed by this parser component 
        template <typename Context, typename Iterator>
        struct attribute
        { 
            typedef wchar_t type;
        };

        // This function is called during the actual parsing process 
        template <typename Iterator, typename Context , typename Skipper, typename Attribute>
        bool parse(Iterator& first, Iterator const& last, Context& context, Skipper const& skipper, Attribute& attr) const 
        { 
            // The skipper shall always be empty, any white space will be accepted.
            // skip_over(first, last, skipper);
            if (first == last)
                return false;
            // Iterator over the UTF-8 sequence.
            auto            it = first;
            // Read the first byte of the UTF-8 sequence.
            unsigned char   c  = static_cast<boost::uint8_t>(*it ++);
            unsigned int    cnt = 0;
            // UTF-8 sequence must not start with a continuation character:
            if ((c & 0xC0) == 0x80)
                goto err;
            // Skip high surrogate first if there is one.
            // If the most significant bit with a zero in it is in position
            // 8-N then there are N bytes in this UTF-8 sequence:
            {
                unsigned char mask   = 0x80u;
                unsigned int  result = 0;
                while (c & mask) {
                    ++ result;
                    mask >>= 1;
                }
                cnt = (result == 0) ? 1 : ((result > 4) ? 4 : result);
            }
            // Since we haven't read in a value, we need to validate the code points:
            for (-- cnt; cnt > 0; -- cnt) {
                if (it == last)
                    goto err;
                c = static_cast<boost::uint8_t>(*it ++);
                // We must have a continuation byte:
                if (cnt > 1 && (c & 0xC0) != 0x80)
                    goto err;
            }
            first = it;
            return true;
        err:
            MyContext::throw_exception("Invalid utf8 sequence", boost::iterator_range<Iterator>(first, last));
            return false;
        }

        // This function is called during error handling to create a human readable string for the error context.
        template <typename Context>
        spirit::info what(Context&) const
        { 
            return spirit::info("unicode_char");
        }
    };

    ///////////////////////////////////////////////////////////////////////////
    //  Our macro_processor grammar
    ///////////////////////////////////////////////////////////////////////////
    // Inspired by the C grammar rules https://www.lysator.liu.se/c/ANSI-C-grammar-y.html
    template <typename Iterator>
    struct macro_processor : qi::grammar<Iterator, std::string(const MyContext*), qi::locals<bool>, spirit::ascii::space_type>
    {
        macro_processor() : macro_processor::base_type(start)
        {
            using namespace qi::labels;
            qi::alpha_type              alpha;
            qi::alnum_type              alnum;
            qi::eps_type                eps;
            qi::raw_type                raw;
            qi::lit_type                lit;
            qi::lexeme_type             lexeme;
            qi::no_skip_type            no_skip;
            qi::real_parser<double, strict_real_policies_without_nan_inf> strict_double;
            spirit::ascii::char_type    char_;
            utf8_char_skipper_parser    utf8char;
            spirit::bool_type           bool_;
            spirit::int_type            int_;
            spirit::double_type         double_;
            spirit::ascii::string_type  string;
			spirit::eoi_type			eoi;
			spirit::repository::qi::iter_pos_type iter_pos;
            auto                        kw = spirit::repository::qi::distinct(qi::copy(alnum | '_'));

            qi::_val_type               _val;
            qi::_1_type                 _1;
            qi::_2_type                 _2;
            qi::_3_type                 _3;
            qi::_4_type                 _4;
            qi::_a_type                 _a;
            qi::_b_type                 _b;
            qi::_r1_type                _r1;

