Welcome to mirror list, hosted at ThFree Co, Russian Federation.

GLGizmo.cpp « GUI « slic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: bbd8f44eb5c37a23dee13107a644b7e17469fd68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
#include "GLGizmo.hpp"

#include "../../libslic3r/Utils.hpp"
#include "../../libslic3r/BoundingBox.hpp"
#include "../../libslic3r/Model.hpp"
#include "../../libslic3r/Geometry.hpp"

#include <GL/glew.h>

#include <iostream>
#include <numeric>

namespace Slic3r {
namespace GUI {

const float GLGizmoBase::Grabber::HalfSize = 2.0f;
const float GLGizmoBase::Grabber::HoverOffset = 0.5f;
const float GLGizmoBase::BaseColor[3] = { 1.0f, 1.0f, 1.0f };
const float GLGizmoBase::HighlightColor[3] = { 1.0f, 0.38f, 0.0f };

GLGizmoBase::Grabber::Grabber()
    : center(Pointf(0.0, 0.0))
    , angle_z(0.0f)
{
    color[0] = 1.0f;
    color[1] = 1.0f;
    color[2] = 1.0f;
}

void GLGizmoBase::Grabber::render(bool hover) const
{
    float min_x = -HalfSize;
    float max_x = +HalfSize;
    float min_y = -HalfSize;
    float max_y = +HalfSize;

    ::glColor3f((GLfloat)color[0], (GLfloat)color[1], (GLfloat)color[2]);

    float angle_z_in_deg = angle_z * 180.0f / (float)PI;
    ::glPushMatrix();
    ::glTranslatef((GLfloat)center.x, (GLfloat)center.y, 0.0f);
    ::glRotatef((GLfloat)angle_z_in_deg, 0.0f, 0.0f, 1.0f);

    ::glDisable(GL_CULL_FACE);
    ::glBegin(GL_TRIANGLES);
    ::glVertex3f((GLfloat)min_x, (GLfloat)min_y, 0.0f);
    ::glVertex3f((GLfloat)max_x, (GLfloat)min_y, 0.0f);
    ::glVertex3f((GLfloat)max_x, (GLfloat)max_y, 0.0f);
    ::glVertex3f((GLfloat)max_x, (GLfloat)max_y, 0.0f);
    ::glVertex3f((GLfloat)min_x, (GLfloat)max_y, 0.0f);
    ::glVertex3f((GLfloat)min_x, (GLfloat)min_y, 0.0f);
    ::glEnd();
    ::glEnable(GL_CULL_FACE);

    if (hover)
    {
        min_x -= HoverOffset;
        max_x += HoverOffset;
        min_y -= HoverOffset;
        max_y += HoverOffset;

        ::glBegin(GL_LINE_LOOP);
        ::glVertex3f((GLfloat)min_x, (GLfloat)min_y, 0.0f);
        ::glVertex3f((GLfloat)max_x, (GLfloat)min_y, 0.0f);
        ::glVertex3f((GLfloat)max_x, (GLfloat)max_y, 0.0f);
        ::glVertex3f((GLfloat)min_x, (GLfloat)max_y, 0.0f);
        ::glEnd();
    }

    ::glPopMatrix();
}

GLGizmoBase::GLGizmoBase()
    : m_state(Off)
    , m_hover_id(-1)
{
}

GLGizmoBase::~GLGizmoBase()
{
}

bool GLGizmoBase::init()
{
    return on_init();
}

GLGizmoBase::EState GLGizmoBase::get_state() const
{
    return m_state;
}

void GLGizmoBase::set_state(GLGizmoBase::EState state)
{
    m_state = state;
    on_set_state();
}

unsigned int GLGizmoBase::get_texture_id() const
{
    return m_textures[m_state].get_id();
}

int GLGizmoBase::get_textures_size() const
{
    return m_textures[Off].get_width();
}

int GLGizmoBase::get_hover_id() const
{
    return m_hover_id;
}

void GLGizmoBase::set_hover_id(int id)
{
    //if (id < (int)m_grabbers.size())
        m_hover_id = id;
}

