Welcome to mirror list, hosted at ThFree Co, Russian Federation.

3DScene.cpp « GUI « slic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9929655f51e2bb77fc60bdb618923ffb7539aa20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
#include <GL/glew.h>

#include "3DScene.hpp"

#include "../../libslic3r/libslic3r.h"
#include "../../libslic3r/ExtrusionEntity.hpp"
#include "../../libslic3r/ExtrusionEntityCollection.hpp"
#include "../../libslic3r/Geometry.hpp"
#include "../../libslic3r/Print.hpp"
#include "../../libslic3r/Slicing.hpp"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <utility>
#include <assert.h>

#include <boost/log/trivial.hpp>

#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>

namespace Slic3r {

void GLIndexedVertexArray::load_mesh_flat_shading(const TriangleMesh &mesh)
{
    assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0);
    assert(quad_indices.empty() && triangle_indices_size == 0);
    assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size());

    this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count());
    
    for (int i = 0; i < mesh.stl.stats.number_of_facets; ++ i) {
        const stl_facet &facet = mesh.stl.facet_start[i];
        for (int j = 0; j < 3; ++ j)
            this->push_geometry(facet.vertex[j].x, facet.vertex[j].y, facet.vertex[j].z, facet.normal.x, facet.normal.y, facet.normal.z);
    }
}

void GLIndexedVertexArray::finalize_geometry(bool use_VBOs)
{
    assert(this->vertices_and_normals_interleaved_VBO_id == 0);
    assert(this->triangle_indices_VBO_id == 0);
    assert(this->quad_indices_VBO_id == 0);

    this->setup_sizes();

    if (use_VBOs) {
        if (! empty()) {
            glGenBuffers(1, &this->vertices_and_normals_interleaved_VBO_id);
            glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
            glBufferData(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved.size() * 4, this->vertices_and_normals_interleaved.data(), GL_STATIC_DRAW);
            glBindBuffer(GL_ARRAY_BUFFER, 0);
            this->vertices_and_normals_interleaved.clear();
        }
        if (! this->triangle_indices.empty()) {
            glGenBuffers(1, &this->triangle_indices_VBO_id);
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
            glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices.size() * 4, this->triangle_indices.data(), GL_STATIC_DRAW);
            this->triangle_indices.clear();
        }
        if (! this->quad_indices.empty()) {
            glGenBuffers(1, &this->quad_indices_VBO_id);
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
            glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices.size() * 4, this->quad_indices.data(), GL_STATIC_DRAW);
            this->quad_indices.clear();
        }
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
    }
    this->shrink_to_fit();
}

void GLIndexedVertexArray::release_geometry()
{
    if (this->vertices_and_normals_interleaved_VBO_id)
        glDeleteBuffers(1, &this->vertices_and_normals_interleaved_VBO_id);
    if (this->triangle_indices_VBO_id)
        glDeleteBuffers(1, &this->triangle_indices_VBO_id);
    if (this->quad_indices_VBO_id)
        glDeleteBuffers(1, &this->quad_indices_VBO_id);
    this->clear();
    this->shrink_to_fit();
}

void GLIndexedVertexArray::render() const
{
    if (this->vertices_and_normals_interleaved_VBO_id) {
        glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
        glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
        glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
    } else {
        glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3);
        glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data());
    }
    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_NORMAL_ARRAY);

    if (this->indexed()) {
        if (this->vertices_and_normals_interleaved_VBO_id) {
            // Render using the Vertex Buffer Objects.
            if (this->triangle_indices_size > 0) {
                glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
                glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, nullptr);
            }
            if (this->quad_indices_size > 0) {
                glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
                glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, nullptr);
            }
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
        } else {
            // Render in an immediate mode.
            if (! this->triangle_indices.empty())
                glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, this->triangle_indices.data());
            if (! this->quad_indices.empty())
                glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, this->quad_indices.data());
        }
    } else
        glDrawArrays(GL_TRIANGLES, 0, GLsizei(this->vertices_and_normals_interleaved_size / 6));

