Welcome to mirror list, hosted at ThFree Co, Russian Federation.

trainer.py « constituency « models « stanza - github.com/stanfordnlp/stanza.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8e2709599b4b66193ccfbb97d0708ebccc93aaaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
"""
This file includes a variety of methods needed to train new
constituency parsers.  It also includes a method to load an
already-trained parser.

See the `train` method for the code block which starts from
  raw treebank and returns a new parser.
`evaluate` reads a treebank and gives a score for those trees.
`parse_tagged_words` is useful at Pipeline time -
  it takes words & tags and processes that into trees.
"""

from collections import Counter
from collections import namedtuple
import logging
import random
import re
import os

import torch
from torch import nn

from stanza.models.common import pretrain
from stanza.models.common import utils
from stanza.models.common.foundation_cache import load_bert, load_charlm, load_pretrain, FoundationCache
from stanza.models.constituency import parse_transitions
from stanza.models.constituency import parse_tree
from stanza.models.constituency import transition_sequence
from stanza.models.constituency import tree_reader
from stanza.models.constituency.base_model import SimpleModel, UNARY_LIMIT
from stanza.models.constituency.dynamic_oracle import RepairType, oracle_inorder_error
from stanza.models.constituency.lstm_model import LSTMModel
from stanza.models.constituency.parse_transitions import State, TransitionScheme
from stanza.models.constituency.parse_tree import Tree
from stanza.models.constituency.utils import retag_trees, build_optimizer, build_scheduler
from stanza.models.constituency.utils import DEFAULT_LEARNING_EPS, DEFAULT_LEARNING_RATES, DEFAULT_LEARNING_RHO, DEFAULT_WEIGHT_DECAY
from stanza.server.parser_eval import EvaluateParser

tqdm = utils.get_tqdm()

logger = logging.getLogger('stanza.constituency.trainer')

class Trainer:
    """
    Stores a constituency model and its optimizer

    Not inheriting from common/trainer.py because there's no concept of change_lr (yet?)
    """
    def __init__(self, args, model, optimizer=None, scheduler=None, epochs_trained=0):
        self.args = args
        self.model = model
        self.optimizer = optimizer
        self.scheduler = scheduler
        # keeping track of the epochs trained will be useful
        # for adjusting the learning scheme
        self.epochs_trained = epochs_trained

    def uses_xpos(self):
        return self.args['retag_package'] is not None and self.args['retag_method'] == 'xpos'

    def save(self, filename, save_optimizer=True):
        """
        Save the model (and by default the optimizer) to the given path
        """
        params = self.model.get_params()
        checkpoint = {
            'args': self.args,
            'params': params,
            'model_type': 'LSTM',
            'epochs_trained': self.epochs_trained,
        }
        if save_optimizer and self.optimizer is not None:
            checkpoint['optimizer_state_dict'] = self.optimizer.state_dict()
            checkpoint['scheduler_state_dict'] = self.scheduler.state_dict()
        torch.save(checkpoint, filename, _use_new_zipfile_serialization=False)
        logger.info("Model saved to %s", filename)

    @staticmethod
    def load(filename, args=None, load_optimizer=False, foundation_cache=None):
        """
        Load back a model and possibly its optimizer.
        """
        if args is None:
            args = {}

        try:
            checkpoint = torch.load(filename, lambda storage, loc: storage)
        except BaseException:
            logger.exception("Cannot load model from %s", filename)
            raise
        logger.debug("Loaded model from %s", filename)

        saved_args = dict(checkpoint['args'])
        saved_args.update(args)
        # TODO: remove when all models are rebuilt
        if 'lattn_combined_input' not in saved_args:
            saved_args['lattn_combined_input'] = False
        if 'lattn_d_input_proj' not in saved_args:
            saved_args['lattn_d_input_proj'] = 0
        params = checkpoint['params']
        # this is because galaxy brain decided it was worth the effort
        # of moving the layer norm from inside the positional encoding
        if 'partitioned_transformer_module.add_timing.norm.weight' in params['model']:
            params['model']['partitioned_transformer_module.transformer_input_norm.weight'] = params['model']['partitioned_transformer_module.add_timing.norm.weight']
        if 'partitioned_transformer_module.add_timing.norm.bias' in params['model']:
            params['model']['partitioned_transformer_module.transformer_input_norm.bias'] = params['model']['partitioned_transformer_module.add_timing.norm.bias']

        model_type = checkpoint['model_type']
        if model_type == 'LSTM':
            pt = load_pretrain(saved_args.get('wordvec_pretrain_file', None), foundation_cache)
            bert_model, bert_tokenizer = load_bert(saved_args.get('bert_model', None), foundation_cache)
            forward_charlm = load_charlm(saved_args["charlm_forward_file"], foundation_cache)
            backward_charlm = load_charlm(saved_args["charlm_backward_file"], foundation_cache)
            model = LSTMModel(pretrain=pt,
                              forward_charlm=forward_charlm,
                              backward_charlm=backward_charlm,
                              bert_model=bert_model,
                              bert_tokenizer=bert_tokenizer,
                              transitions=params['transitions'],
                              constituents=params['constituents'],
                              tags=params['tags'],
                              words=params['words'],
                              rare_words=params['rare_words'],
                              root_labels=params['root_labels'],
                              constituent_opens=params['constituent_opens'],
                              unary_limit=params['unary_limit'],
                              args=saved_args)
        else:
            raise ValueError("Unknown model type {}".format(model_type))
        model.load_state_dict(params['model'], strict=False)