void GLGizmoBase::start_dragging()
{
    on_start_dragging();
}

void GLGizmoBase::stop_dragging()
{
    on_stop_dragging();
}

void GLGizmoBase::update(const Pointf& mouse_pos)
{
    if (m_hover_id != -1)
        on_update(mouse_pos);
}

void GLGizmoBase::refresh()
{
    on_refresh();
}

void GLGizmoBase::render(const BoundingBoxf3& box) const
{
    on_render(box);
}

void GLGizmoBase::render_for_picking(const BoundingBoxf3& box) const
{
    on_render_for_picking(box);
}

void GLGizmoBase::on_set_state()
{
    // do nothing
}

void GLGizmoBase::on_start_dragging()
{
    // do nothing
}

void GLGizmoBase::on_stop_dragging()
{
    // do nothing
}

void GLGizmoBase::on_refresh()
{
    // do nothing
}

void GLGizmoBase::render_grabbers() const
{
    for (int i = 0; i < (int)m_grabbers.size(); ++i)
    {
        m_grabbers[i].render(m_hover_id == i);
    }
}

const float GLGizmoRotate::Offset = 5.0f;
const unsigned int GLGizmoRotate::CircleResolution = 64;
const unsigned int GLGizmoRotate::AngleResolution = 64;
const unsigned int GLGizmoRotate::ScaleStepsCount = 60;
const float GLGizmoRotate::ScaleStepRad = 2.0f * (float)PI / GLGizmoRotate::ScaleStepsCount;
const unsigned int GLGizmoRotate::ScaleLongEvery = 5;
const float GLGizmoRotate::ScaleLongTooth = 2.0f;
const float GLGizmoRotate::ScaleShortTooth = 1.0f;
const unsigned int GLGizmoRotate::SnapRegionsCount = 8;
const float GLGizmoRotate::GrabberOffset = 5.0f;

GLGizmoRotate::GLGizmoRotate()
    : GLGizmoBase()
    , m_angle_z(0.0f)
    , m_center(Pointf(0.0, 0.0))
    , m_radius(0.0f)
    , m_keep_initial_values(false)
{
}

float GLGizmoRotate::get_angle_z() const
{
    return m_angle_z;
}

void GLGizmoRotate::set_angle_z(float angle_z)
{
    if (std::abs(angle_z - 2.0f * PI) < EPSILON)
        angle_z = 0.0f;

    m_angle_z = angle_z;
}

bool GLGizmoRotate::on_init()
{
    std::string path = resources_dir() + "/icons/overlay/";

    std::string filename = path + "rotate_off.png";
    if (!m_textures[Off].load_from_file(filename, false))
        return false;

    filename = path + "rotate_hover.png";
    if (!m_textures[Hover].load_from_file(filename, false))
        return false;

    filename = path + "rotate_on.png";
    if (!m_textures[On].load_from_file(filename, false))
        return false;

    m_grabbers.push_back(Grabber());

    return true;
}

void GLGizmoRotate::on_set_state()
{
    m_keep_initial_values = (m_state == On) ? false : true;
}

void GLGizmoRotate::on_update(const Pointf& mouse_pos)
{
    Vectorf orig_dir(1.0, 0.0);
    Vectorf new_dir = normalize(mouse_pos - m_center);
    coordf_t theta = ::acos(clamp(-1.0, 1.0, dot(new_dir, orig_dir)));
    if (cross(orig_dir, new_dir) < 0.0)
        theta = 2.0 * (coordf_t)PI - theta;

    // snap
    if (length(m_center.vector_to(mouse_pos)) < 2.0 * (double)m_radius / 3.0)
    {
        coordf_t step = 2.0 * (coordf_t)PI / (coordf_t)SnapRegionsCount;
        theta = step * (coordf_t)std::round(theta / step);
    }

    if (theta == 2.0 * (coordf_t)PI)
        theta = 0.0;

    m_angle_z = (float)theta;
}

void GLGizmoRotate::on_refresh()
{
    m_keep_initial_values = false;
}

void GLGizmoRotate::on_render(const BoundingBoxf3& box) const
{
    ::glDisable(GL_DEPTH_TEST);

    if (!m_keep_initial_values)
    {
        const Pointf3& size = box.size();
        m_center = box.center();
        m_radius = Offset + ::sqrt(sqr(0.5f * size.x) + sqr(0.5f * size.y));
        m_keep_initial_values = true;
    }