    if (this->vertices_and_normals_interleaved_VBO_id)
        glBindBuffer(GL_ARRAY_BUFFER, 0);
    glDisableClientState(GL_VERTEX_ARRAY);
    glDisableClientState(GL_NORMAL_ARRAY);
}

void GLIndexedVertexArray::render(
    const std::pair<size_t, size_t> &tverts_range,
    const std::pair<size_t, size_t> &qverts_range) const 
{
    assert(this->indexed());
    if (! this->indexed())
        return;

    if (this->vertices_and_normals_interleaved_VBO_id) {
        // Render using the Vertex Buffer Objects.
        glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id);
        glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
        glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
        glEnableClientState(GL_VERTEX_ARRAY);
        glEnableClientState(GL_NORMAL_ARRAY);
        if (this->triangle_indices_size > 0) {
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id);
            glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4));
        }
        if (this->quad_indices_size > 0) {
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id);
            glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4));
        }
        glBindBuffer(GL_ARRAY_BUFFER, 0);
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
    } else {
        // Render in an immediate mode.
        glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3);
        glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data());
        glEnableClientState(GL_VERTEX_ARRAY);
        glEnableClientState(GL_NORMAL_ARRAY);
        if (! this->triangle_indices.empty())
            glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->triangle_indices.data() + tverts_range.first));
        if (! this->quad_indices.empty())
            glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->quad_indices.data() + qverts_range.first));
    }

    glDisableClientState(GL_VERTEX_ARRAY);
    glDisableClientState(GL_NORMAL_ARRAY);
}

void GLVolume::set_range(double min_z, double max_z)
{
    this->qverts_range.first  = 0;
    this->qverts_range.second = this->indexed_vertex_array.quad_indices_size;
    this->tverts_range.first  = 0;
    this->tverts_range.second = this->indexed_vertex_array.triangle_indices_size;
    if (! this->print_zs.empty()) {
        // The Z layer range is specified.
        // First test whether the Z span of this object is not out of (min_z, max_z) completely.
        if (this->print_zs.front() > max_z || this->print_zs.back() < min_z) {
            this->qverts_range.second = 0;
            this->tverts_range.second = 0;
        } else {
            // Then find the lowest layer to be displayed.
            size_t i = 0;
            for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++ i);
            if (i == this->print_zs.size()) {
                // This shall not happen.
                this->qverts_range.second = 0;
                this->tverts_range.second = 0;
            } else {
                // Remember start of the layer.
                this->qverts_range.first = this->offsets[i * 2];
                this->tverts_range.first = this->offsets[i * 2 + 1];
                // Some layers are above $min_z. Which?
                for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++ i);
                if (i < this->print_zs.size()) {
                    this->qverts_range.second = this->offsets[i * 2];
                    this->tverts_range.second = this->offsets[i * 2 + 1];
                }
            }
        }
    }
}

void GLVolume::render() const
{
    glCullFace(GL_BACK);
    glPushMatrix();
    glTranslated(this->origin.x, this->origin.y, this->origin.z);
    if (this->indexed_vertex_array.indexed())
        this->indexed_vertex_array.render(this->tverts_range, this->qverts_range);
    else
        this->indexed_vertex_array.render();
    glPopMatrix();
}

void GLVolume::generate_layer_height_texture(PrintObject *print_object, bool force)
{
    GLTexture *tex = this->layer_height_texture.get();
	if (tex == nullptr)
		// No layer_height_texture is assigned to this GLVolume, therefore the layer height texture cannot be filled.
		return;

	// Always try to update the layer height profile.
	bool update = print_object->update_layer_height_profile(print_object->model_object()->layer_height_profile) || force;
	// Update if the layer height profile was changed, or when the texture is not valid.
	if (! update && ! tex->data.empty() && tex->cells > 0)
        // Texture is valid, don't update.
        return; 

    if (tex->data.empty()) {
        tex->width  = 1024;
        tex->height = 1024;
        tex->levels = 2;
        tex->data.assign(tex->width * tex->height * 5, 0);
    }

