Welcome to mirror list, hosted at ThFree Co, Russian Federation.

conll18_ud_eval.py « utils « stanza - github.com/stanfordnlp/stanza.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 31148929f0f8ee76cfce72541f03b23ad4d47f60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#!/usr/bin/env python3

# Compatible with Python 2.7 and 3.2+, can be used either as a module
# or a standalone executable.
#
# Copyright 2017, 2018 Institute of Formal and Applied Linguistics (UFAL),
# Faculty of Mathematics and Physics, Charles University, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
# Authors: Milan Straka, Martin Popel <surname@ufal.mff.cuni.cz>
#
# Changelog:
# - [12 Apr 2018] Version 0.9: Initial release.
# - [19 Apr 2018] Version 1.0: Fix bug in MLAS (duplicate entries in functional_children).
#                              Add --counts option.
# - [02 May 2018] Version 1.1: When removing spaces to match gold and system characters,
#                              consider all Unicode characters of category Zs instead of
#                              just ASCII space.
# - [25 Jun 2018] Version 1.2: Use python3 in the she-bang (instead of python).
#                              In Python2, make the whole computation use `unicode` strings.

# Command line usage
# ------------------
# conll18_ud_eval.py [-v] gold_conllu_file system_conllu_file
#
# - if no -v is given, only the official CoNLL18 UD Shared Task evaluation metrics
#   are printed
# - if -v is given, more metrics are printed (as precision, recall, F1 score,
#   and in case the metric is computed on aligned words also accuracy on these):
#   - Tokens: how well do the gold tokens match system tokens
#   - Sentences: how well do the gold sentences match system sentences
#   - Words: how well can the gold words be aligned to system words
#   - UPOS: using aligned words, how well does UPOS match
#   - XPOS: using aligned words, how well does XPOS match
#   - UFeats: using aligned words, how well does universal FEATS match
#   - AllTags: using aligned words, how well does UPOS+XPOS+FEATS match
#   - Lemmas: using aligned words, how well does LEMMA match
#   - UAS: using aligned words, how well does HEAD match
#   - LAS: using aligned words, how well does HEAD+DEPREL(ignoring subtypes) match
#   - CLAS: using aligned words with content DEPREL, how well does
#       HEAD+DEPREL(ignoring subtypes) match
#   - MLAS: using aligned words with content DEPREL, how well does
#       HEAD+DEPREL(ignoring subtypes)+UPOS+UFEATS+FunctionalChildren(DEPREL+UPOS+UFEATS) match
#   - BLEX: using aligned words with content DEPREL, how well does
#       HEAD+DEPREL(ignoring subtypes)+LEMMAS match
# - if -c is given, raw counts of correct/gold_total/system_total/aligned words are printed
#   instead of precision/recall/F1/AlignedAccuracy for all metrics.

# API usage
# ---------
# - load_conllu(file)
#   - loads CoNLL-U file from given file object to an internal representation
#   - the file object should return str in both Python 2 and Python 3
#   - raises UDError exception if the given file cannot be loaded
# - evaluate(gold_ud, system_ud)
#   - evaluate the given gold and system CoNLL-U files (loaded with load_conllu)
#   - raises UDError if the concatenated tokens of gold and system file do not match
#   - returns a dictionary with the metrics described above, each metric having
#     three fields: precision, recall and f1

# Description of token matching
# -----------------------------
# In order to match tokens of gold file and system file, we consider the text
# resulting from concatenation of gold tokens and text resulting from
# concatenation of system tokens. These texts should match -- if they do not,
# the evaluation fails.
#
# If the texts do match, every token is represented as a range in this original
# text, and tokens are equal only if their range is the same.

# Description of word matching
# ----------------------------
# When matching words of gold file and system file, we first match the tokens.
# The words which are also tokens are matched as tokens, but words in multi-word
# tokens have to be handled differently.
#
# To handle multi-word tokens, we start by finding "multi-word spans".
# Multi-word span is a span in the original text such that
# - it contains at least one multi-word token
# - all multi-word tokens in the span (considering both gold and system ones)
#   are completely inside the span (i.e., they do not "stick out")
# - the multi-word span is as small as possible
#
# For every multi-word span, we align the gold and system words completely
# inside this span using LCS on their FORMs. The words not intersecting
# (even partially) any multi-word span are then aligned as tokens.


from __future__ import division
from __future__ import print_function

import argparse
import io
import sys
import unicodedata
import unittest

# CoNLL-U column names
ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10)

# Content and functional relations
CONTENT_DEPRELS = {
    "nsubj", "obj", "iobj", "csubj", "ccomp", "xcomp", "obl", "vocative",
    "expl", "dislocated", "advcl", "advmod", "discourse", "nmod", "appos",
    "nummod", "acl", "amod", "conj", "fixed", "flat", "compound", "list",
    "parataxis", "orphan", "goeswith", "reparandum", "root", "dep"
}

FUNCTIONAL_DEPRELS = {
    "aux", "cop", "mark", "det", "clf", "case", "cc"
}

UNIVERSAL_FEATURES = {
    "PronType", "NumType", "Poss", "Reflex", "Foreign", "Abbr", "Gender",
    "Animacy", "Number", "Case", "Definite", "Degree", "VerbForm", "Mood",
    "Tense", "Aspect", "Voice", "Evident", "Polarity", "Person", "Polite"
}

# UD Error is used when raising exceptions in this module
class UDError(Exception):
    pass

# Conversion methods handling `str` <-> `unicode` conversions in Python2
def _decode(text):
    return text if sys.version_info[0] >= 3 or not isinstance(text, str) else text.decode("utf-8")

def _encode(text):
    return text if sys.version_info[0] >= 3 or not isinstance(text, unicode) else text.encode("utf-8")