    ::glLineWidth(2.0f);
    ::glColor3fv(BaseColor);

    _render_circle();
    _render_scale();
    _render_snap_radii();
    _render_reference_radius();

    ::glColor3fv(HighlightColor);
    _render_angle_z();
    _render_grabber();
}

void GLGizmoRotate::on_render_for_picking(const BoundingBoxf3& box) const
{
    ::glDisable(GL_DEPTH_TEST);

    m_grabbers[0].color[0] = 1.0f;
    m_grabbers[0].color[1] = 1.0f;
    m_grabbers[0].color[2] = 254.0f / 255.0f;
    render_grabbers();
}

void GLGizmoRotate::_render_circle() const
{
    ::glBegin(GL_LINE_LOOP);
    for (unsigned int i = 0; i < ScaleStepsCount; ++i)
    {
        float angle = (float)i * ScaleStepRad;
        float x = m_center.x + ::cos(angle) * m_radius;
        float y = m_center.y + ::sin(angle) * m_radius;
        ::glVertex3f((GLfloat)x, (GLfloat)y, 0.0f);
    }
    ::glEnd();
}

void GLGizmoRotate::_render_scale() const
{
    float out_radius_long = m_radius + ScaleLongTooth;
    float out_radius_short = m_radius + ScaleShortTooth;

    ::glBegin(GL_LINES);
    for (unsigned int i = 0; i < ScaleStepsCount; ++i)
    {
        float angle = (float)i * ScaleStepRad;
        float cosa = ::cos(angle);
        float sina = ::sin(angle);
        float in_x = m_center.x + cosa * m_radius;
        float in_y = m_center.y + sina * m_radius;
        float out_x = (i % ScaleLongEvery == 0) ? m_center.x + cosa * out_radius_long : m_center.x + cosa * out_radius_short;
        float out_y = (i % ScaleLongEvery == 0) ? m_center.y + sina * out_radius_long : m_center.y + sina * out_radius_short;
        ::glVertex3f((GLfloat)in_x, (GLfloat)in_y, 0.0f);
        ::glVertex3f((GLfloat)out_x, (GLfloat)out_y, 0.0f);
    }
    ::glEnd();
}

void GLGizmoRotate::_render_snap_radii() const
{
    float step = 2.0f * (float)PI / (float)SnapRegionsCount;

    float in_radius = m_radius / 3.0f;
    float out_radius = 2.0f * in_radius;

    ::glBegin(GL_LINES);
    for (unsigned int i = 0; i < SnapRegionsCount; ++i)
    {
        float angle = (float)i * step;
        float cosa = ::cos(angle);
        float sina = ::sin(angle);
        float in_x = m_center.x + cosa * in_radius;
        float in_y = m_center.y + sina * in_radius;
        float out_x = m_center.x + cosa * out_radius;
        float out_y = m_center.y + sina * out_radius;
        ::glVertex3f((GLfloat)in_x, (GLfloat)in_y, 0.0f);
        ::glVertex3f((GLfloat)out_x, (GLfloat)out_y, 0.0f);
    }
    ::glEnd();
}

void GLGizmoRotate::_render_reference_radius() const
{
    ::glBegin(GL_LINES);
    ::glVertex3f((GLfloat)m_center.x, (GLfloat)m_center.y, 0.0f);
    ::glVertex3f((GLfloat)m_center.x + m_radius + GrabberOffset, (GLfloat)m_center.y, 0.0f);
    ::glEnd();
}

void GLGizmoRotate::_render_angle_z() const
{
    float step_angle = m_angle_z / AngleResolution;
    float ex_radius = m_radius + GrabberOffset;

    ::glBegin(GL_LINE_STRIP);
    for (unsigned int i = 0; i <= AngleResolution; ++i)
    {
        float angle = (float)i * step_angle;
        float x = m_center.x + ::cos(angle) * ex_radius;
        float y = m_center.y + ::sin(angle) * ex_radius;
        ::glVertex3f((GLfloat)x, (GLfloat)y, 0.0f);
    }
    ::glEnd();
}

void GLGizmoRotate::_render_grabber() const
{
    float grabber_radius = m_radius + GrabberOffset;
    m_grabbers[0].center.x = m_center.x + ::cos(m_angle_z) * grabber_radius;
    m_grabbers[0].center.y = m_center.y + ::sin(m_angle_z) * grabber_radius;
    m_grabbers[0].angle_z = m_angle_z;