    SlicingParameters slicing_params = print_object->slicing_parameters();
    bool level_of_detail_2nd_level = true;
    tex->cells = Slic3r::generate_layer_height_texture(
        slicing_params, 
        Slic3r::generate_object_layers(slicing_params, print_object->model_object()->layer_height_profile), 
        tex->data.data(), tex->height, tex->width, level_of_detail_2nd_level);
}

// 512x512 bitmaps are supported everywhere, but that may not be sufficent for super large print volumes.
#define LAYER_HEIGHT_TEXTURE_WIDTH  1024
#define LAYER_HEIGHT_TEXTURE_HEIGHT 1024

std::vector<int> GLVolumeCollection::load_object(
    const ModelObject       *model_object, 
    int                      obj_idx,
    const std::vector<int>  &instance_idxs,
    const std::string       &color_by,
    const std::string       &select_by,
    const std::string       &drag_by,
    bool                     use_VBOs)
{
    static float colors[4][4] = {
        { 1.0f, 1.0f, 0.0f, 1.f }, 
        { 1.0f, 0.5f, 0.5f, 1.f },
        { 0.5f, 1.0f, 0.5f, 1.f }, 
        { 0.5f, 0.5f, 1.0f, 1.f }
    };

    // Object will have a single common layer height texture for all volumes.
    std::shared_ptr<GLTexture> layer_height_texture = std::make_shared<GLTexture>();
    
    std::vector<int> volumes_idx;
    for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++ volume_idx) {
        const ModelVolume *model_volume = model_object->volumes[volume_idx];
        for (int instance_idx : instance_idxs) {
            const ModelInstance *instance = model_object->instances[instance_idx];
            TriangleMesh mesh = model_volume->mesh;
            instance->transform_mesh(&mesh);
            volumes_idx.push_back(int(this->volumes.size()));
            float color[4];
            memcpy(color, colors[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3);
            color[3] = model_volume->modifier ? 0.5f : 1.f;
            this->volumes.emplace_back(new GLVolume(color));
            GLVolume &v = *this->volumes.back();
			v.indexed_vertex_array.load_mesh_flat_shading(mesh);
            // finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry().
            v.bounding_box = v.indexed_vertex_array.bounding_box();
            v.indexed_vertex_array.finalize_geometry(use_VBOs);
            v.composite_id = obj_idx * 1000000 + volume_idx * 1000 + instance_idx;
            if (select_by == "object")
                v.select_group_id = obj_idx * 1000000;
            else if (select_by == "volume")
                v.select_group_id = obj_idx * 1000000 + volume_idx * 1000;
            else if (select_by == "instance")
                v.select_group_id = v.composite_id;
            if (drag_by == "object")
                v.drag_group_id = obj_idx * 1000;
            else if (drag_by == "instance")
                v.drag_group_id = obj_idx * 1000 + instance_idx;
            if (! model_volume->modifier)
                v.layer_height_texture = layer_height_texture;
        }
    }
    
    return volumes_idx; 
}

void GLVolumeCollection::render_VBOs() const
{
//    glEnable(GL_BLEND);
//    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    glCullFace(GL_BACK);
    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_NORMAL_ARRAY);
 
    GLint current_program_id;
    glGetIntegerv(GL_CURRENT_PROGRAM, &current_program_id);
    GLint color_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "uniform_color") : -1;

    for (GLVolume *volume : this->volumes) {
        if (! volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id)
            continue;
        GLsizei n_triangles = GLsizei(std::min(volume->indexed_vertex_array.triangle_indices_size, volume->tverts_range.second - volume->tverts_range.first));
        GLsizei n_quads     = GLsizei(std::min(volume->indexed_vertex_array.quad_indices_size,     volume->qverts_range.second - volume->qverts_range.first));
        if (n_triangles + n_quads == 0)
            continue;
        if (color_id >= 0)
            glUniform4fv(color_id, 1, (const GLfloat*)volume->color);
        else
            glColor4f(volume->color[0], volume->color[1], volume->color[2], volume->color[3]);            
        glBindBuffer(GL_ARRAY_BUFFER, volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id);
        glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)));
        glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr);
        if (n_triangles > 0) {
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, volume->indexed_vertex_array.triangle_indices_VBO_id);
            glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, (const void*)(volume->tverts_range.first * 4));
        }
        if (n_quads > 0) {
            glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, volume->indexed_vertex_array.quad_indices_VBO_id);
            glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, (const void*)(volume->qverts_range.first * 4));
        }
    }