        if saved_args['cuda']:
            model.cuda()

        epochs_trained = checkpoint.get('epochs_trained', 0)

        if load_optimizer:
            # need to match the optimizer we build with the one that was used at training time
            build_simple_adadelta = checkpoint['args']['multistage'] and epochs_trained < checkpoint['args']['epochs'] // 2
            logger.debug("Model loaded was built with multistage %s  epochs_trained %d out of total epochs %d  Building initial Adadelta optimizer: %s", checkpoint['args']['multistage'], epochs_trained, checkpoint['args']['epochs'], build_simple_adadelta)
            optimizer = build_optimizer(saved_args, model, build_simple_adadelta)

            if checkpoint.get('optimizer_state_dict', None) is not None:
                optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            else:
                logger.info("Attempted to load optimizer to resume training, but optimizer not saved.  Creating new optimizer")

            scheduler = build_scheduler(saved_args, optimizer)
            if 'scheduler_state_dict' in checkpoint:
                scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
        else:
            optimizer = None
            scheduler = None

        logger.debug("-- MODEL CONFIG --")
        for k in model.args.keys():
            logger.debug("  --%s: %s", k, model.args[k])

        return Trainer(args=saved_args, model=model, optimizer=optimizer, scheduler=scheduler, epochs_trained=epochs_trained)


def load_pretrain_or_wordvec(args):
    """
    Loads a pretrain based on the paths in the arguments

    TODO: put this functionality in the foundation_cache?
    or maybe do this conversion before trying to load the pretrain?
    currently this function is not used anywhere
    """
    pretrain_file = pretrain.find_pretrain_file(args['wordvec_pretrain_file'], args['save_dir'], args['shorthand'], args['lang'])
    if os.path.exists(pretrain_file):
        vec_file = None
    else:
        vec_file = args['wordvec_file'] if args['wordvec_file'] else utils.get_wordvec_file(args['wordvec_dir'], args['shorthand'])
    pt = pretrain.Pretrain(pretrain_file, vec_file, args['pretrain_max_vocab'])
    return pt

def verify_transitions(trees, sequences, transition_scheme, unary_limit):
    """
    Given a list of trees and their transition sequences, verify that the sequences rebuild the trees
    """
    model = SimpleModel(transition_scheme, unary_limit)
    logger.info("Verifying the transition sequences for %d trees", len(trees))

    data = zip(trees, sequences)
    if logger.getEffectiveLevel() <= logging.INFO:
        data = tqdm(zip(trees, sequences), total=len(trees))

    for tree, sequence in data:
        state = parse_transitions.initial_state_from_gold_trees([tree], model)[0]
        for idx, trans in enumerate(sequence):
            if not trans.is_legal(state, model):
                raise RuntimeError("Transition {}:{} was not legal in a transition sequence:\nOriginal tree: {}\nTransitions: {}".format(idx, trans, tree, sequence))
            state = trans.apply(state, model)
        result = model.get_top_constituent(state.constituents)
        if tree != result:
            raise RuntimeError("Transition sequence did not match for a tree!\nOriginal tree:{}\nTransitions: {}\nResult tree:{}".format(tree, sequence, result))

def evaluate(args, model_file, retag_pipeline):
    """
    Loads the given model file and tests the eval_file treebank.

    May retag the trees using retag_pipeline
    Uses a subprocess to run the Java EvalB code
    """
    # we create the Evaluator here because otherwise the transformers
    # library constantly complains about forking the process
    # note that this won't help in the event of training multiple
    # models in the same run, although since that would take hours
    # or days, that's not a very common problem
    if args['num_generate'] > 0:
        kbest = args['num_generate'] + 1
    else:
        kbest = None

    with EvaluateParser(kbest=kbest) as evaluator:
        foundation_cache = retag_pipeline.foundation_cache if retag_pipeline else FoundationCache()
        load_args = {
            'wordvec_pretrain_file': args['wordvec_pretrain_file'],
            'charlm_forward_file': args['charlm_forward_file'],
            'charlm_backward_file': args['charlm_backward_file'],
            'cuda': args['cuda'],
        }
        trainer = Trainer.load(model_file, args=load_args, foundation_cache=foundation_cache)

        treebank = tree_reader.read_treebank(args['eval_file'])
        logger.info("Read %d trees for evaluation", len(treebank))

        if retag_pipeline is not None:
            logger.info("Retagging trees using the %s tags from the %s package...", args['retag_method'], args['retag_package'])
            treebank = retag_trees(treebank, retag_pipeline, args['retag_xpos'])
            logger.info("Retagging finished")

        if args['log_norms']:
            trainer.model.log_norms()
        f1 = run_dev_set(trainer.model, treebank, args, evaluator)
        logger.info("F1 score on %s: %f", args['eval_file'], f1)

def get_open_nodes(trees, args):
    """
    Return a list of all open nodes in the given dataset.
    Depending on the parameters, may be single or compound open transitions.
    """
    if args['transition_scheme'] is TransitionScheme.TOP_DOWN_COMPOUND:
        return parse_tree.Tree.get_compound_constituents(trees)
    else:
        return [(x,) for x in parse_tree.Tree.get_unique_constituent_labels(trees)]

def log_args(args):
    """
    For record keeping purposes, log the arguments when training
    """
    keys = sorted(args.keys())
    log_lines = ['%s: %s' % (k, args[k]) for k in keys]
    logger.info('ARGS USED AT TRAINING TIME:\n%s\n', '\n'.join(log_lines))

def remove_optimizer(args, model_save_file, model_load_file):
    """
    A utility method to remove the optimizer from a save file

