Welcome to mirror list, hosted at ThFree Co, Russian Federation.

geom2.c « libqhull « src « qhull « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 82ec4936efe6ef9ae45aac9baeb7e0b05145b03a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
/*<html><pre>  -<a                             href="qh-geom.htm"
  >-------------------------------</a><a name="TOP">-</a>


   geom2.c
   infrequently used geometric routines of qhull

   see qh-geom.htm and geom.h

   Copyright (c) 1993-2015 The Geometry Center.
   $Id: //main/2015/qhull/src/libqhull/geom2.c#6 $$Change: 2065 $
   $DateTime: 2016/01/18 13:51:04 $$Author: bbarber $

   frequently used code goes into geom.c
*/

#include "qhull_a.h"

/*================== functions in alphabetic order ============*/

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="copypoints">-</a>

  qh_copypoints( points, numpoints, dimension)
    return qh_malloc'd copy of points
  notes:
    qh_free the returned points to avoid a memory leak
*/
coordT *qh_copypoints(coordT *points, int numpoints, int dimension) {
  int size;
  coordT *newpoints;

  size= numpoints * dimension * (int)sizeof(coordT);
  if (!(newpoints=(coordT*)qh_malloc((size_t)size))) {
    qh_fprintf(qh ferr, 6004, "qhull error: insufficient memory to copy %d points\n",
        numpoints);
    qh_errexit(qh_ERRmem, NULL, NULL);
  }
  memcpy((char *)newpoints, (char *)points, (size_t)size); /* newpoints!=0 by QH6004 */
  return newpoints;
} /* copypoints */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="crossproduct">-</a>

  qh_crossproduct( dim, vecA, vecB, vecC )
    crossproduct of 2 dim vectors
    C= A x B

  notes:
    from Glasner, Graphics Gems I, p. 639
    only defined for dim==3
*/
void qh_crossproduct(int dim, realT vecA[3], realT vecB[3], realT vecC[3]){

  if (dim == 3) {
    vecC[0]=   det2_(vecA[1], vecA[2],
                     vecB[1], vecB[2]);
    vecC[1]= - det2_(vecA[0], vecA[2],
                     vecB[0], vecB[2]);
    vecC[2]=   det2_(vecA[0], vecA[1],
                     vecB[0], vecB[1]);
  }
} /* vcross */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="determinant">-</a>

  qh_determinant( rows, dim, nearzero )
    compute signed determinant of a square matrix
    uses qh.NEARzero to test for degenerate matrices

  returns:
    determinant
    overwrites rows and the matrix
    if dim == 2 or 3
      nearzero iff determinant < qh NEARzero[dim-1]
      (!quite correct, not critical)
    if dim >= 4
      nearzero iff diagonal[k] < qh NEARzero[k]
*/
realT qh_determinant(realT **rows, int dim, boolT *nearzero) {
  realT det=0;
  int i;
  boolT sign= False;

  *nearzero= False;
  if (dim < 2) {
    qh_fprintf(qh ferr, 6005, "qhull internal error (qh_determinate): only implemented for dimension >= 2\n");
    qh_errexit(qh_ERRqhull, NULL, NULL);
  }else if (dim == 2) {
    det= det2_(rows[0][0], rows[0][1],
                 rows[1][0], rows[1][1]);
    if (fabs_(det) < 10*qh NEARzero[1])  /* not really correct, what should this be? */
      *nearzero= True;
  }else if (dim == 3) {
    det= det3_(rows[0][0], rows[0][1], rows[0][2],
                 rows[1][0], rows[1][1], rows[1][2],
                 rows[2][0], rows[2][1], rows[2][2]);
    if (fabs_(det) < 10*qh NEARzero[2])  /* what should this be?  det 5.5e-12 was flat for qh_maxsimplex of qdelaunay 0,0 27,27 -36,36 -9,63  */
      *nearzero= True;
  }else {
    qh_gausselim(rows, dim, dim, &sign, nearzero);  /* if nearzero, diagonal still ok*/
    det= 1.0;
    for (i=dim; i--; )
      det *= (rows[i])[i];
    if (sign)
      det= -det;
  }
  return det;
} /* determinant */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="detjoggle">-</a>

  qh_detjoggle( points, numpoints, dimension )
    determine default max joggle for point array
      as qh_distround * qh_JOGGLEdefault

  returns:
    initial value for JOGGLEmax from points and REALepsilon

  notes:
    computes DISTround since qh_maxmin not called yet
    if qh SCALElast, last dimension will be scaled later to MAXwidth

    loop duplicated from qh_maxmin
*/
realT qh_detjoggle(pointT *points, int numpoints, int dimension) {
  realT abscoord, distround, joggle, maxcoord, mincoord;
  pointT *point, *pointtemp;
  realT maxabs= -REALmax;
  realT sumabs= 0;
  realT maxwidth= 0;
  int k;

  for (k=0; k < dimension; k++) {
    if (qh SCALElast && k == dimension-1)
      abscoord= maxwidth;
    else if (qh DELAUNAY && k == dimension-1) /* will qh_setdelaunay() */
      abscoord= 2 * maxabs * maxabs;  /* may be low by qh hull_dim/2 */
    else {
      maxcoord= -REALmax;
      mincoord= REALmax;
      FORALLpoint_(points, numpoints) {
        maximize_(maxcoord, point[k]);
        minimize_(mincoord, point[k]);
      }
      maximize_(maxwidth, maxcoord-mincoord);
      abscoord= fmax_(maxcoord, -mincoord);
    }
    sumabs += abscoord;
    maximize_(maxabs, abscoord);
  } /* for k */
  distround= qh_distround(qh hull_dim, maxabs, sumabs);
  joggle= distround * qh_JOGGLEdefault;
  maximize_(joggle, REALepsilon * qh_JOGGLEdefault);
  trace2((qh ferr, 2001, "qh_detjoggle: joggle=%2.2g maxwidth=%2.2g\n", joggle, maxwidth));
  return joggle;
} /* detjoggle */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="detroundoff">-</a>

  qh_detroundoff()
    determine maximum roundoff errors from
      REALepsilon, REALmax, REALmin, qh.hull_dim, qh.MAXabs_coord,
      qh.MAXsumcoord, qh.MAXwidth, qh.MINdenom_1

    accounts for qh.SETroundoff, qh.RANDOMdist, qh MERGEexact
      qh.premerge_cos, qh.postmerge_cos, qh.premerge_centrum,
      qh.postmerge_centrum, qh.MINoutside,
      qh_RATIOnearinside, qh_COPLANARratio, qh_WIDEcoplanar

  returns:
    sets qh.DISTround, etc. (see below)
    appends precision constants to qh.qhull_options

  see:
    qh_maxmin() for qh.NEARzero

  design:
    determine qh.DISTround for distance computations
    determine minimum denominators for qh_divzero
    determine qh.ANGLEround for angle computations
    adjust qh.premerge_cos,... for roundoff error
    determine qh.ONEmerge for maximum error due to a single merge
    determine qh.NEARinside, qh.MAXcoplanar, qh.MINvisible,
      qh.MINoutside, qh.WIDEfacet
    initialize qh.max_vertex and qh.minvertex
*/
void qh_detroundoff(void) {

  qh_option("_max-width", NULL, &qh MAXwidth);
  if (!qh SETroundoff) {
    qh DISTround= qh_distround(qh hull_dim, qh MAXabs_coord, qh MAXsumcoord);
    if (qh RANDOMdist)
      qh DISTround += qh RANDOMfactor * qh MAXabs_coord;
    qh_option("Error-roundoff", NULL, &qh DISTround);
  }
  qh MINdenom= qh MINdenom_1 * qh MAXabs_coord;
  qh MINdenom_1_2= sqrt(qh MINdenom_1 * qh hull_dim) ;  /* if will be normalized */
  qh MINdenom_2= qh MINdenom_1_2 * qh MAXabs_coord;
                                              /* for inner product */
  qh ANGLEround= 1.01 * qh hull_dim * REALepsilon;
  if (qh RANDOMdist)
    qh ANGLEround += qh RANDOMfactor;
  if (qh premerge_cos < REALmax/2) {
    qh premerge_cos -= qh ANGLEround;
    if (qh RANDOMdist)
      qh_option("Angle-premerge-with-random", NULL, &qh premerge_cos);
  }
  if (qh postmerge_cos < REALmax/2) {
    qh postmerge_cos -= qh ANGLEround;
    if (qh RANDOMdist)
      qh_option("Angle-postmerge-with-random", NULL, &qh postmerge_cos);
  }
  qh premerge_centrum += 2 * qh DISTround;    /*2 for centrum and distplane()*/
  qh postmerge_centrum += 2 * qh DISTround;
  if (qh RANDOMdist && (qh MERGEexact || qh PREmerge))
    qh_option("Centrum-premerge-with-random", NULL, &qh premerge_centrum);
  if (qh RANDOMdist && qh POSTmerge)
    qh_option("Centrum-postmerge-with-random", NULL, &qh postmerge_centrum);
  { /* compute ONEmerge, max vertex offset for merging simplicial facets */
    realT maxangle= 1.0, maxrho;