    glBindBuffer(GL_ARRAY_BUFFER, 0);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
    glDisableClientState(GL_VERTEX_ARRAY);
    glDisableClientState(GL_NORMAL_ARRAY);
//    glDisable(GL_BLEND);
}

void GLVolumeCollection::render_legacy() const
{
    glCullFace(GL_BACK);
    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_NORMAL_ARRAY);
 
    for (GLVolume *volume : this->volumes) {
        assert(! volume->indexed_vertex_array.vertices_and_normals_interleaved_VBO_id);
        GLsizei n_triangles = GLsizei(std::min(volume->indexed_vertex_array.triangle_indices_size, volume->tverts_range.second - volume->tverts_range.first));
        GLsizei n_quads     = GLsizei(std::min(volume->indexed_vertex_array.quad_indices_size,     volume->qverts_range.second - volume->qverts_range.first));
        if (n_triangles + n_quads == 0)
            continue;
        glColor4f(volume->color[0], volume->color[1], volume->color[2], volume->color[3]);
        glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), volume->indexed_vertex_array.vertices_and_normals_interleaved.data() + 3);
        glNormalPointer(GL_FLOAT, 6 * sizeof(float), volume->indexed_vertex_array.vertices_and_normals_interleaved.data());
        bool has_offset = volume->origin.x != 0 || volume->origin.y != 0 || volume->origin.z != 0;
        if (has_offset) {
            glPushMatrix();
            glTranslated(volume->origin.x, volume->origin.y, volume->origin.z);
        }
        if (n_triangles > 0)
            glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, volume->indexed_vertex_array.triangle_indices.data() + volume->tverts_range.first);
        if (n_quads > 0)
            glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, volume->indexed_vertex_array.quad_indices.data() + volume->qverts_range.first);
        if (has_offset)
            glPushMatrix();
    }

    glDisableClientState(GL_VERTEX_ARRAY);
    glDisableClientState(GL_NORMAL_ARRAY);
}

// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_indexed_vertex_array(
    const Lines                 &lines, 
    const std::vector<double>   &widths,
    const std::vector<double>   &heights, 
    bool                         closed,
    double                       top_z,
    GLIndexedVertexArray        &volume)
{
    assert(! lines.empty());
    if (lines.empty())
        return;

#define LEFT    0
#define RIGHT   1
#define TOP     2
#define BOTTOM  3

    Line prev_line;
    // right, left, top, bottom
    int     idx_prev[4]      = { -1, -1, -1, -1 };
    double  width_prev       = 0.;
    double  bottom_z_prev    = 0.;
    Pointf  b1_prev;
    Pointf  b2_prev;
    Vectorf v_prev;
    int     idx_initial[4]   = { -1, -1, -1, -1 };
    double  width_initial    = 0.;
    double  bottom_z_initial = 0.;

    // loop once more in case of closed loops
    size_t lines_end = closed ? (lines.size() + 1) : lines.size();
    for (size_t ii = 0; ii < lines_end; ++ ii) {
        size_t i = (ii == lines.size()) ? 0 : ii;
        const Line &line = lines[i];
        double len = unscale(line.length());
        double bottom_z = top_z - heights[i];
        double middle_z = (top_z + bottom_z) / 2.;
        double width = widths[i];
        
        Vectorf v = Vectorf::new_unscale(line.vector());
        v.scale(1. / len);
        
        Pointf a = Pointf::new_unscale(line.a);
        Pointf b = Pointf::new_unscale(line.b);
        Pointf a1 = a;
        Pointf a2 = a;
        Pointf b1 = b;
        Pointf b2 = b;
        {
            double dist = width / 2.;  // scaled
            a1.translate(+dist*v.y, -dist*v.x);
            a2.translate(-dist*v.y, +dist*v.x);
            b1.translate(+dist*v.y, -dist*v.x);
            b2.translate(-dist*v.y, +dist*v.x);
        }