    ::glColor3fv(BaseColor);
    ::glBegin(GL_LINES);
    ::glVertex3f((GLfloat)m_center.x, (GLfloat)m_center.y, 0.0f);
    ::glVertex3f((GLfloat)m_grabbers[0].center.x, (GLfloat)m_grabbers[0].center.y, 0.0f);
    ::glEnd();

    ::memcpy((void*)m_grabbers[0].color, (const void*)HighlightColor, 3 * sizeof(float));
    render_grabbers();
}

const float GLGizmoScale::Offset = 5.0f;

GLGizmoScale::GLGizmoScale()
    : GLGizmoBase()
    , m_scale(1.0f)
    , m_starting_scale(1.0f)
{
}

float GLGizmoScale::get_scale() const
{
    return m_scale;
}

void GLGizmoScale::set_scale(float scale)
{
    m_starting_scale = scale;
}

bool GLGizmoScale::on_init()
{
    std::string path = resources_dir() + "/icons/overlay/";

    std::string filename = path + "scale_off.png";
    if (!m_textures[Off].load_from_file(filename, false))
        return false;

    filename = path + "scale_hover.png";
    if (!m_textures[Hover].load_from_file(filename, false))
        return false;

    filename = path + "scale_on.png";
    if (!m_textures[On].load_from_file(filename, false))
        return false;

    for (unsigned int i = 0; i < 4; ++i)
    {
        m_grabbers.push_back(Grabber());
    }

    return true;
}

void GLGizmoScale::on_start_dragging()
{
    if (m_hover_id != -1)
        m_starting_drag_position = m_grabbers[m_hover_id].center;
}

void GLGizmoScale::on_update(const Pointf& mouse_pos)
{
    Pointf center(0.5 * (m_grabbers[1].center.x + m_grabbers[0].center.x), 0.5 * (m_grabbers[3].center.y + m_grabbers[0].center.y));

    coordf_t orig_len = length(m_starting_drag_position - center);
    coordf_t new_len = length(mouse_pos - center);
    coordf_t ratio = (orig_len != 0.0) ? new_len / orig_len : 1.0;

    m_scale = m_starting_scale * (float)ratio;
}

void GLGizmoScale::on_render(const BoundingBoxf3& box) const
{
    ::glDisable(GL_DEPTH_TEST);

    coordf_t min_x = box.min.x - (coordf_t)Offset;
    coordf_t max_x = box.max.x + (coordf_t)Offset;
    coordf_t min_y = box.min.y - (coordf_t)Offset;
    coordf_t max_y = box.max.y + (coordf_t)Offset;

    m_grabbers[0].center.x = min_x;
    m_grabbers[0].center.y = min_y;
    m_grabbers[1].center.x = max_x;
    m_grabbers[1].center.y = min_y;
    m_grabbers[2].center.x = max_x;
    m_grabbers[2].center.y = max_y;
    m_grabbers[3].center.x = min_x;
    m_grabbers[3].center.y = max_y;

    ::glLineWidth(2.0f);
    ::glColor3fv(BaseColor);
    // draw outline
    ::glBegin(GL_LINE_LOOP);
    for (unsigned int i = 0; i < 4; ++i)
    {
        ::glVertex3f((GLfloat)m_grabbers[i].center.x, (GLfloat)m_grabbers[i].center.y, 0.0f);
    }
    ::glEnd();

    // draw grabbers
    for (unsigned int i = 0; i < 4; ++i)
    {
        ::memcpy((void*)m_grabbers[i].color, (const void*)HighlightColor, 3 * sizeof(float));
    }
    render_grabbers();
}

void GLGizmoScale::on_render_for_picking(const BoundingBoxf3& box) const
{
    static const GLfloat INV_255 = 1.0f / 255.0f;

    ::glDisable(GL_DEPTH_TEST);

    for (unsigned int i = 0; i < 4; ++i)
    {
        m_grabbers[i].color[0] = 1.0f;
        m_grabbers[i].color[1] = 1.0f;
        m_grabbers[i].color[2] = (254.0f - (float)i) * INV_255;
    }
    render_grabbers();
}