            // Starting symbol of the grammer.
            // The leading eps is required by the "expectation point" operator ">".
            // Without it, some of the errors would not trigger the error handler.
            // Also the start symbol switches between the "full macro syntax" and a "boolean expression only",
            // depending on the context->just_boolean_expression flag. This way a single static expression parser
            // could serve both purposes.
            start = eps[px::bind(&MyContext::evaluate_full_macro, _r1, _a)] >
                (       eps(_a==true) > text_block(_r1) [_val=_1]
                    |   conditional_expression(_r1) [ px::bind(&expr<Iterator>::evaluate_boolean_to_string, _1, _val) ]
				) > eoi;
            start.name("start");
            qi::on_error<qi::fail>(start, px::bind(&MyContext::process_error_message<Iterator>, _r1, _4, _1, _2, _3));

            text_block = *(
                        text [_val+=_1]
                        // Allow back tracking after '{' in case of a text_block embedded inside a condition.
                        // In that case the inner-most {else} wins and the {if}/{elsif}/{else} shall be paired.
                        // {elsif}/{else} without an {if} will be allowed to back track from the embedded text_block.
                    |   (lit('{') >> macro(_r1) [_val+=_1] > '}')
                    |   (lit('[') > legacy_variable_expansion(_r1) [_val+=_1] > ']')
                );
            text_block.name("text_block");

            // Free-form text up to a first brace, including spaces and newlines.
            // The free-form text will be inserted into the processed text without a modification.
            text = no_skip[raw[+(utf8char - char_('[') - char_('{'))]];
            text.name("text");

            // New style of macro expansion.
            // The macro expansion may contain numeric or string expressions, ifs and cases.
            macro =
                    (kw["if"]     > if_else_output(_r1) [_val = _1])
//                |   (kw["switch"] > switch_output(_r1)  [_val = _1])
                |   additive_expression(_r1) [ px::bind(&expr<Iterator>::to_string2, _1, _val) ];
            macro.name("macro");

            // An if expression enclosed in {} (the outmost {} are already parsed by the caller).
            if_else_output =
                eps[_b=true] >
                bool_expr_eval(_r1)[_a=_1] > '}' > 
                    text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)] > '{' >
                *(kw["elsif"] > bool_expr_eval(_r1)[_a=_1] > '}' > 
                    text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)] > '{') >
                -(kw["else"] > lit('}') > 
                    text_block(_r1)[px::bind(&expr<Iterator>::set_if, _b, _b, _1, _val)] > '{') >
                kw["endif"];
            if_else_output.name("if_else_output");
            // A switch expression enclosed in {} (the outmost {} are already parsed by the caller).
/*
            switch_output =
                eps[_b=true] >
                omit[expr(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr<Iterator>::set_if_equal, _a, _b, _1, _val)] > '{' >
                *("elsif" > omit[bool_expr_eval(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)]) >>
                -("else" > '}' >> text_block(_r1)[px::bind(&expr<Iterator>::set_if, _b, _b, _1, _val)]) >
                "endif";
*/

            // Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index].
            legacy_variable_expansion =
                    (identifier >> &lit(']'))
                        [ px::bind(&MyContext::legacy_variable_expansion<Iterator>, _r1, _1, _val) ]
                |   (identifier > lit('[') > identifier > ']') 
                        [ px::bind(&MyContext::legacy_variable_expansion2<Iterator>, _r1, _1, _2, _val) ]
                ;
            legacy_variable_expansion.name("legacy_variable_expansion");

            identifier =
                ! kw[keywords] >>
                raw[lexeme[(alpha | '_') >> *(alnum | '_')]];
            identifier.name("identifier");

            conditional_expression =
                logical_or_expression(_r1)                [_val = _1]
                >> -('?' > conditional_expression(_r1) > ':' > conditional_expression(_r1)) [px::bind(&expr<Iterator>::ternary_op, _val, _1, _2)];
            conditional_expression.name("conditional_expression");

            logical_or_expression = 
                logical_and_expression(_r1)                [_val = _1]
                >> *(   ((kw["or"] | "||") > logical_and_expression(_r1) ) [px::bind(&expr<Iterator>::logical_or, _val, _1)] );
            logical_or_expression.name("logical_or_expression");