        // calculate new XY normals
        Vector n = line.normal();
        Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x, n.y, 0);
        xy_right_normal.scale(1.f / len);

        int idx_a[4];
        int idx_b[4];
        int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);

        bool width_different    = width_prev != width;
        bool bottom_z_different = bottom_z_prev != bottom_z;
        width_prev    = width;
        bottom_z_prev = bottom_z;

        // Share top / bottom vertices if possible.
        if (ii == 0) {
            idx_a[TOP] = idx_last ++;
            volume.push_geometry(a.x, a.y, top_z   , 0., 0.,  1.); 
        } else {
            idx_a[TOP] = idx_prev[TOP];
        }
        if (ii == 0 || bottom_z_different) {
            idx_a[BOTTOM] = idx_last ++;
            volume.push_geometry(a.x, a.y, bottom_z, 0., 0., -1.);
        } else {
            idx_a[BOTTOM] = idx_prev[BOTTOM];
        }

        if (ii == 0) {
            // Start of the 1st line segment.
            idx_a[LEFT ] = idx_last ++;
            volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
            idx_a[RIGHT] = idx_last ++;
            volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
            width_initial    = width;
            bottom_z_initial = bottom_z;
            memcpy(idx_initial, idx_a, sizeof(int) * 4);
        } else {
            // Continuing a previous segment.
            // Share left / right vertices if possible.
			double v_dot    = dot(v_prev, v);
            bool   sharp    = v_dot < 0.707; // sin(45 degrees)
            if (sharp) {
                // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
                idx_a[RIGHT] = idx_last ++;
                volume.push_geometry(a1.x, a1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);
                idx_a[LEFT ] = idx_last ++;
                volume.push_geometry(a2.x, a2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
            }
            if (v_dot > 0.9) {
                // The two successive segments are nearly collinear.
                idx_a[LEFT ] = idx_prev[LEFT];
                idx_a[RIGHT] = idx_prev[RIGHT];
            } else if (! sharp) {
                // Create a sharp corner with an overshot and average the left / right normals.
                // At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
                Pointf intersection;
                Geometry::ray_ray_intersection(b1_prev, v_prev, a1, v, intersection);
                a1 = intersection;
                a2 = 2. * a - intersection;
                assert(length(a1.vector_to(a)) < width);
                assert(length(a2.vector_to(a)) < width);
                float *n_left_prev  = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6;
                float *p_left_prev  = n_left_prev  + 3;
                float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
                float *p_right_prev = n_right_prev + 3;
                p_left_prev [0] = float(a2.x);
                p_left_prev [1] = float(a2.y);
                p_right_prev[0] = float(a1.x);
                p_right_prev[1] = float(a1.y);
                xy_right_normal.x += n_right_prev[0];
                xy_right_normal.y += n_right_prev[1];
                xy_right_normal.scale(1. / length(xy_right_normal));
                n_left_prev [0] = float(-xy_right_normal.x);
                n_left_prev [1] = float(-xy_right_normal.y);
                n_right_prev[0] = float( xy_right_normal.x);
                n_right_prev[1] = float( xy_right_normal.y);
                idx_a[LEFT ] = idx_prev[LEFT ];
                idx_a[RIGHT] = idx_prev[RIGHT];
            } else if (cross(v_prev, v) > 0.) {
                // Right turn. Fill in the right turn wedge.
                volume.push_triangle(idx_prev[RIGHT], idx_a   [RIGHT],  idx_prev[TOP]   );
                volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a   [RIGHT] );
            } else {
                // Left turn. Fill in the left turn wedge.
                volume.push_triangle(idx_prev[LEFT],  idx_prev[TOP],    idx_a   [LEFT]  );
                volume.push_triangle(idx_prev[LEFT],  idx_a   [LEFT],   idx_prev[BOTTOM]);
            }
            if (ii == lines.size()) {
                if (! sharp) {
                    // Closing a loop with smooth transition. Unify the closing left / right vertices.
                    memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT ] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6, sizeof(float) * 6);
                    memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
                    volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
                    // Replace the left / right vertex indices to point to the start of the loop. 
                    for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++ u) {
                        if (volume.quad_indices[u] == idx_prev[LEFT])
                            volume.quad_indices[u] = idx_initial[LEFT];
                        else if (volume.quad_indices[u] == idx_prev[RIGHT])
                            volume.quad_indices[u] = idx_initial[RIGHT];
                    }
                }
                // This is the last iteration, only required to solve the transition.
                break;
            }
        }