GLGizmoFlatten::GLGizmoFlatten()
    : GLGizmoBase(),
      m_normal(Pointf3(0.f, 0.f, 0.f))
{}


bool GLGizmoFlatten::on_init()
{
    std::string path = resources_dir() + "/icons/overlay/";

    std::string filename = path + "layflat_off.png";
    if (!m_textures[Off].load_from_file(filename, false))
        return false;

    filename = path + "layflat_hover.png";
    if (!m_textures[Hover].load_from_file(filename, false))
        return false;

    filename = path + "layflat_on.png";
    if (!m_textures[On].load_from_file(filename, false))
        return false;

    return true;
}

void GLGizmoFlatten::on_start_dragging()
{
    if (m_hover_id != -1)
        m_normal = m_planes[m_hover_id].normal;
}

void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const
{
    // the dragged_offset is a vector measuring where was the object moved
    // with the gizmo being on. This is reset in set_flattening_data and
    // does not work correctly when there are multiple copies.
    if (!m_center) // this is the first bounding box that we see
        m_center.reset(new Pointf3(box.center().x, box.center().y));
    Pointf3 dragged_offset = box.center() - *m_center;

    bool blending_was_enabled = ::glIsEnabled(GL_BLEND);
    bool depth_test_was_enabled = ::glIsEnabled(GL_DEPTH_TEST);
    ::glEnable(GL_BLEND);
    ::glEnable(GL_DEPTH_TEST);

    for (int i=0; i<(int)m_planes.size(); ++i) {
        if (i == m_hover_id)
            ::glColor4f(0.9f, 0.9f, 0.9f, 0.75f);
            else
                ::glColor4f(0.9f, 0.9f, 0.9f, 0.5f);

        for (Pointf offset : m_instances_positions) {
            offset += dragged_offset;
            ::glBegin(GL_POLYGON);
            for (const auto& vertex : m_planes[i].vertices)
                ::glVertex3f((GLfloat)vertex.x + offset.x, (GLfloat)vertex.y + offset.y, (GLfloat)vertex.z);
            ::glEnd();
        }
    }

    if (!blending_was_enabled)
        ::glDisable(GL_BLEND);
    if (!depth_test_was_enabled)
        ::glDisable(GL_DEPTH_TEST);
}

void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const
{
    static const GLfloat INV_255 = 1.0f / 255.0f;

    ::glDisable(GL_DEPTH_TEST);

    for (unsigned int i = 0; i < m_planes.size(); ++i)
    {
        ::glColor3f(1.f, 1.f, (254.0f - (float)i) * INV_255);
        for (const Pointf& offset : m_instances_positions) {
            ::glBegin(GL_POLYGON);
            for (const auto& vertex : m_planes[i].vertices)
                ::glVertex3f((GLfloat)vertex.x + offset.x, (GLfloat)vertex.y + offset.y, (GLfloat)vertex.z);
            ::glEnd();
        }
    }
}


// TODO - remove and use Eigen instead
static Pointf3 super_rotation(Pointf3 axis, float angle, const Pointf3& point)
{
    axis = normalize(axis);
    const float& x = axis.x;
    const float& y = axis.y;
    const float& z = axis.z;
    float s = sin(angle);
    float c = cos(angle);
    float D = 1-c;
    float matrix[3][3] = { { c + x*x*D, x*y*D-z*s, x*z*D+y*s },
                           { y*x*D+z*s, c+y*y*D,   y*z*D-x*s },
                           { z*x*D-y*s, z*y*D+x*s, c+z*z*D   } };
    float in[3] = { (float)point.x, (float)point.y, (float)point.z };
    float out[3] = { 0, 0, 0 };

    for (unsigned char i=0; i<3; ++i)
        for (unsigned char j=0; j<3; ++j)
            out[i] += matrix[i][j] * in[j];

    return Pointf3(out[0], out[1], out[2]);
}


void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
    m_center.release(); // object is not being dragged (this would not be called otherwise) - we must forget about the bounding box position...
    m_model_object = model_object;