    Will make the save file a lot smaller
    """
    # TODO: kind of overkill to load in the pretrain rather than
    # change the load/save to work without it, but probably this
    # functionality isn't used that often anyway
    load_args = {
        'wordvec_pretrain_file': args['wordvec_pretrain_file'],
        'charlm_forward_file': args['charlm_forward_file'],
        'charlm_backward_file': args['charlm_backward_file'],
        'cuda': False,
    }
    trainer = Trainer.load(model_load_file, args=load_args, load_optimizer=False)
    trainer.save(model_save_file)

def convert_trees_to_sequences(trees, tree_type, transition_scheme):
    logger.info("Building {} transition sequences".format(tree_type))
    if logger.getEffectiveLevel() <= logging.INFO:
        trees = tqdm(trees)
    sequences = transition_sequence.build_treebank(trees, transition_scheme)
    transitions = transition_sequence.all_transitions(sequences)
    return sequences, transitions

def add_grad_clipping(trainer, grad_clipping):
    """
    Adds a torch.clamp hook on each parameter if grad_clipping is not None
    """
    if grad_clipping is not None:
        for p in trainer.model.parameters():
            if p.requires_grad:
                p.register_hook(lambda grad: torch.clamp(grad, -grad_clipping, grad_clipping))

def build_trainer(args, train_trees, dev_trees, foundation_cache, model_load_file):
    """
    Builds a Trainer (with model) and the train_sequences and transitions for the given trees.
    """
    train_constituents = parse_tree.Tree.get_unique_constituent_labels(train_trees)
    dev_constituents = parse_tree.Tree.get_unique_constituent_labels(dev_trees)
    logger.info("Unique constituents in training set: %s", train_constituents)
    for con in dev_constituents:
        if con not in train_constituents:
            raise RuntimeError("Found label {} in the dev set which don't exist in the train set".format(con))
    constituent_counts = parse_tree.Tree.get_constituent_counts(train_trees)
    logger.info("Constituent node counts: %s", constituent_counts)

    tags = parse_tree.Tree.get_unique_tags(train_trees)
    if None in tags:
        raise RuntimeError("Fatal problem: the tagger put None on some of the nodes!")
    logger.info("Unique tags in training set: %s", tags)
    # no need to fail for missing tags between train/dev set
    # the model has an unknown tag embedding
    for tag in parse_tree.Tree.get_unique_tags(dev_trees):
        if tag not in tags:
            logger.info("Found tag in dev set which does not exist in train set: %s  Continuing...", tag)

    unary_limit = max(max(t.count_unary_depth() for t in train_trees),
                      max(t.count_unary_depth() for t in dev_trees)) + 1
    train_sequences, train_transitions = convert_trees_to_sequences(train_trees, "training", args['transition_scheme'])
    dev_sequences, dev_transitions = convert_trees_to_sequences(dev_trees, "dev", args['transition_scheme'])

    logger.info("Total unique transitions in train set: %d", len(train_transitions))
    logger.info("Unique transitions in training set: %s", train_transitions)
    for trans in dev_transitions:
        if trans not in train_transitions:
            raise RuntimeError("Found transition {} in the dev set which don't exist in the train set".format(trans))

    verify_transitions(train_trees, train_sequences, args['transition_scheme'], unary_limit)
    verify_transitions(dev_trees, dev_sequences, args['transition_scheme'], unary_limit)

    root_labels = parse_tree.Tree.get_root_labels(train_trees)
    for root_state in parse_tree.Tree.get_root_labels(dev_trees):
        if root_state not in root_labels:
            raise RuntimeError("Found root state {} in the dev set which is not a ROOT state in the train set".format(root_state))

    # we don't check against the words in the dev set as it is
    # expected there will be some UNK words
    words = parse_tree.Tree.get_unique_words(train_trees)
    rare_words = parse_tree.Tree.get_rare_words(train_trees, args['rare_word_threshold'])
    # also, it's not actually an error if there is a pattern of
    # compound unary or compound open nodes which doesn't exist in the
    # train set.  it just means we probably won't ever get that right
    open_nodes = get_open_nodes(train_trees, args)

    # at this point we have:
    # pretrain
    # train_trees, dev_trees
    # lists of transitions, internal nodes, and root states the parser needs to be aware of

    # in the 'finetune' case, this will preload the models into foundation_cache
    pt = foundation_cache.load_pretrain(args['wordvec_pretrain_file'])
    forward_charlm = foundation_cache.load_charlm(args['charlm_forward_file'])
    backward_charlm = foundation_cache.load_charlm(args['charlm_backward_file'])
    bert_model, bert_tokenizer = foundation_cache.load_bert(args['bert_model'])

    trainer = None
    if args['checkpoint'] and args['checkpoint_save_name'] and os.path.exists(args['checkpoint_save_name']):
        logger.info("Found checkpoint to continue training: %s", args['checkpoint_save_name'])
        trainer = Trainer.load(args['checkpoint_save_name'], args, load_optimizer=True, foundation_cache=foundation_cache)
        # grad clipping is not saved with the rest of the model
        add_grad_clipping(trainer, args['grad_clipping'])