            logical_and_expression = 
                equality_expression(_r1)                   [_val = _1]
                >> *(   ((kw["and"] | "&&") > equality_expression(_r1) ) [px::bind(&expr<Iterator>::logical_and, _val, _1)] );
            logical_and_expression.name("logical_and_expression");

            equality_expression =
                relational_expression(_r1)                   [_val = _1]
                >> *(   ("==" > relational_expression(_r1) ) [px::bind(&expr<Iterator>::equal,     _val, _1)]
                    |   ("!=" > relational_expression(_r1) ) [px::bind(&expr<Iterator>::not_equal, _val, _1)]
                    |   ("<>" > relational_expression(_r1) ) [px::bind(&expr<Iterator>::not_equal, _val, _1)]
                    |   ("=~" > regular_expression         ) [px::bind(&expr<Iterator>::regex_matches, _val, _1)]
                    |   ("!~" > regular_expression         ) [px::bind(&expr<Iterator>::regex_doesnt_match, _val, _1)]
                    );
            equality_expression.name("bool expression");

            // Evaluate a boolean expression stored as expr into a boolean value.
            // Throw if the equality_expression does not produce a expr of boolean type.
            bool_expr_eval = conditional_expression(_r1) [ px::bind(&expr<Iterator>::evaluate_boolean, _1, _val) ];
            bool_expr_eval.name("bool_expr_eval");

            relational_expression = 
                    additive_expression(_r1)                [_val  = _1]
                >> *(   ("<="     > additive_expression(_r1) ) [px::bind(&expr<Iterator>::leq,     _val, _1)]
                    |   (">="     > additive_expression(_r1) ) [px::bind(&expr<Iterator>::geq,     _val, _1)]
                    |   (lit('<') > additive_expression(_r1) ) [px::bind(&expr<Iterator>::lower,   _val, _1)]
                    |   (lit('>') > additive_expression(_r1) ) [px::bind(&expr<Iterator>::greater, _val, _1)]
                    );
            relational_expression.name("relational_expression");

            additive_expression =
                multiplicative_expression(_r1)                       [_val  = _1]
                >> *(   (lit('+') > multiplicative_expression(_r1) ) [_val += _1]
                    |   (lit('-') > multiplicative_expression(_r1) ) [_val -= _1]
                    );
            additive_expression.name("additive_expression");

            multiplicative_expression =
                unary_expression(_r1)                       [_val  = _1]
                >> *(   (lit('*') > unary_expression(_r1) ) [_val *= _1]
                    |   (lit('/') > unary_expression(_r1) ) [_val /= _1]
                    );
            multiplicative_expression.name("multiplicative_expression");