    // ...and save the updated positions of the object instances:
    if (m_model_object && !m_model_object->instances.empty()) {
        m_instances_positions.clear();
        for (const auto* instance : m_model_object->instances)
            m_instances_positions.emplace_back(instance->offset);
    }

    if (is_plane_update_necessary())
        update_planes();
}

void GLGizmoFlatten::update_planes()
{
    TriangleMesh ch;
    for (const ModelVolume* vol : m_model_object->volumes)
        ch.merge(vol->get_convex_hull());
    ch = ch.convex_hull_3d();
    ch.scale(m_model_object->instances.front()->scaling_factor);
    ch.rotate_z(m_model_object->instances.front()->rotation);

    m_planes.clear();

    // Now we'll go through all the facets and append Points of facets sharing the same normal:
    const int num_of_facets = ch.stl.stats.number_of_facets;
    std::vector<int>  facet_queue(num_of_facets, 0);
    std::vector<bool> facet_visited(num_of_facets, false);
    int               facet_queue_cnt = 0;
    const stl_normal* normal_ptr = nullptr;
    while (1) {
        // Find next unvisited triangle:
        int facet_idx = 0;
        for (; facet_idx < num_of_facets; ++ facet_idx)
            if (!facet_visited[facet_idx]) {
                facet_queue[facet_queue_cnt ++] = facet_idx;
                facet_visited[facet_idx] = true;
                normal_ptr = &ch.stl.facet_start[facet_idx].normal;
                m_planes.emplace_back();
                break;
            }
        if (facet_idx == num_of_facets)
            break; // Everything was visited already

        while (facet_queue_cnt > 0) {
            int facet_idx = facet_queue[-- facet_queue_cnt];
            const stl_normal* this_normal_ptr = &ch.stl.facet_start[facet_idx].normal;
            //if (this_normal_ptr->x == normal_ptr->x && this_normal_ptr->y == normal_ptr->y && this_normal_ptr->z == normal_ptr->z) {
            if (std::abs(this_normal_ptr->x-normal_ptr->x) < 0.001 && std::abs(this_normal_ptr->y-normal_ptr->y) < 0.001 && std::abs(this_normal_ptr->z-normal_ptr->z) < 0.001) {
                stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
                for (int j=0; j<3; ++j)
                    m_planes.back().vertices.emplace_back(first_vertex[j].x, first_vertex[j].y, first_vertex[j].z);

                facet_visited[facet_idx] = true;
                for (int j = 0; j < 3; ++ j) {
                    int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
                    if (! facet_visited[neighbor_idx])
                        facet_queue[facet_queue_cnt ++] = neighbor_idx;
                }
            }
        }
        m_planes.back().normal = Pointf3(normal_ptr->x, normal_ptr->y, normal_ptr->z);

        // if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway):
        if (m_planes.back().vertices.size() == 3 &&
             ( m_planes.back().vertices[0].distance_to(m_planes.back().vertices[1]) < 1.f
            || m_planes.back().vertices[0].distance_to(m_planes.back().vertices[2]) < 1.f))
            m_planes.pop_back();
    }

    // Now we'll go through all the polygons, transform the points into xy plane to process them:
    for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
        Pointf3s& polygon = m_planes[polygon_id].vertices;
        const Pointf3& normal = m_planes[polygon_id].normal;

        // We are going to rotate about z and y to flatten the plane
        float angle_z = 0.f;
        float angle_y = 0.f;
        if (std::abs(normal.y) > 0.001)
            angle_z = -atan2(normal.y, normal.x); // angle to rotate so that normal ends up in xz-plane
        if (std::abs(normal.x*cos(angle_z)-normal.y*sin(angle_z)) > 0.001)
            angle_y = - atan2(normal.x*cos(angle_z)-normal.y*sin(angle_z), normal.z); // angle to rotate to make normal point upwards
        else {
            // In case it already was in z-direction, we must ensure it is not the wrong way:
            angle_y = normal.z > 0.f ? 0 : -M_PI;
        }

        // Rotate all points to the xy plane:
        for (auto& vertex : polygon) {
            vertex = super_rotation(Pointf3(0,0,1), angle_z, vertex);
            vertex = super_rotation(Pointf3(0,1,0), angle_y, vertex);
        }
        polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points