        # TODO: turn finetune, relearn_structure, multistage into an enum
        # finetune just means continue learning, so checkpoint is sufficient
        # relearn_structure is essentially a one stage multistage
        # multistage with a checkpoint will have the proper optimizer for that epoch
        # and no special learning mode means we are training a new model and should continue
        return trainer, train_sequences, train_transitions

    if args['finetune']:
        logger.info("Loading model to finetune: %s", model_load_file)
        trainer = Trainer.load(model_load_file, args, load_optimizer=True, foundation_cache=foundation_cache)
        # a new finetuning will start with a new epochs_trained count
        trainer.epochs_trained = 0
    elif args['relearn_structure']:
        logger.info("Loading model to continue training with new structure from %s", model_load_file)
        temp_args = dict(args)
        # remove the pattn & lattn layers unless the saved model had them
        temp_args.pop('pattn_num_layers', None)
        temp_args.pop('lattn_d_proj', None)
        trainer = Trainer.load(model_load_file, temp_args, load_optimizer=False, foundation_cache=foundation_cache)

        # using the model's current values works for if the new
        # dataset is the same or smaller
        # TODO: handle a larger dataset as well
        model = LSTMModel(pt, forward_charlm, backward_charlm, bert_model, bert_tokenizer, trainer.model.transitions, trainer.model.constituents, trainer.model.tags, trainer.model.delta_words, trainer.model.rare_words, trainer.model.root_labels, trainer.model.constituent_opens, trainer.model.unary_limit(), args)
        if args['cuda']:
            model.cuda()
        model.copy_with_new_structure(trainer.model)
        optimizer = build_optimizer(args, model, False)
        scheduler = build_scheduler(args, optimizer)
        trainer = Trainer(args, model, optimizer, scheduler)
    elif args['multistage']:
        # run adadelta over the model for half the time with no pattn or lattn
        # training then switches to a different optimizer for the rest
        # this works surprisingly well
        logger.info("Warming up model for %d iterations using AdaDelta to train the embeddings", args['epochs'] // 2)
        temp_args = dict(args)
        # remove the attention layers for the temporary model
        temp_args['pattn_num_layers'] = 0
        temp_args['lattn_d_proj'] = 0

        temp_model = LSTMModel(pt, forward_charlm, backward_charlm, bert_model, bert_tokenizer, train_transitions, train_constituents, tags, words, rare_words, root_labels, open_nodes, unary_limit, temp_args)
        if args['cuda']:
            temp_model.cuda()
        temp_optim = build_optimizer(temp_args, temp_model, True)
        scheduler = build_scheduler(temp_args, temp_optim)
        trainer = Trainer(temp_args, temp_model, temp_optim, scheduler)
    else:
        model = LSTMModel(pt, forward_charlm, backward_charlm, bert_model, bert_tokenizer, train_transitions, train_constituents, tags, words, rare_words, root_labels, open_nodes, unary_limit, args)
        if args['cuda']:
            model.cuda()
        logger.info("Number of words in the training set found in the embedding: {} out of {}".format(model.num_words_known(words), len(words)))

        optimizer = build_optimizer(args, model, False)
        scheduler = build_scheduler(args, optimizer)

        trainer = Trainer(args, model, optimizer, scheduler)

    add_grad_clipping(trainer, args['grad_clipping'])

    return trainer, train_sequences, train_transitions

def remove_duplicates(trees, dataset):
    """
    Filter duplicates from the given dataset
    """
    new_trees = []
    known_trees = set()
    for tree in trees:
        tree_str = "{}".format(tree)
        if tree_str in known_trees:
            continue
        known_trees.add(tree_str)
        new_trees.append(tree)
    if len(new_trees) < len(trees):
        logger.info("Filtered %d duplicates from %s dataset", (len(trees) - len(new_trees)), dataset)
    return new_trees

def remove_no_tags(trees):
    """
    TODO: remove these trees in the conversion instead of here
    """
    new_trees = [x for x in trees if
                 len(x.children) > 1 or
                 (len(x.children) == 1 and len(x.children[0].children) > 1) or
                 (len(x.children) == 1 and len(x.children[0].children) == 1 and len(x.children[0].children[0].children) >= 1)]
    if len(trees) - len(new_trees) > 0:
        logger.info("Eliminated %d trees with missing structure", (len(trees) - len(new_trees)))
    return new_trees

def train(args, model_load_file, model_save_each_file, retag_pipeline):
    """
    Build a model, train it using the requested train & dev files
    """
    log_args(args)

    # we create the Evaluator here because otherwise the transformers
    # library constantly complains about forking the process
    # note that this won't help in the event of training multiple
    # models in the same run, although since that would take hours
    # or days, that's not a very common problem
    if args['num_generate'] > 0:
        kbest = args['num_generate'] + 1
    else:
        kbest = None

    if args['wandb']:
        global wandb
        import wandb
        wandb_name = args['wandb_name'] if args['wandb_name'] else "%s_constituency" % args['shorthand']
        wandb.init(name=wandb_name, config=args)
        wandb.run.define_metric('dev_score', summary='max')

    with EvaluateParser(kbest=kbest) as evaluator:
        utils.ensure_dir(args['save_dir'])

        train_trees = tree_reader.read_treebank(args['train_file'])
        logger.info("Read %d trees for the training set", len(train_trees))
        train_trees = remove_duplicates(train_trees, "train")
        train_trees = remove_no_tags(train_trees)

        dev_trees = tree_reader.read_treebank(args['eval_file'])
        logger.info("Read %d trees for the dev set", len(dev_trees))
        dev_trees = remove_duplicates(dev_trees, "dev")