    minimize_(maxangle, qh premerge_cos);
    minimize_(maxangle, qh postmerge_cos);
    /* max diameter * sin theta + DISTround for vertex to its hyperplane */
    qh ONEmerge= sqrt((realT)qh hull_dim) * qh MAXwidth *
      sqrt(1.0 - maxangle * maxangle) + qh DISTround;
    maxrho= qh hull_dim * qh premerge_centrum + qh DISTround;
    maximize_(qh ONEmerge, maxrho);
    maxrho= qh hull_dim * qh postmerge_centrum + qh DISTround;
    maximize_(qh ONEmerge, maxrho);
    if (qh MERGING)
      qh_option("_one-merge", NULL, &qh ONEmerge);
  }
  qh NEARinside= qh ONEmerge * qh_RATIOnearinside; /* only used if qh KEEPnearinside */
  if (qh JOGGLEmax < REALmax/2 && (qh KEEPcoplanar || qh KEEPinside)) {
    realT maxdist;             /* adjust qh.NEARinside for joggle */
    qh KEEPnearinside= True;
    maxdist= sqrt((realT)qh hull_dim) * qh JOGGLEmax + qh DISTround;
    maxdist= 2*maxdist;        /* vertex and coplanar point can joggle in opposite directions */
    maximize_(qh NEARinside, maxdist);  /* must agree with qh_nearcoplanar() */
  }
  if (qh KEEPnearinside)
    qh_option("_near-inside", NULL, &qh NEARinside);
  if (qh JOGGLEmax < qh DISTround) {
    qh_fprintf(qh ferr, 6006, "qhull error: the joggle for 'QJn', %.2g, is below roundoff for distance computations, %.2g\n",
         qh JOGGLEmax, qh DISTround);
    qh_errexit(qh_ERRinput, NULL, NULL);
  }
  if (qh MINvisible > REALmax/2) {
    if (!qh MERGING)
      qh MINvisible= qh DISTround;
    else if (qh hull_dim <= 3)
      qh MINvisible= qh premerge_centrum;
    else
      qh MINvisible= qh_COPLANARratio * qh premerge_centrum;
    if (qh APPROXhull && qh MINvisible > qh MINoutside)
      qh MINvisible= qh MINoutside;
    qh_option("Visible-distance", NULL, &qh MINvisible);
  }
  if (qh MAXcoplanar > REALmax/2) {
    qh MAXcoplanar= qh MINvisible;
    qh_option("U-coplanar-distance", NULL, &qh MAXcoplanar);
  }
  if (!qh APPROXhull) {             /* user may specify qh MINoutside */
    qh MINoutside= 2 * qh MINvisible;
    if (qh premerge_cos < REALmax/2)
      maximize_(qh MINoutside, (1- qh premerge_cos) * qh MAXabs_coord);
    qh_option("Width-outside", NULL, &qh MINoutside);
  }
  qh WIDEfacet= qh MINoutside;
  maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MAXcoplanar);
  maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MINvisible);
  qh_option("_wide-facet", NULL, &qh WIDEfacet);
  if (qh MINvisible > qh MINoutside + 3 * REALepsilon
  && !qh BESToutside && !qh FORCEoutput)
    qh_fprintf(qh ferr, 7001, "qhull input warning: minimum visibility V%.2g is greater than \nminimum outside W%.2g.  Flipped facets are likely.\n",
             qh MINvisible, qh MINoutside);
  qh max_vertex= qh DISTround;
  qh min_vertex= -qh DISTround;
  /* numeric constants reported in printsummary */
} /* detroundoff */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="detsimplex">-</a>

  qh_detsimplex( apex, points, dim, nearzero )
    compute determinant of a simplex with point apex and base points

  returns:
     signed determinant and nearzero from qh_determinant

  notes:
     uses qh.gm_matrix/qh.gm_row (assumes they're big enough)

  design:
    construct qm_matrix by subtracting apex from points
    compute determinate
*/
realT qh_detsimplex(pointT *apex, setT *points, int dim, boolT *nearzero) {
  pointT *coorda, *coordp, *gmcoord, *point, **pointp;
  coordT **rows;
  int k,  i=0;
  realT det;

  zinc_(Zdetsimplex);
  gmcoord= qh gm_matrix;
  rows= qh gm_row;
  FOREACHpoint_(points) {
    if (i == dim)
      break;
    rows[i++]= gmcoord;
    coordp= point;
    coorda= apex;
    for (k=dim; k--; )
      *(gmcoord++)= *coordp++ - *coorda++;
  }
  if (i < dim) {
    qh_fprintf(qh ferr, 6007, "qhull internal error (qh_detsimplex): #points %d < dimension %d\n",
               i, dim);
    qh_errexit(qh_ERRqhull, NULL, NULL);
  }
  det= qh_determinant(rows, dim, nearzero);
  trace2((qh ferr, 2002, "qh_detsimplex: det=%2.2g for point p%d, dim %d, nearzero? %d\n",
          det, qh_pointid(apex), dim, *nearzero));
  return det;
} /* detsimplex */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="distnorm">-</a>

  qh_distnorm( dim, point, normal, offset )
    return distance from point to hyperplane at normal/offset

  returns:
    dist

  notes:
    dist > 0 if point is outside of hyperplane

  see:
    qh_distplane in geom.c
*/
realT qh_distnorm(int dim, pointT *point, pointT *normal, realT *offsetp) {
  coordT *normalp= normal, *coordp= point;
  realT dist;
  int k;

  dist= *offsetp;
  for (k=dim; k--; )
    dist += *(coordp++) * *(normalp++);
  return dist;
} /* distnorm */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="distround">-</a>

  qh_distround(dimension, maxabs, maxsumabs )
    compute maximum round-off error for a distance computation
      to a normalized hyperplane
    maxabs is the maximum absolute value of a coordinate
    maxsumabs is the maximum possible sum of absolute coordinate values

  returns:
    max dist round for REALepsilon

  notes:
    calculate roundoff error according to Golub & van Loan, 1983, Lemma 3.2-1, "Rounding Errors"
    use sqrt(dim) since one vector is normalized
      or use maxsumabs since one vector is < 1
*/
realT qh_distround(int dimension, realT maxabs, realT maxsumabs) {
  realT maxdistsum, maxround;

  maxdistsum= sqrt((realT)dimension) * maxabs;
  minimize_( maxdistsum, maxsumabs);
  maxround= REALepsilon * (dimension * maxdistsum * 1.01 + maxabs);
              /* adds maxabs for offset */
  trace4((qh ferr, 4008, "qh_distround: %2.2g maxabs %2.2g maxsumabs %2.2g maxdistsum %2.2g\n",
                 maxround, maxabs, maxsumabs, maxdistsum));
  return maxround;
} /* distround */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="divzero">-</a>

  qh_divzero( numer, denom, mindenom1, zerodiv )
    divide by a number that's nearly zero
    mindenom1= minimum denominator for dividing into 1.0

  returns:
    quotient
    sets zerodiv and returns 0.0 if it would overflow

  design:
    if numer is nearly zero and abs(numer) < abs(denom)
      return numer/denom
    else if numer is nearly zero
      return 0 and zerodiv
    else if denom/numer non-zero
      return numer/denom
    else
      return 0 and zerodiv
*/
realT qh_divzero(realT numer, realT denom, realT mindenom1, boolT *zerodiv) {
  realT temp, numerx, denomx;


  if (numer < mindenom1 && numer > -mindenom1) {
    numerx= fabs_(numer);
    denomx= fabs_(denom);
    if (numerx < denomx) {
      *zerodiv= False;
      return numer/denom;
    }else {
      *zerodiv= True;
      return 0.0;
    }
  }
  temp= denom/numer;
  if (temp > mindenom1 || temp < -mindenom1) {
    *zerodiv= False;
    return numer/denom;
  }else {
    *zerodiv= True;
    return 0.0;
  }
} /* divzero */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="facetarea">-</a>

  qh_facetarea( facet )
    return area for a facet

  notes:
    if non-simplicial,
      uses centrum to triangulate facet and sums the projected areas.
    if (qh DELAUNAY),
      computes projected area instead for last coordinate
    assumes facet->normal exists
    projecting tricoplanar facets to the hyperplane does not appear to make a difference

  design:
    if simplicial
      compute area
    else
      for each ridge
        compute area from centrum to ridge
    negate area if upper Delaunay facet
*/
realT qh_facetarea(facetT *facet) {
  vertexT *apex;
  pointT *centrum;
  realT area= 0.0;
  ridgeT *ridge, **ridgep;

  if (facet->simplicial) {
    apex= SETfirstt_(facet->vertices, vertexT);
    area= qh_facetarea_simplex(qh hull_dim, apex->point, facet->vertices,
                    apex, facet->toporient, facet->normal, &facet->offset);
  }else {
    if (qh CENTERtype == qh_AScentrum)
      centrum= facet->center;
    else
      centrum= qh_getcentrum(facet);
    FOREACHridge_(facet->ridges)
      area += qh_facetarea_simplex(qh hull_dim, centrum, ridge->vertices,
                 NULL, (boolT)(ridge->top == facet),  facet->normal, &facet->offset);
    if (qh CENTERtype != qh_AScentrum)
      qh_memfree(centrum, qh normal_size);
  }
  if (facet->upperdelaunay && qh DELAUNAY)
    area= -area;  /* the normal should be [0,...,1] */
  trace4((qh ferr, 4009, "qh_facetarea: f%d area %2.2g\n", facet->id, area));
  return area;
} /* facetarea */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="facetarea_simplex">-</a>