            struct FactorActions {
                static void set_start_pos(Iterator &start_pos, expr<Iterator> &out)
                        { out.it_range = boost::iterator_range<Iterator>(start_pos, start_pos); }
                static void int_(int &value, Iterator &end_pos, expr<Iterator> &out)
                        { out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
                static void double_(double &value, Iterator &end_pos, expr<Iterator> &out)
                        { out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
                static void bool_(bool &value, Iterator &end_pos, expr<Iterator> &out)
                        { out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
                static void string_(boost::iterator_range<Iterator> &it_range, expr<Iterator> &out)
                        { out = expr<Iterator>(std::string(it_range.begin() + 1, it_range.end() - 1), it_range.begin(), it_range.end()); }
                static void expr_(expr<Iterator> &value, Iterator &end_pos, expr<Iterator> &out)
                        { out = expr<Iterator>(std::move(value), out.it_range.begin(), end_pos); }
                static void minus_(expr<Iterator> &value, expr<Iterator> &out)
                        { out = value.unary_minus(out.it_range.begin()); }
                static void not_(expr<Iterator> &value, expr<Iterator> &out)
                        { out = value.unary_not(out.it_range.begin()); }
            };
            unary_expression = iter_pos[px::bind(&FactorActions::set_start_pos, _1, _val)] >> (
                    scalar_variable_reference(_r1)                  [ _val = _1 ]
                |   (lit('(')  > conditional_expression(_r1) > ')' > iter_pos) [ px::bind(&FactorActions::expr_, _1, _2, _val) ]
                |   (lit('-')  > unary_expression(_r1)           )  [ px::bind(&FactorActions::minus_,  _1,     _val) ]
                |   (lit('+')  > unary_expression(_r1) > iter_pos)  [ px::bind(&FactorActions::expr_,   _1, _2, _val) ]
                |   ((kw["not"] | '!') > unary_expression(_r1) > iter_pos) [ px::bind(&FactorActions::not_, _1, _val) ]
                |   (kw["min"] > '(' > conditional_expression(_r1) [_val = _1] > ',' > conditional_expression(_r1) > ')') 
                                                                    [ px::bind(&expr<Iterator>::min, _val, _2) ]
                |   (kw["max"] > '(' > conditional_expression(_r1) [_val = _1] > ',' > conditional_expression(_r1) > ')') 
                                                                    [ px::bind(&expr<Iterator>::max, _val, _2) ]
                |   (strict_double > iter_pos)                      [ px::bind(&FactorActions::double_, _1, _2, _val) ]
                |   (int_      > iter_pos)                          [ px::bind(&FactorActions::int_,    _1, _2, _val) ]
                |   (kw[bool_] > iter_pos)                          [ px::bind(&FactorActions::bool_,   _1, _2, _val) ]
                |   raw[lexeme['"' > *((utf8char - char_('\\') - char_('"')) | ('\\' > char_)) > '"']]
                                                                    [ px::bind(&FactorActions::string_, _1,     _val) ]
                );
            unary_expression.name("unary_expression");

            scalar_variable_reference = 
                variable_reference(_r1)[_a=_1] >>
                (
                        ('[' > additive_expression(_r1)[px::bind(&MyContext::evaluate_index<Iterator>, _1, _b)] > ']' > 
                            iter_pos[px::bind(&MyContext::vector_variable_reference<Iterator>, _r1, _a, _b, _1, _val)])
                    |   eps[px::bind(&MyContext::scalar_variable_reference<Iterator>, _r1, _a, _val)]
                );
            scalar_variable_reference.name("scalar variable reference");

            variable_reference = identifier
                [ px::bind(&MyContext::resolve_variable<Iterator>, _r1, _1, _val) ];
            variable_reference.name("variable reference");

            regular_expression = raw[lexeme['/' > *((utf8char - char_('\\') - char_('/')) | ('\\' > char_)) > '/']];
            regular_expression.name("regular_expression");

            keywords.add
                ("and")
                ("if")
                //("inf")
                ("else")
                ("elsif")
                ("endif")
                ("false")
                ("min")
                ("max")
                ("not")
                ("or")
                ("true");

            if (0) {
                debug(start);
                debug(text);
                debug(text_block);
                debug(macro);
                debug(if_else_output);
//                debug(switch_output);
                debug(legacy_variable_expansion);
                debug(identifier);
                debug(conditional_expression);
                debug(logical_or_expression);
                debug(logical_and_expression);
                debug(equality_expression);
                debug(bool_expr_eval);
                debug(relational_expression);
                debug(additive_expression);
                debug(multiplicative_expression);
                debug(unary_expression);
                debug(scalar_variable_reference);
                debug(variable_reference);
                debug(regular_expression);
            }
        }

        // Generic expression over expr<Iterator>.
        typedef qi::rule<Iterator, expr<Iterator>(const MyContext*), spirit::ascii::space_type> RuleExpression;