        if retag_pipeline is not None:
            logger.info("Retagging trees using the %s tags from the %s package...", args['retag_method'], args['retag_package'])
            train_trees = retag_trees(train_trees, retag_pipeline, args['retag_xpos'])
            dev_trees = retag_trees(dev_trees, retag_pipeline, args['retag_xpos'])
            logger.info("Retagging finished")

        foundation_cache = retag_pipeline.foundation_cache if retag_pipeline else FoundationCache()
        trainer, train_sequences, train_transitions = build_trainer(args, train_trees, dev_trees, foundation_cache, model_load_file)

        trainer = iterate_training(args, trainer, train_trees, train_sequences, train_transitions, dev_trees, foundation_cache, model_save_each_file, evaluator)

    if args['wandb']:
        wandb.finish()

    return trainer

TrainItem = namedtuple("TrainItem", ['tree', 'gold_sequence', 'preterminals'])

class EpochStats(namedtuple("EpochStats", ['epoch_loss', 'transitions_correct', 'transitions_incorrect', 'repairs_used', 'fake_transitions_used', 'nans'])):
    def __add__(self, other):
        transitions_correct = self.transitions_correct + other.transitions_correct
        transitions_incorrect = self.transitions_incorrect + other.transitions_incorrect
        repairs_used = self.repairs_used + other.repairs_used
        fake_transitions_used = self.fake_transitions_used + other.fake_transitions_used
        epoch_loss = self.epoch_loss + other.epoch_loss
        nans = self.nans + other.nans
        return EpochStats(epoch_loss, transitions_correct, transitions_incorrect, repairs_used, fake_transitions_used, nans)


def iterate_training(args, trainer, train_trees, train_sequences, transitions, dev_trees, foundation_cache, model_save_each_filename, evaluator):
    """
    Given an initialized model, a processed dataset, and a secondary dev dataset, train the model

    The training is iterated in the following loop:
      extract a batch of trees of the same length from the training set
      convert those trees into initial parsing states
      repeat until trees are done:
        batch predict the model's interpretation of the current states
        add the errors to the list of things to backprop
        advance the parsing state for each of the trees
    """
    model = trainer.model

    # Somewhat unusual, but possibly related to the extreme variability in length of trees
    # Various experiments generally show about 0.5 F1 loss on various
    # datasets when using 'mean' instead of 'sum' for reduction
    # (Remember to adjust the weight decay when rerunning that experiment)
    model_loss_function = nn.CrossEntropyLoss(reduction='sum')
    if args['cuda']:
        model_loss_function.cuda()

    device = next(model.parameters()).device
    transition_tensors = {x: torch.tensor(y, requires_grad=False, device=device).unsqueeze(0)
                          for (y, x) in enumerate(model.transitions)}
    model.train()

    preterminal_lists = [[Tree(label=preterminal.label, children=Tree(label=preterminal.children[0].label))
                          for preterminal in tree.yield_preterminals()]
                         for tree in train_trees]
    train_data = [TrainItem(*x) for x in zip(train_trees, train_sequences, preterminal_lists)]

    if not args['epoch_size']:
        args['epoch_size'] = len(train_data)

    if args['multistage']:
        multistage_splits = {}
        # if we're halfway, only do pattn.  save lattn for next time
        multistage_splits[args['epochs'] // 2] = (args['pattn_num_layers'], False)
        if LSTMModel.uses_lattn(args):
            multistage_splits[args['epochs'] * 3 // 4] = (args['pattn_num_layers'], True)

    leftover_training_data = []
    best_f1 = 0.0
    best_epoch = 0
    # trainer.epochs_trained+1 so that if the trainer gets saved after 1 epoch, the epochs_trained is 1
    for trainer.epochs_trained in range(trainer.epochs_trained+1, args['epochs']+1):
        model.train()
        logger.info("Starting epoch %d", trainer.epochs_trained)
        if args['log_norms']:
            model.log_norms()
        epoch_data = leftover_training_data
        while len(epoch_data) < args['epoch_size']:
            random.shuffle(train_data)
            epoch_data.extend(train_data)
        leftover_training_data = epoch_data[args['epoch_size']:]
        epoch_data = epoch_data[:args['epoch_size']]
        epoch_data.sort(key=lambda x: len(x[1]))

        epoch_stats = train_model_one_epoch(trainer.epochs_trained, trainer, transition_tensors, model_loss_function, epoch_data, args)

        # print statistics
        f1 = run_dev_set(model, dev_trees, args, evaluator)
        if f1 > best_f1 or best_epoch == 0:
            # best_epoch == 0 to force a save of an initial model
            # useful for tests which expect something, even when a
            # very simple model didn't learn anything
            logger.info("New best dev score: %.5f > %.5f", f1, best_f1)
            best_f1 = f1
            best_epoch = trainer.epochs_trained
            trainer.save(args['save_name'], save_optimizer=False)
        if args['checkpoint'] and args['checkpoint_save_name']:
            trainer.save(args['checkpoint_save_name'], save_optimizer=True)
        if model_save_each_filename:
            trainer.save(model_save_each_filename % trainer.epochs_trained, save_optimizer=True)
        if epoch_stats.nans > 0:
            logger.warning("Had to ignore %d batches with NaN", epoch_stats.nans)
        logger.info("Epoch %d finished\n  Transitions correct: %s\n  Transitions incorrect: %s\n  Total loss for epoch: %.5f\n  Dev score      (%5d): %8f\n  Best dev score (%5d): %8f", trainer.epochs_trained, epoch_stats.transitions_correct, epoch_stats.transitions_incorrect, epoch_stats.epoch_loss, trainer.epochs_trained, f1, best_epoch, best_f1)

        if args['wandb']:
            wandb.log({'epoch_loss': epoch_stats.epoch_loss, 'dev_score': f1}, step=trainer.epochs_trained)
            if args['wandb_norm_regex']:
                watch_regex = re.compile(args['wandb_norm_regex'])
                for n, p in model.named_parameters():
                    if watch_regex.search(n):
                        wandb.log({n: torch.linalg.norm(p)})