  qh_facetarea_simplex( dim, apex, vertices, notvertex, toporient, normal, offset )
    return area for a simplex defined by
      an apex, a base of vertices, an orientation, and a unit normal
    if simplicial or tricoplanar facet,
      notvertex is defined and it is skipped in vertices

  returns:
    computes area of simplex projected to plane [normal,offset]
    returns 0 if vertex too far below plane (qh WIDEfacet)
      vertex can't be apex of tricoplanar facet

  notes:
    if (qh DELAUNAY),
      computes projected area instead for last coordinate
    uses qh gm_matrix/gm_row and qh hull_dim
    helper function for qh_facetarea

  design:
    if Notvertex
      translate simplex to apex
    else
      project simplex to normal/offset
      translate simplex to apex
    if Delaunay
      set last row/column to 0 with -1 on diagonal
    else
      set last row to Normal
    compute determinate
    scale and flip sign for area
*/
realT qh_facetarea_simplex(int dim, coordT *apex, setT *vertices,
        vertexT *notvertex,  boolT toporient, coordT *normal, realT *offset) {
  pointT *coorda, *coordp, *gmcoord;
  coordT **rows, *normalp;
  int k,  i=0;
  realT area, dist;
  vertexT *vertex, **vertexp;
  boolT nearzero;

  gmcoord= qh gm_matrix;
  rows= qh gm_row;
  FOREACHvertex_(vertices) {
    if (vertex == notvertex)
      continue;
    rows[i++]= gmcoord;
    coorda= apex;
    coordp= vertex->point;
    normalp= normal;
    if (notvertex) {
      for (k=dim; k--; )
        *(gmcoord++)= *coordp++ - *coorda++;
    }else {
      dist= *offset;
      for (k=dim; k--; )
        dist += *coordp++ * *normalp++;
      if (dist < -qh WIDEfacet) {
        zinc_(Znoarea);
        return 0.0;
      }
      coordp= vertex->point;
      normalp= normal;
      for (k=dim; k--; )
        *(gmcoord++)= (*coordp++ - dist * *normalp++) - *coorda++;
    }
  }
  if (i != dim-1) {
    qh_fprintf(qh ferr, 6008, "qhull internal error (qh_facetarea_simplex): #points %d != dim %d -1\n",
               i, dim);
    qh_errexit(qh_ERRqhull, NULL, NULL);
  }
  rows[i]= gmcoord;
  if (qh DELAUNAY) {
    for (i=0; i < dim-1; i++)
      rows[i][dim-1]= 0.0;
    for (k=dim; k--; )
      *(gmcoord++)= 0.0;
    rows[dim-1][dim-1]= -1.0;
  }else {
    normalp= normal;
    for (k=dim; k--; )
      *(gmcoord++)= *normalp++;
  }
  zinc_(Zdetsimplex);
  area= qh_determinant(rows, dim, &nearzero);
  if (toporient)
    area= -area;
  area *= qh AREAfactor;
  trace4((qh ferr, 4010, "qh_facetarea_simplex: area=%2.2g for point p%d, toporient %d, nearzero? %d\n",
          area, qh_pointid(apex), toporient, nearzero));
  return area;
} /* facetarea_simplex */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="facetcenter">-</a>

  qh_facetcenter( vertices )
    return Voronoi center (Voronoi vertex) for a facet's vertices

  returns:
    return temporary point equal to the center

  see:
    qh_voronoi_center()
*/
pointT *qh_facetcenter(setT *vertices) {
  setT *points= qh_settemp(qh_setsize(vertices));
  vertexT *vertex, **vertexp;
  pointT *center;

  FOREACHvertex_(vertices)
    qh_setappend(&points, vertex->point);
  center= qh_voronoi_center(qh hull_dim-1, points);
  qh_settempfree(&points);
  return center;
} /* facetcenter */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="findgooddist">-</a>

  qh_findgooddist( point, facetA, dist, facetlist )
    find best good facet visible for point from facetA
    assumes facetA is visible from point

  returns:
    best facet, i.e., good facet that is furthest from point
      distance to best facet
      NULL if none

    moves good, visible facets (and some other visible facets)
      to end of qh facet_list

  notes:
    uses qh visit_id

  design:
    initialize bestfacet if facetA is good
    move facetA to end of facetlist
    for each facet on facetlist
      for each unvisited neighbor of facet
        move visible neighbors to end of facetlist
        update best good neighbor
        if no good neighbors, update best facet
*/
facetT *qh_findgooddist(pointT *point, facetT *facetA, realT *distp,
               facetT **facetlist) {
  realT bestdist= -REALmax, dist;
  facetT *neighbor, **neighborp, *bestfacet=NULL, *facet;
  boolT goodseen= False;

  if (facetA->good) {
    zzinc_(Zcheckpart);  /* calls from check_bestdist occur after print stats */
    qh_distplane(point, facetA, &bestdist);
    bestfacet= facetA;
    goodseen= True;
  }
  qh_removefacet(facetA);
  qh_appendfacet(facetA);
  *facetlist= facetA;
  facetA->visitid= ++qh visit_id;
  FORALLfacet_(*facetlist) {
    FOREACHneighbor_(facet) {
      if (neighbor->visitid == qh visit_id)
        continue;
      neighbor->visitid= qh visit_id;
      if (goodseen && !neighbor->good)
        continue;
      zzinc_(Zcheckpart);
      qh_distplane(point, neighbor, &dist);
      if (dist > 0) {
        qh_removefacet(neighbor);
        qh_appendfacet(neighbor);
        if (neighbor->good) {
          goodseen= True;
          if (dist > bestdist) {
            bestdist= dist;
            bestfacet= neighbor;
          }
        }
      }
    }
  }
  if (bestfacet) {
    *distp= bestdist;
    trace2((qh ferr, 2003, "qh_findgooddist: p%d is %2.2g above good facet f%d\n",
      qh_pointid(point), bestdist, bestfacet->id));
    return bestfacet;
  }
  trace4((qh ferr, 4011, "qh_findgooddist: no good facet for p%d above f%d\n",
      qh_pointid(point), facetA->id));
  return NULL;
}  /* findgooddist */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="getarea">-</a>

  qh_getarea( facetlist )
    set area of all facets in facetlist
    collect statistics
    nop if hasAreaVolume

  returns:
    sets qh totarea/totvol to total area and volume of convex hull
    for Delaunay triangulation, computes projected area of the lower or upper hull
      ignores upper hull if qh ATinfinity

  notes:
    could compute outer volume by expanding facet area by rays from interior
    the following attempt at perpendicular projection underestimated badly:
      qh.totoutvol += (-dist + facet->maxoutside + qh DISTround)
                            * area/ qh hull_dim;
  design:
    for each facet on facetlist
      compute facet->area
      update qh.totarea and qh.totvol
*/
void qh_getarea(facetT *facetlist) {
  realT area;
  realT dist;
  facetT *facet;

  if (qh hasAreaVolume)
    return;
  if (qh REPORTfreq)
    qh_fprintf(qh ferr, 8020, "computing area of each facet and volume of the convex hull\n");
  else
    trace1((qh ferr, 1001, "qh_getarea: computing volume and area for each facet\n"));
  qh totarea= qh totvol= 0.0;
  FORALLfacet_(facetlist) {
    if (!facet->normal)
      continue;
    if (facet->upperdelaunay && qh ATinfinity)
      continue;
    if (!facet->isarea) {
      facet->f.area= qh_facetarea(facet);
      facet->isarea= True;
    }
    area= facet->f.area;
    if (qh DELAUNAY) {
      if (facet->upperdelaunay == qh UPPERdelaunay)
        qh totarea += area;
    }else {
      qh totarea += area;
      qh_distplane(qh interior_point, facet, &dist);
      qh totvol += -dist * area/ qh hull_dim;
    }
    if (qh PRINTstatistics) {
      wadd_(Wareatot, area);
      wmax_(Wareamax, area);
      wmin_(Wareamin, area);
    }
  }
  qh hasAreaVolume= True;
} /* getarea */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="gram_schmidt">-</a>

  qh_gram_schmidt( dim, row )
    implements Gram-Schmidt orthogonalization by rows

  returns:
    false if zero norm
    overwrites rows[dim][dim]

  notes:
    see Golub & van Loan, 1983, Algorithm 6.2-2, "Modified Gram-Schmidt"
    overflow due to small divisors not handled

  design:
    for each row
      compute norm for row
      if non-zero, normalize row
      for each remaining rowA
        compute inner product of row and rowA
        reduce rowA by row * inner product
*/
boolT qh_gram_schmidt(int dim, realT **row) {
  realT *rowi, *rowj, norm;
  int i, j, k;