        // Only new allocate top / bottom vertices, if not closing a loop.
        if (closed && ii + 1 == lines.size()) {
            idx_b[TOP] = idx_initial[TOP];
        } else {
            idx_b[TOP] = idx_last ++;
            volume.push_geometry(b.x, b.y, top_z   , 0., 0.,  1.);
        }
        if (closed && ii + 1 == lines.size() && width == width_initial) {
            idx_b[BOTTOM] = idx_initial[BOTTOM];
        } else {
            idx_b[BOTTOM] = idx_last ++;
            volume.push_geometry(b.x, b.y, bottom_z, 0., 0., -1.);
        }
        // Generate new vertices for the end of this line segment.
        idx_b[LEFT  ] = idx_last ++;
        volume.push_geometry(b2.x, b2.y, middle_z, -xy_right_normal.x, -xy_right_normal.y, -xy_right_normal.z);
        idx_b[RIGHT ] = idx_last ++;
        volume.push_geometry(b1.x, b1.y, middle_z, xy_right_normal.x, xy_right_normal.y, xy_right_normal.z);

        prev_line = line;
        memcpy(idx_prev, idx_b, 4 * sizeof(int));
        width_prev = width;
        bottom_z_prev = bottom_z;
        b1_prev = b1;
        b2_prev = b2;
        v_prev  = v;

        if (! closed) {
            // Terminate open paths with caps.
            if (i == 0)
                volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
            // We don't use 'else' because both cases are true if we have only one line.
            if (i + 1 == lines.size())
                volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
        }
        
        // Add quads for a straight hollow tube-like segment.
        // bottom-right face
        volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
        // top-right face
        volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
        // top-left face
        volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
        // bottom-left face
        volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
    }

#undef LEFT
#undef RIGHT
#undef TOP
#undef BOTTOM
}

static void thick_lines_to_verts(
    const Lines                 &lines, 
    const std::vector<double>   &widths,
    const std::vector<double>   &heights, 
    bool                         closed,
    double                       top_z,
    GLVolume                    &volume)
{
    thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, volume.indexed_vertex_array);
}

// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
static inline void extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point &copy, GLVolume &volume)
{
    Polyline            polyline = extrusion_path.polyline;
    polyline.remove_duplicate_points();
    polyline.translate(copy);
    Lines               lines = polyline.lines();
    std::vector<double> widths(lines.size(), extrusion_path.width);
    std::vector<double> heights(lines.size(), extrusion_path.height);
    thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}

// Fill in the qverts and tverts with quads and triangles for the extrusion_loop.
static inline void extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point &copy, GLVolume &volume)
{
    Lines               lines;
    std::vector<double> widths;
    std::vector<double> heights;
    for (const ExtrusionPath &extrusion_path : extrusion_loop.paths) {
        Polyline            polyline = extrusion_path.polyline;
        polyline.remove_duplicate_points();
        polyline.translate(copy);
        Lines lines_this = polyline.lines();
        append(lines, lines_this);
        widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
        heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
    }
    thick_lines_to_verts(lines, widths, heights, true, print_z, volume);
}

// Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
static inline void extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume)
{
    Lines               lines;
    std::vector<double> widths;
    std::vector<double> heights;
    for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths) {
        Polyline            polyline = extrusion_path.polyline;
        polyline.remove_duplicate_points();
        polyline.translate(copy);
        Lines lines_this = polyline.lines();
        append(lines, lines_this);
        widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
        heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
    }
    thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}

static void extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume);

static inline void extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point &copy, GLVolume &volume)
{
    for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities)
        extrusionentity_to_verts(extrusion_entity, print_z, copy, volume);
}