        // The start of the grammar.
        qi::rule<Iterator, std::string(const MyContext*), qi::locals<bool>, spirit::ascii::space_type> start;
        // A free-form text.
        qi::rule<Iterator, std::string(), spirit::ascii::space_type> text;
        // A free-form text, possibly empty, possibly containing macro expansions.
        qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> text_block;
        // Statements enclosed in curely braces {}
        qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> macro;
        // Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index].
        qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> legacy_variable_expansion;
        // Parsed identifier name.
        qi::rule<Iterator, boost::iterator_range<Iterator>(), spirit::ascii::space_type> identifier;
        // Ternary operator (?:) over logical_or_expression.
        RuleExpression conditional_expression;
        // Logical or over logical_and_expressions.
        RuleExpression logical_or_expression;
        // Logical and over relational_expressions.
        RuleExpression logical_and_expression;
        // <, >, <=, >=
        RuleExpression relational_expression;
        // Math expression consisting of +- operators over multiplicative_expressions.
        RuleExpression additive_expression;
        // Boolean expressions over expressions.
        RuleExpression equality_expression;
        // Math expression consisting of */ operators over factors.
        RuleExpression multiplicative_expression;
        // Number literals, functions, braced expressions, variable references, variable indexing references.
        RuleExpression unary_expression;
        // Rule to capture a regular expression enclosed in //.
        qi::rule<Iterator, boost::iterator_range<Iterator>(), spirit::ascii::space_type> regular_expression;
        // Evaluate boolean expression into bool.
        qi::rule<Iterator, bool(const MyContext*), spirit::ascii::space_type> bool_expr_eval;
        // Reference of a scalar variable, or reference to a field of a vector variable.
        qi::rule<Iterator, expr<Iterator>(const MyContext*), qi::locals<OptWithPos<Iterator>, int>, spirit::ascii::space_type> scalar_variable_reference;
        // Rule to translate an identifier to a ConfigOption, or to fail.
        qi::rule<Iterator, OptWithPos<Iterator>(const MyContext*), spirit::ascii::space_type> variable_reference;

        qi::rule<Iterator, std::string(const MyContext*), qi::locals<bool, bool>, spirit::ascii::space_type> if_else_output;
//        qi::rule<Iterator, std::string(const MyContext*), qi::locals<expr<Iterator>, bool, std::string>, spirit::ascii::space_type> switch_output;

        qi::symbols<char> keywords;
    };
}

static std::string process_macro(const std::string &templ, client::MyContext &context)
{
    typedef std::string::const_iterator iterator_type;
    typedef client::macro_processor<iterator_type> macro_processor;

    // Our whitespace skipper.
    spirit::ascii::space_type   space;
    // Our grammar, statically allocated inside the method, meaning it will be allocated the first time
    // PlaceholderParser::process() runs.
    //FIXME this kind of initialization is not thread safe!
    static macro_processor      macro_processor_instance;
    // Iterators over the source template.
    std::string::const_iterator iter = templ.begin();
    std::string::const_iterator end  = templ.end();
    // Accumulator for the processed template.
    std::string                 output;
    bool res = phrase_parse(iter, end, macro_processor_instance(&context), space, output);
	if (!context.error_message.empty()) {
        if (context.error_message.back() != '\n' && context.error_message.back() != '\r')
            context.error_message += '\n';
        throw std::runtime_error(context.error_message);
    }
    return output;
}

std::string PlaceholderParser::process(const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override) const
{
    client::MyContext context;
    context.config              = &this->config();
    context.config_override     = config_override;
    context.current_extruder_id = current_extruder_id;
    return process_macro(templ, context);
}

// Evaluate a boolean expression using the full expressive power of the PlaceholderParser boolean expression syntax.
// Throws std::runtime_error on syntax or runtime error.
bool PlaceholderParser::evaluate_boolean_expression(const std::string &templ, const DynamicConfig &config, const DynamicConfig *config_override)
{
    client::MyContext context;
    context.config                  = &config;
    context.config_override         = config_override;
    // Let the macro processor parse just a boolean expression, not the full macro language.
    context.just_boolean_expression = true;
    return process_macro(templ, context) == "true";
}

}