        # don't redo the optimizer a second time if we're not changing the structure
        if args['multistage'] and trainer.epochs_trained in multistage_splits:
            # we may be loading a save model from an earlier epoch if the scores stopped increasing
            epochs_trained = trainer.epochs_trained

            stage_pattn_layers, stage_uses_lattn = multistage_splits[epochs_trained]

            # when loading the model, let the saved model determine whether it has pattn or lattn
            temp_args = dict(trainer.args)
            temp_args.pop('pattn_num_layers', None)
            temp_args.pop('lattn_d_proj', None)
            # overwriting the old trainer & model will hopefully free memory
            trainer = Trainer.load(args['save_name'], temp_args, load_optimizer=False, foundation_cache=foundation_cache)
            model = trainer.model
            logger.info("Finished stage at epoch %d.  Restarting optimizer", epochs_trained)
            logger.info("Previous best model was at epoch %d", trainer.epochs_trained)

            temp_args = dict(args)
            logger.info("Switching to a model with %d pattn layers and %slattn", stage_pattn_layers, "" if stage_uses_lattn else "NO ")
            temp_args['pattn_num_layers'] = stage_pattn_layers
            if not stage_uses_lattn:
                temp_args['lattn_d_proj'] = 0
            pt = foundation_cache.load_pretrain(args['wordvec_pretrain_file'])
            forward_charlm = foundation_cache.load_charlm(args['charlm_forward_file'])
            backward_charlm = foundation_cache.load_charlm(args['charlm_backward_file'])
            bert_model, bert_tokenizer = foundation_cache.load_bert(args['bert_model'])
            new_model = LSTMModel(pt, forward_charlm, backward_charlm, bert_model, bert_tokenizer, model.transitions, model.constituents, model.tags, model.delta_words, model.rare_words, model.root_labels, model.constituent_opens, model.unary_limit(), temp_args)
            if args['cuda']:
                new_model.cuda()
            new_model.copy_with_new_structure(model)

            optimizer = build_optimizer(temp_args, new_model, False)
            scheduler = build_scheduler(temp_args, optimizer)
            trainer = Trainer(temp_args, new_model, optimizer, scheduler, epochs_trained)
            add_grad_clipping(trainer, args['grad_clipping'])
            model = new_model

    return trainer

def train_model_one_epoch(epoch, trainer, transition_tensors, model_loss_function, epoch_data, args):
    interval_starts = list(range(0, len(epoch_data), args['train_batch_size']))
    random.shuffle(interval_starts)

    model = trainer.model
    optimizer = trainer.optimizer
    scheduler = trainer.scheduler

    epoch_stats = EpochStats(0.0, Counter(), Counter(), Counter(), 0, 0)

    for batch_idx, interval_start in enumerate(tqdm(interval_starts, postfix="Epoch %d" % epoch)):
        batch = epoch_data[interval_start:interval_start+args['train_batch_size']]
        batch_stats = train_model_one_batch(epoch, batch_idx, model, batch, transition_tensors, model_loss_function, args)

        # Early in the training, some trees will be degenerate in a
        # way that results in layers going up the tree amplifying the
        # weights until they overflow.  Generally that problem
        # resolves itself in a few iterations, so for now we just
        # ignore those batches, but report how often it happens
        if batch_stats.nans == 0:
            optimizer.step()
        optimizer.zero_grad()
        epoch_stats = epoch_stats + batch_stats


    old_lr = scheduler.get_last_lr()[0]
    scheduler.step()
    new_lr = scheduler.get_last_lr()[0]
    if old_lr != new_lr:
        logger.info("Updating learning rate from %f to %f", old_lr, new_lr)

    # TODO: refactor the logging?
    total_correct = sum(v for _, v in epoch_stats.transitions_correct.items())
    total_incorrect = sum(v for _, v in epoch_stats.transitions_incorrect.items())
    logger.info("Transitions correct: %d\n  %s", total_correct, str(epoch_stats.transitions_correct))
    logger.info("Transitions incorrect: %d\n  %s", total_incorrect, str(epoch_stats.transitions_incorrect))
    if len(epoch_stats.repairs_used) > 0:
        logger.info("Oracle repairs:\n  %s", epoch_stats.repairs_used)
    if epoch_stats.fake_transitions_used > 0:
        logger.info("Fake transitions used: %d", epoch_stats.fake_transitions_used)

    return epoch_stats

def train_model_one_batch(epoch, batch_idx, model, batch, transition_tensors, model_loss_function, args):
    """
    Train the model for one batch

    The model itself will be updated, and a bunch of stats are returned
    It is unclear if this refactoring is useful in any way.  Might not be

    ... although the indentation does get pretty ridiculous if this is
    merged into train_model_one_epoch and then iterate_training
    """
    # now we add the state to the trees in the batch
    # the state is build as a bulk operation
    initial_states = parse_transitions.initial_state_from_preterminals([x.preterminals for x in batch], model, [x.tree for x in batch])
    batch = [state._replace(gold_sequence=sequence)
             for (tree, sequence, _), state in zip(batch, initial_states)]

    transitions_correct = Counter()
    transitions_incorrect = Counter()
    repairs_used = Counter()
    fake_transitions_used = 0

    all_errors = []
    all_answers = []