static void extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume)
{
    if (extrusion_entity != nullptr) {
        auto *extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity);
        if (extrusion_path != nullptr)
            extrusionentity_to_verts(*extrusion_path, print_z, copy, volume);
        else {
            auto *extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
            if (extrusion_loop != nullptr)
                extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume);
            else {
                auto *extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
                if (extrusion_multi_path != nullptr)
                    extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume);
                else {
                    auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
                    if (extrusion_entity_collection != nullptr)
                        extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume);
                    else {
                        CONFESS("Unexpected extrusion_entity type in to_verts()");
                    }
                }
            }
        }
    }
}

void _3DScene::_glew_init()
{ 
    glewInit();
}

// Create 3D thick extrusion lines for a skirt and brim.
// Adds a new Slic3r::GUI::3DScene::Volume to volumes.
void _3DScene::_load_print_toolpaths(
    const Print         *print, 
    GLVolumeCollection  *volumes,
    bool                 use_VBOs)
{
    if (! print->has_skirt() && print->config.brim_width.value == 0)
        return;
    
    const float color[] = { 0.5f, 1.0f, 0.5f, 1.f }; // greenish

    // number of skirt layers
    size_t total_layer_count = 0;
    for (const PrintObject *print_object : print->objects)
        total_layer_count = std::max(total_layer_count, print_object->total_layer_count());
    size_t skirt_height = print->has_infinite_skirt() ? 
        total_layer_count :
        std::min<size_t>(print->config.skirt_height.value, total_layer_count);
    if (skirt_height == 0 && print->config.brim_width.value > 0)
        skirt_height = 1;

    // get first skirt_height layers (maybe this should be moved to a PrintObject method?)
    const PrintObject *object0 = print->objects.front();
    std::vector<float> print_zs;
    print_zs.reserve(skirt_height * 2);
    for (size_t i = 0; i < std::min(skirt_height, object0->layers.size()); ++ i)
        print_zs.push_back(float(object0->layers[i]->print_z));
    //FIXME why there are support layers?
    for (size_t i = 0; i < std::min(skirt_height, object0->support_layers.size()); ++ i)
        print_zs.push_back(float(object0->support_layers[i]->print_z));
    std::sort(print_zs.begin(), print_zs.end());
    print_zs.erase(std::unique(print_zs.begin(), print_zs.end()), print_zs.end());
    if (print_zs.size() > skirt_height)
        print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
    
    volumes->volumes.emplace_back(new GLVolume(color));
    GLVolume &volume = *volumes->volumes.back();
    for (size_t i = 0; i < skirt_height; ++ i) {
        volume.print_zs.push_back(print_zs[i]);
        volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size());
        volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size());
        if (i == 0)
            extrusionentity_to_verts(print->brim, print_zs[i], Point(0, 0), volume);
        extrusionentity_to_verts(print->skirt, print_zs[i], Point(0, 0), volume);
    }
    auto bb = print->bounding_box();
    volume.bounding_box.merge(Pointf3(unscale(bb.min.x), unscale(bb.min.y), 0.f));
    volume.bounding_box.merge(Pointf3(unscale(bb.max.x), unscale(bb.max.y), 0.f));
    volume.indexed_vertex_array.finalize_geometry(use_VBOs);
}

// Create 3D thick extrusion lines for object forming extrusions.
// Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
// one for perimeters, one for infill and one for supports.
void _3DScene::_load_print_object_toolpaths(
    const PrintObject   *print_object,
    GLVolumeCollection  *volumes,
    bool                 use_VBOs)
{
    struct Ctxt
    {
        const Points                *shifted_copies;
        std::vector<const Layer*>    layers;
        // Bounding box of the object and its copies.
        BoundingBoxf3                bbox;
        bool                         has_perimeters;
        bool                         has_infill;
        bool                         has_support;

        // Number of vertices (each vertex is 6x4=24 bytes long)
        static const size_t          alloc_size_max    () { return 131072; } // 3.15MB
//        static const size_t          alloc_size_max    () { return 65536; } // 1.57MB 
//        static const size_t          alloc_size_max    () { return 32768; } // 786kB
        static const size_t          alloc_size_reserve() { return alloc_size_max() * 2; }

        static const float*          color_perimeters  () { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow
        static const float*          color_infill      () { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish
        static const float*          color_support     () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
    } ctxt;

    ctxt.shifted_copies = &print_object->_shifted_copies;