  for (i=0; i < dim; i++) {
    rowi= row[i];
    for (norm= 0.0, k= dim; k--; rowi++)
      norm += *rowi * *rowi;
    norm= sqrt(norm);
    wmin_(Wmindenom, norm);
    if (norm == 0.0)  /* either 0 or overflow due to sqrt */
      return False;
    for (k=dim; k--; )
      *(--rowi) /= norm;
    for (j=i+1; j < dim; j++) {
      rowj= row[j];
      for (norm= 0.0, k=dim; k--; )
        norm += *rowi++ * *rowj++;
      for (k=dim; k--; )
        *(--rowj) -= *(--rowi) * norm;
    }
  }
  return True;
} /* gram_schmidt */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="inthresholds">-</a>

  qh_inthresholds( normal, angle )
    return True if normal within qh.lower_/upper_threshold

  returns:
    estimate of angle by summing of threshold diffs
      angle may be NULL
      smaller "angle" is better

  notes:
    invalid if qh.SPLITthresholds

  see:
    qh.lower_threshold in qh_initbuild()
    qh_initthresholds()

  design:
    for each dimension
      test threshold
*/
boolT qh_inthresholds(coordT *normal, realT *angle) {
  boolT within= True;
  int k;
  realT threshold;

  if (angle)
    *angle= 0.0;
  for (k=0; k < qh hull_dim; k++) {
    threshold= qh lower_threshold[k];
    if (threshold > -REALmax/2) {
      if (normal[k] < threshold)
        within= False;
      if (angle) {
        threshold -= normal[k];
        *angle += fabs_(threshold);
      }
    }
    if (qh upper_threshold[k] < REALmax/2) {
      threshold= qh upper_threshold[k];
      if (normal[k] > threshold)
        within= False;
      if (angle) {
        threshold -= normal[k];
        *angle += fabs_(threshold);
      }
    }
  }
  return within;
} /* inthresholds */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="joggleinput">-</a>

  qh_joggleinput()
    randomly joggle input to Qhull by qh.JOGGLEmax
    initial input is qh.first_point/qh.num_points of qh.hull_dim
      repeated calls use qh.input_points/qh.num_points

  returns:
    joggles points at qh.first_point/qh.num_points
    copies data to qh.input_points/qh.input_malloc if first time
    determines qh.JOGGLEmax if it was zero
    if qh.DELAUNAY
      computes the Delaunay projection of the joggled points

  notes:
    if qh.DELAUNAY, unnecessarily joggles the last coordinate
    the initial 'QJn' may be set larger than qh_JOGGLEmaxincrease

  design:
    if qh.DELAUNAY
      set qh.SCALElast for reduced precision errors
    if first call
      initialize qh.input_points to the original input points
      if qh.JOGGLEmax == 0
        determine default qh.JOGGLEmax
    else
      increase qh.JOGGLEmax according to qh.build_cnt
    joggle the input by adding a random number in [-qh.JOGGLEmax,qh.JOGGLEmax]
    if qh.DELAUNAY
      sets the Delaunay projection
*/
void qh_joggleinput(void) {
  int i, seed, size;
  coordT *coordp, *inputp;
  realT randr, randa, randb;

  if (!qh input_points) { /* first call */
    qh input_points= qh first_point;
    qh input_malloc= qh POINTSmalloc;
    size= qh num_points * qh hull_dim * sizeof(coordT);
    if (!(qh first_point=(coordT*)qh_malloc((size_t)size))) {
      qh_fprintf(qh ferr, 6009, "qhull error: insufficient memory to joggle %d points\n",
          qh num_points);
      qh_errexit(qh_ERRmem, NULL, NULL);
    }
    qh POINTSmalloc= True;
    if (qh JOGGLEmax == 0.0) {
      qh JOGGLEmax= qh_detjoggle(qh input_points, qh num_points, qh hull_dim);
      qh_option("QJoggle", NULL, &qh JOGGLEmax);
    }
  }else {                 /* repeated call */
    if (!qh RERUN && qh build_cnt > qh_JOGGLEretry) {
      if (((qh build_cnt-qh_JOGGLEretry-1) % qh_JOGGLEagain) == 0) {
        realT maxjoggle= qh MAXwidth * qh_JOGGLEmaxincrease;
        if (qh JOGGLEmax < maxjoggle) {
          qh JOGGLEmax *= qh_JOGGLEincrease;
          minimize_(qh JOGGLEmax, maxjoggle);
        }
      }
    }
    qh_option("QJoggle", NULL, &qh JOGGLEmax);
  }
  if (qh build_cnt > 1 && qh JOGGLEmax > fmax_(qh MAXwidth/4, 0.1)) {
      qh_fprintf(qh ferr, 6010, "qhull error: the current joggle for 'QJn', %.2g, is too large for the width\nof the input.  If possible, recompile Qhull with higher-precision reals.\n",
                qh JOGGLEmax);
      qh_errexit(qh_ERRqhull, NULL, NULL);
  }
  /* for some reason, using qh ROTATErandom and qh_RANDOMseed does not repeat the run. Use 'TRn' instead */
  seed= qh_RANDOMint;
  qh_option("_joggle-seed", &seed, NULL);
  trace0((qh ferr, 6, "qh_joggleinput: joggle input by %2.2g with seed %d\n",
    qh JOGGLEmax, seed));
  inputp= qh input_points;
  coordp= qh first_point;
  randa= 2.0 * qh JOGGLEmax/qh_RANDOMmax;
  randb= -qh JOGGLEmax;
  size= qh num_points * qh hull_dim;
  for (i=size; i--; ) {
    randr= qh_RANDOMint;
    *(coordp++)= *(inputp++) + (randr * randa + randb);
  }
  if (qh DELAUNAY) {
    qh last_low= qh last_high= qh last_newhigh= REALmax;
    qh_setdelaunay(qh hull_dim, qh num_points, qh first_point);
  }
} /* joggleinput */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="maxabsval">-</a>

  qh_maxabsval( normal, dim )
    return pointer to maximum absolute value of a dim vector
    returns NULL if dim=0
*/
realT *qh_maxabsval(realT *normal, int dim) {
  realT maxval= -REALmax;
  realT *maxp= NULL, *colp, absval;
  int k;

  for (k=dim, colp= normal; k--; colp++) {
    absval= fabs_(*colp);
    if (absval > maxval) {
      maxval= absval;
      maxp= colp;
    }
  }
  return maxp;
} /* maxabsval */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="maxmin">-</a>

  qh_maxmin( points, numpoints, dimension )
    return max/min points for each dimension
    determine max and min coordinates

  returns:
    returns a temporary set of max and min points
      may include duplicate points. Does not include qh.GOODpoint
    sets qh.NEARzero, qh.MAXabs_coord, qh.MAXsumcoord, qh.MAXwidth
         qh.MAXlastcoord, qh.MINlastcoord
    initializes qh.max_outside, qh.min_vertex, qh.WAScoplanar, qh.ZEROall_ok

  notes:
    loop duplicated in qh_detjoggle()

  design:
    initialize global precision variables
    checks definition of REAL...
    for each dimension
      for each point
        collect maximum and minimum point
      collect maximum of maximums and minimum of minimums
      determine qh.NEARzero for Gaussian Elimination
*/
setT *qh_maxmin(pointT *points, int numpoints, int dimension) {
  int k;
  realT maxcoord, temp;
  pointT *minimum, *maximum, *point, *pointtemp;
  setT *set;

  qh max_outside= 0.0;
  qh MAXabs_coord= 0.0;
  qh MAXwidth= -REALmax;
  qh MAXsumcoord= 0.0;
  qh min_vertex= 0.0;
  qh WAScoplanar= False;
  if (qh ZEROcentrum)
    qh ZEROall_ok= True;
  if (REALmin < REALepsilon && REALmin < REALmax && REALmin > -REALmax
  && REALmax > 0.0 && -REALmax < 0.0)
    ; /* all ok */
  else {
    qh_fprintf(qh ferr, 6011, "qhull error: floating point constants in user.h are wrong\n\
REALepsilon %g REALmin %g REALmax %g -REALmax %g\n",
             REALepsilon, REALmin, REALmax, -REALmax);
    qh_errexit(qh_ERRinput, NULL, NULL);
  }
  set= qh_settemp(2*dimension);
  for (k=0; k < dimension; k++) {
    if (points == qh GOODpointp)
      minimum= maximum= points + dimension;
    else
      minimum= maximum= points;
    FORALLpoint_(points, numpoints) {
      if (point == qh GOODpointp)
        continue;
      if (maximum[k] < point[k])
        maximum= point;
      else if (minimum[k] > point[k])
        minimum= point;
    }
    if (k == dimension-1) {
      qh MINlastcoord= minimum[k];
      qh MAXlastcoord= maximum[k];
    }
    if (qh SCALElast && k == dimension-1)
      maxcoord= qh MAXwidth;
    else {
      maxcoord= fmax_(maximum[k], -minimum[k]);
      if (qh GOODpointp) {
        temp= fmax_(qh GOODpointp[k], -qh GOODpointp[k]);
        maximize_(maxcoord, temp);
      }
      temp= maximum[k] - minimum[k];
      maximize_(qh MAXwidth, temp);
    }
    maximize_(qh MAXabs_coord, maxcoord);
    qh MAXsumcoord += maxcoord;
    qh_setappend(&set, maximum);
    qh_setappend(&set, minimum);
    /* calculation of qh NEARzero is based on Golub & van Loan, 1983,
       Eq. 4.4-13 for "Gaussian elimination with complete pivoting".
       Golub & van Loan say that n^3 can be ignored and 10 be used in
       place of rho */
    qh NEARzero[k]= 80 * qh MAXsumcoord * REALepsilon;
  }
  if (qh IStracing >=1)
    qh_printpoints(qh ferr, "qh_maxmin: found the max and min points(by dim):", set);
  return(set);
} /* maxmin */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="maxouter">-</a>