    # we iterate through the batch in the following sequence:
    # predict the logits and the applied transition for each tree in the batch
    # collect errors
    #  - we always train to the desired one-hot vector
    #    this was a noticeable improvement over training just the
    #    incorrect transitions
    # determine whether the training can continue using the "student" transition
    #   or if we need to use teacher forcing
    # update all states using either the gold or predicted transition
    # any trees which are now finished are removed from the training cycle
    while len(batch) > 0:
        outputs, pred_transitions = model.predict(batch, is_legal=False)
        gold_transitions = [x.gold_sequence[x.num_transitions()] for x in batch]
        trans_tensor = [transition_tensors[gold_transition] for gold_transition in gold_transitions]
        all_errors.append(outputs)
        all_answers.extend(trans_tensor)

        new_batch = []
        update_transitions = []
        for pred_transition, gold_transition, state in zip(pred_transitions, gold_transitions, batch):
            if pred_transition == gold_transition:
                transitions_correct[gold_transition.short_name()] += 1
                if state.num_transitions() + 1 < len(state.gold_sequence):
                    if args['transition_scheme'] is TransitionScheme.IN_ORDER and random.random() < args['oracle_forced_errors']:
                        fake_transition = random.choice(model.transitions)
                        if fake_transition.is_legal(state, model):
                            _, new_sequence = oracle_inorder_error(gold_transition, fake_transition, state.gold_sequence, state.num_transitions(), model.get_root_labels())
                            if new_sequence is not None:
                                new_batch.append(state._replace(gold_sequence=new_sequence))
                                update_transitions.append(fake_transition)
                                fake_transitions_used = fake_transitions_used + 1
                                continue
                    new_batch.append(state)
                    update_transitions.append(gold_transition)
                continue

            transitions_incorrect[gold_transition.short_name(), pred_transition.short_name()] += 1
            # if we are on the final operation, there are two choices:
            #   - the parsing mode is IN_ORDER, and the final transition
            #     is the close to end the sequence, which has no alternatives
            #   - the parsing mode is something else, in which case
            #     we have no oracle anyway
            if state.num_transitions() + 1 >= len(state.gold_sequence):
                continue

            if epoch < args['oracle_initial_epoch'] or not pred_transition.is_legal(state, model) or args['transition_scheme'] is not TransitionScheme.IN_ORDER:
                new_batch.append(state)
                update_transitions.append(gold_transition)
                continue

            repair_type, new_sequence = oracle_inorder_error(gold_transition, pred_transition, state.gold_sequence, state.num_transitions(), model.get_root_labels())
            # we can only reach here on an error
            assert repair_type != RepairType.CORRECT
            repairs_used[repair_type] += 1
            if new_sequence is not None and random.random() < args['oracle_frequency']:
                new_batch.append(state._replace(gold_sequence=new_sequence))
                update_transitions.append(pred_transition)
            else:
                new_batch.append(state)
                update_transitions.append(gold_transition)

        if len(batch) > 0:
            # bulk update states - significantly faster
            batch = parse_transitions.bulk_apply(model, new_batch, update_transitions, fail=True)

    errors = torch.cat(all_errors)
    answers = torch.cat(all_answers)

    tree_loss = model_loss_function(errors, answers)
    tree_loss.backward()
    if args['watch_regex']:
        matched = False
        logger.info("Watching %s   ... epoch %d batch %d", args['watch_regex'], epoch, batch_idx)
        watch_regex = re.compile(args['watch_regex'])
        for n, p in model.named_parameters():
            if watch_regex.search(n):
                matched = True
                logger.info("  %s norm: %f grad: %f", n, torch.linalg.norm(p), torch.linalg.norm(p.grad))
        if not matched:
            logger.info("  (none found!)")
    if torch.any(torch.isnan(tree_loss)):
        batch_loss = 0.0
        nans = 1
    else:
        batch_loss = tree_loss.item()
        nans = 0

    return EpochStats(batch_loss, transitions_correct, transitions_incorrect, repairs_used, fake_transitions_used, nans)

def build_batch_from_trees(batch_size, data_iterator, model):
    """
    Read from the data_iterator batch_size trees and turn them into new parsing states
    """
    tree_batch = []
    for _ in range(batch_size):
        gold_tree = next(data_iterator, None)
        if gold_tree is None:
            break
        tree_batch.append(gold_tree)

    if len(tree_batch) > 0:
        tree_batch = parse_transitions.initial_state_from_gold_trees(tree_batch, model)
    return tree_batch

def build_batch_from_tagged_words(batch_size, data_iterator, model):
    """
    Read from the data_iterator batch_size tagged sentences and turn them into new parsing states
    """
    tree_batch = []
    for _ in range(batch_size):
        sentence = next(data_iterator, None)
        if sentence is None:
            break
        tree_batch.append(sentence)

    if len(tree_batch) > 0:
        tree_batch = parse_transitions.initial_state_from_words(tree_batch, model)
    return tree_batch

ParseResult = namedtuple("ParseResult", ['gold', 'predictions'])
ParsePrediction = namedtuple("ParsePrediction", ['tree', 'score'])

@torch.no_grad()
def parse_sentences(data_iterator, build_batch_fn, batch_size, model, best=True):
    """
    Given an iterator over the data and a method for building batches, returns a bunch of parse trees.