    // order layers by print_z
    ctxt.layers.reserve(print_object->layers.size() + print_object->support_layers.size());
    for (const Layer *layer : print_object->layers)
        ctxt.layers.push_back(layer);
    for (const Layer *layer : print_object->support_layers)
        ctxt.layers.push_back(layer);
    std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; });
    
    for (const Point &copy: print_object->_shifted_copies) {
        BoundingBox cbb = print_object->bounding_box();
        cbb.translate(copy.x, copy.y);
        ctxt.bbox.merge(Pointf3(unscale(cbb.min.x), unscale(cbb.min.y), 0.f));
        ctxt.bbox.merge(Pointf3(unscale(cbb.max.x), unscale(cbb.max.y), 0.f));
    }

    // Maximum size of an allocation block: 32MB / sizeof(float)
    ctxt.has_perimeters = print_object->state.is_done(posPerimeters);
    ctxt.has_infill     = print_object->state.is_done(posInfill);
    ctxt.has_support    = print_object->state.is_done(posSupportMaterial);
    
    BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start";

    //FIXME Improve the heuristics for a grain size.
    size_t          grain_size = std::max(ctxt.layers.size() / 16, size_t(1));
    tbb::spin_mutex new_volume_mutex;
    auto            new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* {
        auto *volume = new GLVolume(color);
        new_volume_mutex.lock();
        volumes->volumes.emplace_back(volume);
        new_volume_mutex.unlock();
        return volume;
    };
    const size_t   volumes_cnt_initial = volumes->volumes.size();
    std::vector<GLVolumeCollection> volumes_per_thread(ctxt.layers.size());
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
        [&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
            GLVolume* vols[3] = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
            for (size_t i = 0; i < 3; ++ i) {
                GLVolume &volume = *vols[i];
                volume.bounding_box = ctxt.bbox;
                volume.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
            }
            for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
                const Layer *layer = ctxt.layers[idx_layer];
                for (size_t i = 0; i < 3; ++ i) {
                    GLVolume &vol = *vols[i];
                    if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) {
                        vol.print_zs.push_back(layer->print_z);
                        vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
                        vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
                    }
                }
                for (const Point &copy: *ctxt.shifted_copies) {
                    for (const LayerRegion *layerm : layer->regions) {
                        if (ctxt.has_perimeters)
                            extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy, *vols[0]);
                        if (ctxt.has_infill)
                            extrusionentity_to_verts(layerm->fills, float(layer->print_z), copy, *vols[1]);
                    }
                    if (ctxt.has_support) {
                        const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
                        if (support_layer) {
                            extrusionentity_to_verts(support_layer->support_fills, float(layer->print_z), copy, *vols[2]);
                            extrusionentity_to_verts(support_layer->support_interface_fills, float(layer->print_z), copy, *vols[2]);
                        }
                    }
                }
                for (size_t i = 0; i < 3; ++ i) {
                    GLVolume &vol = *vols[i];
                    if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
                        // Store the vertex arrays and restart their containers, 
                        vols[i] = new_volume(vol.color);
                        GLVolume &vol_new = *vols[i];
                        vol_new.bounding_box = ctxt.bbox;
                        // Assign the large pre-allocated buffers to the new GLVolume.
                        vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
                        // Copy the content back to the old GLVolume.
                        vol.indexed_vertex_array = vol_new.indexed_vertex_array;
                        // Clear the buffers, but keep them pre-allocated.
                        vol_new.indexed_vertex_array.clear();
                        // Just make sure that clear did not clear the reserved memory.
                        vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
                    }
                }
            }
            for (size_t i = 0; i < 3; ++ i)
                vols[i]->indexed_vertex_array.shrink_to_fit();
        });

    BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results";
    // Remove empty volumes from the newly added volumes.
    volumes->volumes.erase(
        std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(), 
            [](const GLVolume *volume) { return volume->empty(); }),
        volumes->volumes.end());
    for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i)
        volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs);
  
    BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end"; 
}

}