  qh_maxouter()
    return maximum distance from facet to outer plane
    normally this is qh.max_outside+qh.DISTround
    does not include qh.JOGGLEmax

  see:
    qh_outerinner()

  notes:
    need to add another qh.DISTround if testing actual point with computation

  for joggle:
    qh_setfacetplane() updated qh.max_outer for Wnewvertexmax (max distance to vertex)
    need to use Wnewvertexmax since could have a coplanar point for a high
      facet that is replaced by a low facet
    need to add qh.JOGGLEmax if testing input points
*/
realT qh_maxouter(void) {
  realT dist;

  dist= fmax_(qh max_outside, qh DISTround);
  dist += qh DISTround;
  trace4((qh ferr, 4012, "qh_maxouter: max distance from facet to outer plane is %2.2g max_outside is %2.2g\n", dist, qh max_outside));
  return dist;
} /* maxouter */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="maxsimplex">-</a>

  qh_maxsimplex( dim, maxpoints, points, numpoints, simplex )
    determines maximum simplex for a set of points
    starts from points already in simplex
    skips qh.GOODpointp (assumes that it isn't in maxpoints)

  returns:
    simplex with dim+1 points

  notes:
    assumes at least pointsneeded points in points
    maximizes determinate for x,y,z,w, etc.
    uses maxpoints as long as determinate is clearly non-zero

  design:
    initialize simplex with at least two points
      (find points with max or min x coordinate)
    for each remaining dimension
      add point that maximizes the determinate
        (use points from maxpoints first)
*/
void qh_maxsimplex(int dim, setT *maxpoints, pointT *points, int numpoints, setT **simplex) {
  pointT *point, **pointp, *pointtemp, *maxpoint, *minx=NULL, *maxx=NULL;
  boolT nearzero, maxnearzero= False;
  int k, sizinit;
  realT maxdet= -REALmax, det, mincoord= REALmax, maxcoord= -REALmax;

  sizinit= qh_setsize(*simplex);
  if (sizinit < 2) {
    if (qh_setsize(maxpoints) >= 2) {
      FOREACHpoint_(maxpoints) {
        if (maxcoord < point[0]) {
          maxcoord= point[0];
          maxx= point;
        }
        if (mincoord > point[0]) {
          mincoord= point[0];
          minx= point;
        }
      }
    }else {
      FORALLpoint_(points, numpoints) {
        if (point == qh GOODpointp)
          continue;
        if (maxcoord < point[0]) {
          maxcoord= point[0];
          maxx= point;
        }
        if (mincoord > point[0]) {
          mincoord= point[0];
          minx= point;
        }
      }
    }
    qh_setunique(simplex, minx);
    if (qh_setsize(*simplex) < 2)
      qh_setunique(simplex, maxx);
    sizinit= qh_setsize(*simplex);
    if (sizinit < 2) {
      qh_precision("input has same x coordinate");
      if (zzval_(Zsetplane) > qh hull_dim+1) {
        qh_fprintf(qh ferr, 6012, "qhull precision error (qh_maxsimplex for voronoi_center):\n%d points with the same x coordinate.\n",
                 qh_setsize(maxpoints)+numpoints);
        qh_errexit(qh_ERRprec, NULL, NULL);
      }else {
        qh_fprintf(qh ferr, 6013, "qhull input error: input is less than %d-dimensional since it has the same x coordinate\n", qh hull_dim);
        qh_errexit(qh_ERRinput, NULL, NULL);
      }
    }
  }
  for (k=sizinit; k < dim+1; k++) {
    maxpoint= NULL;
    maxdet= -REALmax;
    FOREACHpoint_(maxpoints) {
      if (!qh_setin(*simplex, point)) {
        det= qh_detsimplex(point, *simplex, k, &nearzero);
        if ((det= fabs_(det)) > maxdet) {
          maxdet= det;
          maxpoint= point;
          maxnearzero= nearzero;
        }
      }
    }
    if (!maxpoint || maxnearzero) {
      zinc_(Zsearchpoints);
      if (!maxpoint) {
        trace0((qh ferr, 7, "qh_maxsimplex: searching all points for %d-th initial vertex.\n", k+1));
      }else {
        trace0((qh ferr, 8, "qh_maxsimplex: searching all points for %d-th initial vertex, better than p%d det %2.2g\n",
                k+1, qh_pointid(maxpoint), maxdet));
      }
      FORALLpoint_(points, numpoints) {
        if (point == qh GOODpointp)
          continue;
        if (!qh_setin(*simplex, point)) {
          det= qh_detsimplex(point, *simplex, k, &nearzero);
          if ((det= fabs_(det)) > maxdet) {
            maxdet= det;
            maxpoint= point;
            maxnearzero= nearzero;
          }
        }
      }
    } /* !maxpoint */
    if (!maxpoint) {
      qh_fprintf(qh ferr, 6014, "qhull internal error (qh_maxsimplex): not enough points available\n");
      qh_errexit(qh_ERRqhull, NULL, NULL);
    }
    qh_setappend(simplex, maxpoint);
    trace1((qh ferr, 1002, "qh_maxsimplex: selected point p%d for %d`th initial vertex, det=%2.2g\n",
            qh_pointid(maxpoint), k+1, maxdet));
  } /* k */
} /* maxsimplex */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="minabsval">-</a>

  qh_minabsval( normal, dim )
    return minimum absolute value of a dim vector
*/
realT qh_minabsval(realT *normal, int dim) {
  realT minval= 0;
  realT maxval= 0;
  realT *colp;
  int k;

  for (k=dim, colp=normal; k--; colp++) {
    maximize_(maxval, *colp);
    minimize_(minval, *colp);
  }
  return fmax_(maxval, -minval);
} /* minabsval */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="mindiff">-</a>

  qh_mindif( vecA, vecB, dim )
    return index of min abs. difference of two vectors
*/
int qh_mindiff(realT *vecA, realT *vecB, int dim) {
  realT mindiff= REALmax, diff;
  realT *vecAp= vecA, *vecBp= vecB;
  int k, mink= 0;

  for (k=0; k < dim; k++) {
    diff= *vecAp++ - *vecBp++;
    diff= fabs_(diff);
    if (diff < mindiff) {
      mindiff= diff;
      mink= k;
    }
  }
  return mink;
} /* mindiff */



/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="orientoutside">-</a>

  qh_orientoutside( facet  )
    make facet outside oriented via qh.interior_point

  returns:
    True if facet reversed orientation.
*/
boolT qh_orientoutside(facetT *facet) {
  int k;
  realT dist;

  qh_distplane(qh interior_point, facet, &dist);
  if (dist > 0) {
    for (k=qh hull_dim; k--; )
      facet->normal[k]= -facet->normal[k];
    facet->offset= -facet->offset;
    return True;
  }
  return False;
} /* orientoutside */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="outerinner">-</a>

  qh_outerinner( facet, outerplane, innerplane  )
    if facet and qh.maxoutdone (i.e., qh_check_maxout)
      returns outer and inner plane for facet
    else
      returns maximum outer and inner plane
    accounts for qh.JOGGLEmax

  see:
    qh_maxouter(), qh_check_bestdist(), qh_check_points()

  notes:
    outerplaner or innerplane may be NULL
    facet is const
    Does not error (QhullFacet)

    includes qh.DISTround for actual points
    adds another qh.DISTround if testing with floating point arithmetic
*/
void qh_outerinner(facetT *facet, realT *outerplane, realT *innerplane) {
  realT dist, mindist;
  vertexT *vertex, **vertexp;

  if (outerplane) {
    if (!qh_MAXoutside || !facet || !qh maxoutdone) {
      *outerplane= qh_maxouter();       /* includes qh.DISTround */
    }else { /* qh_MAXoutside ... */
#if qh_MAXoutside
      *outerplane= facet->maxoutside + qh DISTround;
#endif