        // We will calculate area of the polygon and discard ones that are too small
        // The limit is more forgiving in case the normal is in the direction of the coordinate axes
        const float minimal_area = (std::abs(normal.x) > 0.999f || std::abs(normal.y) > 0.999f || std::abs(normal.z) > 0.999f) ? 1.f : 20.f;
        float& area = m_planes[polygon_id].area;
        area = 0.f;
        for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
            area += polygon[i].x*polygon[i+1 < polygon.size() ? i+1 : 0 ].y - polygon[i+1 < polygon.size() ? i+1 : 0].x*polygon[i].y;
        area = std::abs(area/2.f);
        if (area < minimal_area) {
            m_planes.erase(m_planes.begin()+(polygon_id--));
            continue;
        }

        // We will shrink the polygon a little bit so it does not touch the object edges:
        Pointf3 centroid = std::accumulate(polygon.begin(), polygon.end(), Pointf3(0.f, 0.f, 0.f));
        centroid.scale(1.f/polygon.size());
        for (auto& vertex : polygon)
            vertex = 0.9f*vertex + 0.1f*centroid;

        // Polygon is now simple and convex, we'll round the corners to make them look nicer.
        // The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
        // towards their average (controlled by 'aggressivity'). This is repeated k times.
        // In next iterations, the neighbours are not always taken at the middle (to increase the
        // rounding effect at the corners, where we need it most).
        const unsigned int k = 10; // number of iterations
        const float aggressivity = 0.2f;  // agressivity
        const unsigned int N = polygon.size();
        std::vector<std::pair<unsigned int, unsigned int>> neighbours;
        if (k != 0) {
            Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
            for (unsigned int j=0; j<N; ++j) {
                points_out[j*2*k] = polygon[j];
                neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
            }

            for (unsigned int i=0; i<k; ++i) {
                // Calculate middle of each edge so that neighbours points to something useful:
                for (unsigned int j=0; j<N; ++j)
                    if (i==0)
                        points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
                    else {
                        float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
                        points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
                        points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
                    }
                // Now we have a triangle and valid neighbours, we can do an iteration:
                for (unsigned int j=0; j<N; ++j)
                    points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
                                        aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);

                for (auto& n : neighbours) {
                    ++n.first;
                    --n.second;
                }
            }
            polygon = points_out; // replace the coarse polygon with the smooth one that we just created
        }

        // Transform back to 3D;
        for (auto& b : polygon) {
            b.z += 0.1f; // raise a bit above the object surface to avoid flickering
            b = super_rotation(Pointf3(0,1,0), -angle_y, b);
            b = super_rotation(Pointf3(0,0,1), -angle_z, b);
        }
    }

    // We'll sort the planes by area and only keep the 255 largest ones (because of the picking pass limitations):
    std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
    m_planes.resize(std::min((int)m_planes.size(), 255));

    // Planes are finished - let's save what we calculated it from:
    m_source_data.bounding_boxes.clear();
    for (const auto& vol : m_model_object->volumes)
        m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box());
    m_source_data.scaling_factor = m_model_object->instances.front()->scaling_factor;
    m_source_data.rotation = m_model_object->instances.front()->rotation;
    const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
    m_source_data.mesh_first_point = Pointf3(first_vertex[0], first_vertex[1], first_vertex[2]);
}

// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const
{
    if (m_state != On || !m_model_object || m_model_object->instances.empty())
        return false;

    if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size()
     || m_model_object->instances.front()->scaling_factor != m_source_data.scaling_factor
     || m_model_object->instances.front()->rotation != m_source_data.rotation)
         return true;

    // now compare the bounding boxes:
    for (unsigned int i=0; i<m_model_object->volumes.size(); ++i)
        if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i])
            return true;

    const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
    Pointf3 first_point(first_vertex[0], first_vertex[1], first_vertex[2]);
    if (first_point != m_source_data.mesh_first_point)
        return true;

    return false;
}

Pointf3 GLGizmoFlatten::get_flattening_normal() const {
    Pointf3 normal = m_normal;
    normal.rotate(-m_model_object->instances.front()->rotation);
    m_normal = Pointf3(0.f, 0.f, 0.f);
    return normal;
}



} // namespace GUI
} // namespace Slic3r