    The data_iterator should be anything which returns the data for a parse task via next()
    build_batch_fn is a function that turns that data into State objects
    This will be called to generate batches of size batch_size until the data is exhausted

    The return is a list of tuples: (gold_tree, [(predicted, score) ...])
    gold_tree will be left blank if the data did not include gold trees
    currently score is always 1.0, but the interface may be expanded
    to get a score from the result of the parsing

    no_grad() is so that gradients aren't kept, which makes the model
    run faster and use less memory at inference time
    """
    treebank = []
    treebank_indices = []
    tree_batch = build_batch_fn(batch_size, data_iterator, model)
    batch_indices = list(range(len(tree_batch)))
    horizon_iterator = iter([])

    if best:
        predict = model.predict
    else:
        predict = model.weighted_choice

    while len(tree_batch) > 0:
        _, transitions = predict(tree_batch)
        tree_batch = parse_transitions.bulk_apply(model, tree_batch, transitions)

        remove = set()
        for idx, tree in enumerate(tree_batch):
            if tree.finished(model):
                predicted_tree = tree.get_tree(model)
                gold_tree = tree.gold_tree
                # TODO: put an actual score here?
                treebank.append(ParseResult(gold_tree, [ParsePrediction(predicted_tree, 1.0)]))
                treebank_indices.append(batch_indices[idx])
                remove.add(idx)

        if len(remove) > 0:
            tree_batch = [tree for idx, tree in enumerate(tree_batch) if idx not in remove]
            batch_indices = [batch_idx for idx, batch_idx in enumerate(batch_indices) if idx not in remove]

        for _ in range(batch_size - len(tree_batch)):
            horizon_tree = next(horizon_iterator, None)
            if not horizon_tree:
                horizon_batch = build_batch_fn(batch_size, data_iterator, model)
                if len(horizon_batch) == 0:
                    break
                horizon_iterator = iter(horizon_batch)
                horizon_tree = next(horizon_iterator, None)

            tree_batch.append(horizon_tree)
            batch_indices.append(len(treebank) + len(tree_batch))

    treebank = utils.unsort(treebank, treebank_indices)
    return treebank

def parse_tagged_words(model, words, batch_size):
    """
    This parses tagged words and returns a list of trees.

    The tagged words should be represented:
      one list per sentence
        each sentence is a list of (word, tag)
    The return value is a list of ParseTree objects
    """
    logger.debug("Processing %d sentences", len(words))
    model.eval()

    sentence_iterator = iter(words)
    treebank = parse_sentences(sentence_iterator, build_batch_from_tagged_words, batch_size, model)

    results = [t.predictions[0].tree for t in treebank]
    return results

def run_dev_set(model, dev_trees, args, evaluator=None):
    """
    This reparses a treebank and executes the CoreNLP Java EvalB code.

    It only works if CoreNLP 4.3.0 or higher is in the classpath.
    """
    logger.info("Processing %d trees from %s", len(dev_trees), args['eval_file'])
    model.eval()

    tree_iterator = iter(tqdm(dev_trees))
    treebank = parse_sentences(tree_iterator, build_batch_from_trees, args['eval_batch_size'], model)
    full_results = treebank

    if args['num_generate'] > 0:
        logger.info("Generating %d random analyses", args['num_generate'])
        generated_treebanks = [treebank]
        for i in tqdm(range(args['num_generate'])):
            tree_iterator = iter(tqdm(dev_trees, leave=False, postfix="tb%03d" % i))
            generated_treebanks.append(parse_sentences(tree_iterator, build_batch_from_trees, args['eval_batch_size'], model, best=False))

        full_results = [ParseResult(parses[0].gold, [p.predictions[0] for p in parses])
                        for parses in zip(*generated_treebanks)]

    if len(treebank) < len(dev_trees):
        logger.warning("Only evaluating %d trees instead of %d", len(treebank), len(dev_trees))

    if args['mode'] == 'predict' and args['predict_file']:
        utils.ensure_dir(args['predict_dir'], verbose=False)
        pred_file = os.path.join(args['predict_dir'], args['predict_file'] + ".pred.mrg")
        orig_file = os.path.join(args['predict_dir'], args['predict_file'] + ".orig.mrg")
        if os.path.exists(pred_file):
            logger.warning("Cowardly refusing to overwrite {}".format(pred_file))
        elif os.path.exists(orig_file):
            logger.warning("Cowardly refusing to overwrite {}".format(orig_file))
        else:
            with open(pred_file, 'w') as fout:
                for tree in treebank:
                    fout.write("{:_O}".format(tree.predictions[0].tree))
                    fout.write("\n")

            for i in range(args['num_generate']):
                pred_file = os.path.join(args['predict_dir'], args['predict_file'] + ".%03d.pred.mrg" % i)
                with open(pred_file, 'w') as fout:
                    for tree in generated_treebanks[i+1]:
                        fout.write("{:_O}".format(tree.predictions[0].tree))
                        fout.write("\n")

            with open(orig_file, 'w') as fout:
                for tree in treebank:
                    fout.write("{:_O}".format(tree.gold))
                    fout.write("\n")

    if len(full_results) == 0:
        return 0.0
    if evaluator is None:
        if args['num_generate'] > 0:
            kbest = max(len(fr.predictions) for fr in full_results)
        else:
            kbest = None
        with EvaluateParser(kbest=kbest) as evaluator:
            response = evaluator.process(full_results)
    else:
        response = evaluator.process(full_results)

    return response.f1