    }
    if (qh JOGGLEmax < REALmax/2)
      *outerplane += qh JOGGLEmax * sqrt((realT)qh hull_dim);
  }
  if (innerplane) {
    if (facet) {
      mindist= REALmax;
      FOREACHvertex_(facet->vertices) {
        zinc_(Zdistio);
        qh_distplane(vertex->point, facet, &dist);
        minimize_(mindist, dist);
      }
      *innerplane= mindist - qh DISTround;
    }else
      *innerplane= qh min_vertex - qh DISTround;
    if (qh JOGGLEmax < REALmax/2)
      *innerplane -= qh JOGGLEmax * sqrt((realT)qh hull_dim);
  }
} /* outerinner */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="pointdist">-</a>

  qh_pointdist( point1, point2, dim )
    return distance between two points

  notes:
    returns distance squared if 'dim' is negative
*/
coordT qh_pointdist(pointT *point1, pointT *point2, int dim) {
  coordT dist, diff;
  int k;

  dist= 0.0;
  for (k= (dim > 0 ? dim : -dim); k--; ) {
    diff= *point1++ - *point2++;
    dist += diff * diff;
  }
  if (dim > 0)
    return(sqrt(dist));
  return dist;
} /* pointdist */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="printmatrix">-</a>

  qh_printmatrix( fp, string, rows, numrow, numcol )
    print matrix to fp given by row vectors
    print string as header

  notes:
    print a vector by qh_printmatrix(fp, "", &vect, 1, len)
*/
void qh_printmatrix(FILE *fp, const char *string, realT **rows, int numrow, int numcol) {
  realT *rowp;
  realT r; /*bug fix*/
  int i,k;

  qh_fprintf(fp, 9001, "%s\n", string);
  for (i=0; i < numrow; i++) {
    rowp= rows[i];
    for (k=0; k < numcol; k++) {
      r= *rowp++;
      qh_fprintf(fp, 9002, "%6.3g ", r);
    }
    qh_fprintf(fp, 9003, "\n");
  }
} /* printmatrix */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="printpoints">-</a>

  qh_printpoints( fp, string, points )
    print pointids to fp for a set of points
    if string, prints string and 'p' point ids
*/
void qh_printpoints(FILE *fp, const char *string, setT *points) {
  pointT *point, **pointp;

  if (string) {
    qh_fprintf(fp, 9004, "%s", string);
    FOREACHpoint_(points)
      qh_fprintf(fp, 9005, " p%d", qh_pointid(point));
    qh_fprintf(fp, 9006, "\n");
  }else {
    FOREACHpoint_(points)
      qh_fprintf(fp, 9007, " %d", qh_pointid(point));
    qh_fprintf(fp, 9008, "\n");
  }
} /* printpoints */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="projectinput">-</a>

  qh_projectinput()
    project input points using qh.lower_bound/upper_bound and qh DELAUNAY
    if qh.lower_bound[k]=qh.upper_bound[k]= 0,
      removes dimension k
    if halfspace intersection
      removes dimension k from qh.feasible_point
    input points in qh first_point, num_points, input_dim

  returns:
    new point array in qh first_point of qh hull_dim coordinates
    sets qh POINTSmalloc
    if qh DELAUNAY
      projects points to paraboloid
      lowbound/highbound is also projected
    if qh ATinfinity
      adds point "at-infinity"
    if qh POINTSmalloc
      frees old point array

  notes:
    checks that qh.hull_dim agrees with qh.input_dim, PROJECTinput, and DELAUNAY


  design:
    sets project[k] to -1 (delete), 0 (keep), 1 (add for Delaunay)
    determines newdim and newnum for qh hull_dim and qh num_points
    projects points to newpoints
    projects qh.lower_bound to itself
    projects qh.upper_bound to itself
    if qh DELAUNAY
      if qh ATINFINITY
        projects points to paraboloid
        computes "infinity" point as vertex average and 10% above all points
      else
        uses qh_setdelaunay to project points to paraboloid
*/
void qh_projectinput(void) {
  int k,i;
  int newdim= qh input_dim, newnum= qh num_points;
  signed char *project;
  int projectsize= (qh input_dim+1)*sizeof(*project);
  pointT *newpoints, *coord, *infinity;
  realT paraboloid, maxboloid= 0;

  project= (signed char*)qh_memalloc(projectsize);
  memset((char*)project, 0, (size_t)projectsize);
  for (k=0; k < qh input_dim; k++) {   /* skip Delaunay bound */
    if (qh lower_bound[k] == 0 && qh upper_bound[k] == 0) {
      project[k]= -1;
      newdim--;
    }
  }
  if (qh DELAUNAY) {
    project[k]= 1;
    newdim++;
    if (qh ATinfinity)
      newnum++;
  }
  if (newdim != qh hull_dim) {
    qh_memfree(project, projectsize);
    qh_fprintf(qh ferr, 6015, "qhull internal error (qh_projectinput): dimension after projection %d != hull_dim %d\n", newdim, qh hull_dim);
    qh_errexit(qh_ERRqhull, NULL, NULL);
  }
  if (!(newpoints= qh temp_malloc= (coordT*)qh_malloc(newnum*newdim*sizeof(coordT)))){
    qh_memfree(project, projectsize);
    qh_fprintf(qh ferr, 6016, "qhull error: insufficient memory to project %d points\n",
           qh num_points);
    qh_errexit(qh_ERRmem, NULL, NULL);
  }
  /* qh_projectpoints throws error if mismatched dimensions */
  qh_projectpoints(project, qh input_dim+1, qh first_point,
                    qh num_points, qh input_dim, newpoints, newdim);
  trace1((qh ferr, 1003, "qh_projectinput: updating lower and upper_bound\n"));
  qh_projectpoints(project, qh input_dim+1, qh lower_bound,
                    1, qh input_dim+1, qh lower_bound, newdim+1);
  qh_projectpoints(project, qh input_dim+1, qh upper_bound,
                    1, qh input_dim+1, qh upper_bound, newdim+1);
  if (qh HALFspace) {
    if (!qh feasible_point) {
      qh_memfree(project, projectsize);
      qh_fprintf(qh ferr, 6017, "qhull internal error (qh_projectinput): HALFspace defined without qh.feasible_point\n");
      qh_errexit(qh_ERRqhull, NULL, NULL);
    }
    qh_projectpoints(project, qh input_dim, qh feasible_point,
                      1, qh input_dim, qh feasible_point, newdim);
  }
  qh_memfree(project, projectsize);
  if (qh POINTSmalloc)
    qh_free(qh first_point);
  qh first_point= newpoints;
  qh POINTSmalloc= True;
  qh temp_malloc= NULL;
  if (qh DELAUNAY && qh ATinfinity) {
    coord= qh first_point;
    infinity= qh first_point + qh hull_dim * qh num_points;
    for (k=qh hull_dim-1; k--; )
      infinity[k]= 0.0;
    for (i=qh num_points; i--; ) {
      paraboloid= 0.0;
      for (k=0; k < qh hull_dim-1; k++) {
        paraboloid += *coord * *coord;
        infinity[k] += *coord;
        coord++;
      }
      *(coord++)= paraboloid;
      maximize_(maxboloid, paraboloid);
    }
    /* coord == infinity */
    for (k=qh hull_dim-1; k--; )
      *(coord++) /= qh num_points;
    *(coord++)= maxboloid * 1.1;
    qh num_points++;
    trace0((qh ferr, 9, "qh_projectinput: projected points to paraboloid for Delaunay\n"));
  }else if (qh DELAUNAY)  /* !qh ATinfinity */
    qh_setdelaunay( qh hull_dim, qh num_points, qh first_point);
} /* projectinput */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="projectpoints">-</a>

  qh_projectpoints( project, n, points, numpoints, dim, newpoints, newdim )
    project points/numpoints/dim to newpoints/newdim
    if project[k] == -1
      delete dimension k
    if project[k] == 1
      add dimension k by duplicating previous column
    n is size of project

  notes:
    newpoints may be points if only adding dimension at end

  design:
    check that 'project' and 'newdim' agree
    for each dimension
      if project == -1
        skip dimension
      else
        determine start of column in newpoints
        determine start of column in points
          if project == +1, duplicate previous column
        copy dimension (column) from points to newpoints
*/
void qh_projectpoints(signed char *project, int n, realT *points,
        int numpoints, int dim, realT *newpoints, int newdim) {
  int testdim= dim, oldk=0, newk=0, i,j=0,k;
  realT *newp, *oldp;

  for (k=0; k < n; k++)
    testdim += project[k];
  if (testdim != newdim) {
    qh_fprintf(qh ferr, 6018, "qhull internal error (qh_projectpoints): newdim %d should be %d after projection\n",
      newdim, testdim);
    qh_errexit(qh_ERRqhull, NULL, NULL);
  }
  for (j=0; j<n; j++) {
    if (project[j] == -1)
      oldk++;
    else {
      newp= newpoints+newk++;
      if (project[j] == +1) {
        if (oldk >= dim)
          continue;
        oldp= points+oldk;
      }else
        oldp= points+oldk++;
      for (i=numpoints; i--; ) {
        *newp= *oldp;
        newp += newdim;
        oldp += dim;
      }
    }
    if (oldk >= dim)
      break;
  }
  trace1((qh ferr, 1004, "qh_projectpoints: projected %d points from dim %d to dim %d\n",
    numpoints, dim, newdim));
} /* projectpoints */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="rotateinput">-</a>

  qh_rotateinput( rows )
    rotate input using row matrix
    input points given by qh first_point, num_points, hull_dim
    assumes rows[dim] is a scratch buffer
    if qh POINTSmalloc, overwrites input points, else mallocs a new array

  returns:
    rotated input
    sets qh POINTSmalloc

  design:
    see qh_rotatepoints
*/
void qh_rotateinput(realT **rows) {

  if (!qh POINTSmalloc) {
    qh first_point= qh_copypoints(qh first_point, qh num_points, qh hull_dim);
    qh POINTSmalloc= True;
  }
  qh_rotatepoints(qh first_point, qh num_points, qh hull_dim, rows);
}  /* rotateinput */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="rotatepoints">-</a>

  qh_rotatepoints( points, numpoints, dim, row )
    rotate numpoints points by a d-dim row matrix
    assumes rows[dim] is a scratch buffer

  returns:
    rotated points in place

  design:
    for each point
      for each coordinate
        use row[dim] to compute partial inner product
      for each coordinate
        rotate by partial inner product
*/
void qh_rotatepoints(realT *points, int numpoints, int dim, realT **row) {
  realT *point, *rowi, *coord= NULL, sum, *newval;
  int i,j,k;

  if (qh IStracing >= 1)
    qh_printmatrix(qh ferr, "qh_rotatepoints: rotate points by", row, dim, dim);
  for (point= points, j= numpoints; j--; point += dim) {
    newval= row[dim];
    for (i=0; i < dim; i++) {
      rowi= row[i];
      coord= point;
      for (sum= 0.0, k= dim; k--; )
        sum += *rowi++ * *coord++;
      *(newval++)= sum;
    }
    for (k=dim; k--; )
      *(--coord)= *(--newval);
  }
} /* rotatepoints */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="scaleinput">-</a>

  qh_scaleinput()
    scale input points using qh low_bound/high_bound
    input points given by qh first_point, num_points, hull_dim
    if qh POINTSmalloc, overwrites input points, else mallocs a new array

  returns:
    scales coordinates of points to low_bound[k], high_bound[k]
    sets qh POINTSmalloc

  design:
    see qh_scalepoints
*/
void qh_scaleinput(void) {

  if (!qh POINTSmalloc) {
    qh first_point= qh_copypoints(qh first_point, qh num_points, qh hull_dim);
    qh POINTSmalloc= True;
  }
  qh_scalepoints(qh first_point, qh num_points, qh hull_dim,
       qh lower_bound, qh upper_bound);
}  /* scaleinput */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="scalelast">-</a>

  qh_scalelast( points, numpoints, dim, low, high, newhigh )
    scale last coordinate to [0,m] for Delaunay triangulations
    input points given by points, numpoints, dim

  returns:
    changes scale of last coordinate from [low, high] to [0, newhigh]
    overwrites last coordinate of each point
    saves low/high/newhigh in qh.last_low, etc. for qh_setdelaunay()

  notes:
    when called by qh_setdelaunay, low/high may not match actual data

  design:
    compute scale and shift factors
    apply to last coordinate of each point
*/
void qh_scalelast(coordT *points, int numpoints, int dim, coordT low,
                   coordT high, coordT newhigh) {
  realT scale, shift;
  coordT *coord;
  int i;
  boolT nearzero= False;

  trace4((qh ferr, 4013, "qh_scalelast: scale last coordinate from [%2.2g, %2.2g] to [0,%2.2g]\n",
    low, high, newhigh));
  qh last_low= low;
  qh last_high= high;
  qh last_newhigh= newhigh;
  scale= qh_divzero(newhigh, high - low,
                  qh MINdenom_1, &nearzero);
  if (nearzero) {
    if (qh DELAUNAY)
      qh_fprintf(qh ferr, 6019, "qhull input error: can not scale last coordinate.  Input is cocircular\n   or cospherical.   Use option 'Qz' to add a point at infinity.\n");
    else
      qh_fprintf(qh ferr, 6020, "qhull input error: can not scale last coordinate.  New bounds [0, %2.2g] are too wide for\nexisting bounds [%2.2g, %2.2g] (width %2.2g)\n",
                newhigh, low, high, high-low);
    qh_errexit(qh_ERRinput, NULL, NULL);
  }
  shift= - low * newhigh / (high-low);
  coord= points + dim - 1;
  for (i=numpoints; i--; coord += dim)
    *coord= *coord * scale + shift;
} /* scalelast */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="scalepoints">-</a>

  qh_scalepoints( points, numpoints, dim, newlows, newhighs )
    scale points to new lowbound and highbound
    retains old bound when newlow= -REALmax or newhigh= +REALmax

  returns:
    scaled points
    overwrites old points

  design:
    for each coordinate
      compute current low and high bound
      compute scale and shift factors
      scale all points
      enforce new low and high bound for all points
*/
void qh_scalepoints(pointT *points, int numpoints, int dim,
        realT *newlows, realT *newhighs) {
  int i,k;
  realT shift, scale, *coord, low, high, newlow, newhigh, mincoord, maxcoord;
  boolT nearzero= False;

  for (k=0; k < dim; k++) {
    newhigh= newhighs[k];
    newlow= newlows[k];
    if (newhigh > REALmax/2 && newlow < -REALmax/2)
      continue;
    low= REALmax;
    high= -REALmax;
    for (i=numpoints, coord=points+k; i--; coord += dim) {
      minimize_(low, *coord);
      maximize_(high, *coord);
    }
    if (newhigh > REALmax/2)
      newhigh= high;
    if (newlow < -REALmax/2)
      newlow= low;
    if (qh DELAUNAY && k == dim-1 && newhigh < newlow) {
      qh_fprintf(qh ferr, 6021, "qhull input error: 'Qb%d' or 'QB%d' inverts paraboloid since high bound %.2g < low bound %.2g\n",
               k, k, newhigh, newlow);
      qh_errexit(qh_ERRinput, NULL, NULL);
    }
    scale= qh_divzero(newhigh - newlow, high - low,
                  qh MINdenom_1, &nearzero);
    if (nearzero) {
      qh_fprintf(qh ferr, 6022, "qhull input error: %d'th dimension's new bounds [%2.2g, %2.2g] too wide for\nexisting bounds [%2.2g, %2.2g]\n",
              k, newlow, newhigh, low, high);
      qh_errexit(qh_ERRinput, NULL, NULL);
    }
    shift= (newlow * high - low * newhigh)/(high-low);
    coord= points+k;
    for (i=numpoints; i--; coord += dim)
      *coord= *coord * scale + shift;
    coord= points+k;
    if (newlow < newhigh) {
      mincoord= newlow;
      maxcoord= newhigh;
    }else {
      mincoord= newhigh;
      maxcoord= newlow;
    }
    for (i=numpoints; i--; coord += dim) {
      minimize_(*coord, maxcoord);  /* because of roundoff error */
      maximize_(*coord, mincoord);
    }
    trace0((qh ferr, 10, "qh_scalepoints: scaled %d'th coordinate [%2.2g, %2.2g] to [%.2g, %.2g] for %d points by %2.2g and shifted %2.2g\n",
      k, low, high, newlow, newhigh, numpoints, scale, shift));
  }
} /* scalepoints */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="setdelaunay">-</a>

  qh_setdelaunay( dim, count, points )
    project count points to dim-d paraboloid for Delaunay triangulation

    dim is one more than the dimension of the input set
    assumes dim is at least 3 (i.e., at least a 2-d Delaunay triangulation)

    points is a dim*count realT array.  The first dim-1 coordinates
    are the coordinates of the first input point.  array[dim] is
    the first coordinate of the second input point.  array[2*dim] is
    the first coordinate of the third input point.

    if qh.last_low defined (i.e., 'Qbb' called qh_scalelast)
      calls qh_scalelast to scale the last coordinate the same as the other points

  returns:
    for each point
      sets point[dim-1] to sum of squares of coordinates
    scale points to 'Qbb' if needed

  notes:
    to project one point, use
      qh_setdelaunay(qh hull_dim, 1, point)

    Do not use options 'Qbk', 'QBk', or 'QbB' since they scale
    the coordinates after the original projection.

*/
void qh_setdelaunay(int dim, int count, pointT *points) {
  int i, k;
  coordT *coordp, coord;
  realT paraboloid;

  trace0((qh ferr, 11, "qh_setdelaunay: project %d points to paraboloid for Delaunay triangulation\n", count));
  coordp= points;
  for (i=0; i < count; i++) {
    coord= *coordp++;
    paraboloid= coord*coord;
    for (k=dim-2; k--; ) {
      coord= *coordp++;
      paraboloid += coord*coord;
    }
    *coordp++ = paraboloid;
  }
  if (qh last_low < REALmax/2)
    qh_scalelast(points, count, dim, qh last_low, qh last_high, qh last_newhigh);
} /* setdelaunay */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="sethalfspace">-</a>

  qh_sethalfspace( dim, coords, nextp, normal, offset, feasible )
    set point to dual of halfspace relative to feasible point
    halfspace is normal coefficients and offset.

  returns:
    false and prints error if feasible point is outside of hull
    overwrites coordinates for point at dim coords
    nextp= next point (coords)
    does not call qh_errexit

  design:
    compute distance from feasible point to halfspace
    divide each normal coefficient by -dist
*/
boolT qh_sethalfspace(int dim, coordT *coords, coordT **nextp,
         coordT *normal, coordT *offset, coordT *feasible) {
  coordT *normp= normal, *feasiblep= feasible, *coordp= coords;
  realT dist;
  realT r; /*bug fix*/
  int k;
  boolT zerodiv;

  dist= *offset;
  for (k=dim; k--; )
    dist += *(normp++) * *(feasiblep++);
  if (dist > 0)
    goto LABELerroroutside;
  normp= normal;
  if (dist < -qh MINdenom) {
    for (k=dim; k--; )
      *(coordp++)= *(normp++) / -dist;
  }else {
    for (k=dim; k--; ) {
      *(coordp++)= qh_divzero(*(normp++), -dist, qh MINdenom_1, &zerodiv);
      if (zerodiv)
        goto LABELerroroutside;
    }
  }
  *nextp= coordp;
  if (qh IStracing >= 4) {
    qh_fprintf(qh ferr, 8021, "qh_sethalfspace: halfspace at offset %6.2g to point: ", *offset);
    for (k=dim, coordp=coords; k--; ) {
      r= *coordp++;
      qh_fprintf(qh ferr, 8022, " %6.2g", r);
    }
    qh_fprintf(qh ferr, 8023, "\n");
  }
  return True;
LABELerroroutside:
  feasiblep= feasible;
  normp= normal;
  qh_fprintf(qh ferr, 6023, "qhull input error: feasible point is not clearly inside halfspace\nfeasible point: ");
  for (k=dim; k--; )
    qh_fprintf(qh ferr, 8024, qh_REAL_1, r=*(feasiblep++));
  qh_fprintf(qh ferr, 8025, "\n     halfspace: ");
  for (k=dim; k--; )
    qh_fprintf(qh ferr, 8026, qh_REAL_1, r=*(normp++));
  qh_fprintf(qh ferr, 8027, "\n     at offset: ");
  qh_fprintf(qh ferr, 8028, qh_REAL_1, *offset);
  qh_fprintf(qh ferr, 8029, " and distance: ");
  qh_fprintf(qh ferr, 8030, qh_REAL_1, dist);
  qh_fprintf(qh ferr, 8031, "\n");
  return False;
} /* sethalfspace */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="sethalfspace_all">-</a>

  qh_sethalfspace_all( dim, count, halfspaces, feasible )
    generate dual for halfspace intersection with feasible point
    array of count halfspaces
      each halfspace is normal coefficients followed by offset
      the origin is inside the halfspace if the offset is negative
    feasible is a point inside all halfspaces (http://www.qhull.org/html/qhalf.htm#notes)

  returns:
    malloc'd array of count X dim-1 points

  notes:
    call before qh_init_B or qh_initqhull_globals
    free memory when done
    unused/untested code: please email bradb@shore.net if this works ok for you
    if using option 'Fp', qh->feasible_point must be set (e.g., to 'feasible')
    qh->feasible_point is a malloc'd array that is freed by qh_freebuffers.

  design:
    see qh_sethalfspace
*/
coordT *qh_sethalfspace_all(int dim, int count, coordT *halfspaces, pointT *feasible) {
  int i, newdim;
  pointT *newpoints;
  coordT *coordp, *normalp, *offsetp;

  trace0((qh ferr, 12, "qh_sethalfspace_all: compute dual for halfspace intersection\n"));
  newdim= dim - 1;
  if (!(newpoints=(coordT*)qh_malloc(count*newdim*sizeof(coordT)))){
    qh_fprintf(qh ferr, 6024, "qhull error: insufficient memory to compute dual of %d halfspaces\n",
          count);
    qh_errexit(qh_ERRmem, NULL, NULL);
  }
  coordp= newpoints;
  normalp= halfspaces;
  for (i=0; i < count; i++) {
    offsetp= normalp + newdim;
    if (!qh_sethalfspace(newdim, coordp, &coordp, normalp, offsetp, feasible)) {
      qh_free(newpoints);  /* feasible is not inside halfspace as reported by qh_sethalfspace */
      qh_fprintf(qh ferr, 8032, "The halfspace was at index %d\n", i);
      qh_errexit(qh_ERRinput, NULL, NULL);
    }
    normalp= offsetp + 1;
  }
  return newpoints;
} /* sethalfspace_all */


/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="sharpnewfacets">-</a>

  qh_sharpnewfacets()

  returns:
    true if could be an acute angle (facets in different quadrants)

  notes:
    for qh_findbest

  design:
    for all facets on qh.newfacet_list
      if two facets are in different quadrants
        set issharp
*/
boolT qh_sharpnewfacets(void) {
  facetT *facet;
  boolT issharp = False;
  int *quadrant, k;

  quadrant= (int*)qh_memalloc(qh hull_dim * sizeof(int));
  FORALLfacet_(qh newfacet_list) {
    if (facet == qh newfacet_list) {
      for (k=qh hull_dim; k--; )
        quadrant[ k]= (facet->normal[ k] > 0);
    }else {
      for (k=qh hull_dim; k--; ) {
        if (quadrant[ k] != (facet->normal[ k] > 0)) {
          issharp= True;
          break;
        }
      }
    }
    if (issharp)
      break;
  }
  qh_memfree( quadrant, qh hull_dim * sizeof(int));
  trace3((qh ferr, 3001, "qh_sharpnewfacets: %d\n", issharp));
  return issharp;
} /* sharpnewfacets */

/*-<a                             href="qh-geom.htm#TOC"
  >-------------------------------</a><a name="voronoi_center">-</a>

  qh_voronoi_center( dim, points )
    return Voronoi center for a set of points
    dim is the orginal dimension of the points
    gh.gm_matrix/qh.gm_row are scratch buffers

  returns:
    center as a temporary point (qh_memalloc)
    if non-simplicial,
      returns center for max simplex of points

  notes:
    only called by qh_facetcenter
    from Bowyer & Woodwark, A Programmer's Geometry, 1983, p. 65

  design:
    if non-simplicial
      determine max simplex for points
    translate point0 of simplex to origin
    compute sum of squares of diagonal
    compute determinate
    compute Voronoi center (see Bowyer & Woodwark)
*/
pointT *qh_voronoi_center(int dim, setT *points) {
  pointT *point, **pointp, *point0;
  pointT *center= (pointT*)qh_memalloc(qh center_size);
  setT *simplex;
  int i, j, k, size= qh_setsize(points);
  coordT *gmcoord;
  realT *diffp, sum2, *sum2row, *sum2p, det, factor;
  boolT nearzero, infinite;

  if (size == dim+1)
    simplex= points;
  else if (size < dim+1) {
    qh_memfree(center, qh center_size);
    qh_fprintf(qh ferr, 6025, "qhull internal error (qh_voronoi_center):\n  need at least %d points to construct a Voronoi center\n",
             dim+1);
    qh_errexit(qh_ERRqhull, NULL, NULL);
    simplex= points;  /* never executed -- avoids warning */
  }else {
    simplex= qh_settemp(dim+1);
    qh_maxsimplex(dim, points, NULL, 0, &simplex);
  }
  point0= SETfirstt_(simplex, pointT);
  gmcoord= qh gm_matrix;
  for (k=0; k < dim; k++) {
    qh gm_row[k]= gmcoord;
    FOREACHpoint_(simplex) {
      if (point != point0)
        *(gmcoord++)= point[k] - point0[k];
    }
  }
  sum2row= gmcoord;
  for (i=0; i < dim; i++) {
    sum2= 0.0;
    for (k=0; k < dim; k++) {
      diffp= qh gm_row[k] + i;
      sum2 += *diffp * *diffp;
    }
    *(gmcoord++)= sum2;
  }
  det= qh_determinant(qh gm_row, dim, &nearzero);
  factor= qh_divzero(0.5, det, qh MINdenom, &infinite);
  if (infinite) {
    for (k=dim; k--; )
      center[k]= qh_INFINITE;
    if (qh IStracing)
      qh_printpoints(qh ferr, "qh_voronoi_center: at infinity for ", simplex);
  }else {
    for (i=0; i < dim; i++) {
      gmcoord= qh gm_matrix;
      sum2p= sum2row;
      for (k=0; k < dim; k++) {
        qh gm_row[k]= gmcoord;
        if (k == i) {
          for (j=dim; j--; )
            *(gmcoord++)= *sum2p++;
        }else {
          FOREACHpoint_(simplex) {
            if (point != point0)
              *(gmcoord++)= point[k] - point0[k];
          }
        }
      }
      center[i]= qh_determinant(qh gm_row, dim, &nearzero)*factor + point0[i];
    }
#ifndef qh_NOtrace
    if (qh IStracing >= 3) {
      qh_fprintf(qh ferr, 8033, "qh_voronoi_center: det %2.2g factor %2.2g ", det, factor);
      qh_printmatrix(qh ferr, "center:", &center, 1, dim);
      if (qh IStracing >= 5) {
        qh_printpoints(qh ferr, "points", simplex);
        FOREACHpoint_(simplex)
          qh_fprintf(qh ferr, 8034, "p%d dist %.2g, ", qh_pointid(point),
                   qh_pointdist(point, center, dim));
        qh_fprintf(qh ferr, 8035, "\n");
      }
    }
#endif
  }
  if (simplex != points)
    qh_settempfree(&simplex);
  return center;
} /* voronoi_center */