# Load given CoNLL-U file into internal representation
def load_conllu(file):
    # Internal representation classes
    class UDRepresentation:
        def __init__(self):
            # Characters of all the tokens in the whole file.
            # Whitespace between tokens is not included.
            self.characters = []
            # List of UDSpan instances with start&end indices into `characters`.
            self.tokens = []
            # List of UDWord instances.
            self.words = []
            # List of UDSpan instances with start&end indices into `characters`.
            self.sentences = []
    class UDSpan:
        def __init__(self, start, end):
            self.start = start
            # Note that self.end marks the first position **after the end** of span,
            # so we can use characters[start:end] or range(start, end).
            self.end = end
    class UDWord:
        def __init__(self, span, columns, is_multiword):
            # Span of this word (or MWT, see below) within ud_representation.characters.
            self.span = span
            # 10 columns of the CoNLL-U file: ID, FORM, LEMMA,...
            self.columns = columns
            # is_multiword==True means that this word is part of a multi-word token.
            # In that case, self.span marks the span of the whole multi-word token.
            self.is_multiword = is_multiword
            # Reference to the UDWord instance representing the HEAD (or None if root).
            self.parent = None
            # List of references to UDWord instances representing functional-deprel children.
            self.functional_children = []
            # Only consider universal FEATS.
            self.columns[FEATS] = "|".join(sorted(feat for feat in columns[FEATS].split("|")
                                                  if feat.split("=", 1)[0] in UNIVERSAL_FEATURES))
            # Let's ignore language-specific deprel subtypes.
            self.columns[DEPREL] = columns[DEPREL].split(":")[0]
            # Precompute which deprels are CONTENT_DEPRELS and which FUNCTIONAL_DEPRELS
            self.is_content_deprel = self.columns[DEPREL] in CONTENT_DEPRELS
            self.is_functional_deprel = self.columns[DEPREL] in FUNCTIONAL_DEPRELS

    ud = UDRepresentation()

    # Load the CoNLL-U file
    index, sentence_start = 0, None
    while True:
        line = file.readline()
        if not line:
            break
        line = _decode(line.rstrip("\r\n"))

        # Handle sentence start boundaries
        if sentence_start is None:
            # Skip comments
            if line.startswith("#"):
                continue
            # Start a new sentence
            ud.sentences.append(UDSpan(index, 0))
            sentence_start = len(ud.words)
        if not line:
            # Add parent and children UDWord links and check there are no cycles
            def process_word(word):
                if word.parent == "remapping":
                    raise UDError("There is a cycle in a sentence")
                if word.parent is None:
                    head = int(word.columns[HEAD])
                    if head < 0 or head > len(ud.words) - sentence_start:
                        raise UDError("HEAD '{}' points outside of the sentence".format(_encode(word.columns[HEAD])))
                    if head:
                        parent = ud.words[sentence_start + head - 1]
                        word.parent = "remapping"
                        process_word(parent)
                        word.parent = parent

            for word in ud.words[sentence_start:]:
                process_word(word)
            # func_children cannot be assigned within process_word
            # because it is called recursively and may result in adding one child twice.
            for word in ud.words[sentence_start:]:
                if word.parent and word.is_functional_deprel:
                    word.parent.functional_children.append(word)

            # Check there is a single root node
            if sentence_start < len(ud.words) and len([word for word in ud.words[sentence_start:] if word.parent is None]) != 1:
                raise UDError("There are multiple roots in a sentence")

            # End the sentence
            ud.sentences[-1].end = index
            sentence_start = None
            continue

        # Read next token/word
        columns = line.split("\t")
        if len(columns) != 10:
            raise UDError("The CoNLL-U line does not contain 10 tab-separated columns: '{}'".format(_encode(line)))

        # Skip empty nodes
        if "." in columns[ID]:
            continue

        # Delete spaces from FORM, so gold.characters == system.characters
        # even if one of them tokenizes the space. Use any Unicode character
        # with category Zs.
        columns[FORM] = "".join(filter(lambda c: unicodedata.category(c) != "Zs", columns[FORM]))
        if not columns[FORM]:
            raise UDError("There is an empty FORM in the CoNLL-U file")

        # Save token
        ud.characters.extend(columns[FORM])
        ud.tokens.append(UDSpan(index, index + len(columns[FORM])))
        index += len(columns[FORM])

        # Handle multi-word tokens to save word(s)
        if "-" in columns[ID]:
            try:
                start, end = map(int, columns[ID].split("-"))
            except:
                raise UDError("Cannot parse multi-word token ID '{}'".format(_encode(columns[ID])))

            for _ in range(start, end + 1):
                word_line = _decode(file.readline().rstrip("\r\n"))
                word_columns = word_line.split("\t")
                if len(word_columns) != 10:
                    raise UDError("The CoNLL-U line does not contain 10 tab-separated columns: '{}'".format(_encode(word_line)))
                ud.words.append(UDWord(ud.tokens[-1], word_columns, is_multiword=True))
        # Basic tokens/words
        else:
            try:
                word_id = int(columns[ID])
            except:
                raise UDError("Cannot parse word ID '{}'".format(_encode(columns[ID])))
            if word_id != len(ud.words) - sentence_start + 1:
                raise UDError("Incorrect word ID '{}' for word '{}', expected '{}'".format(
                    _encode(columns[ID]), _encode(columns[FORM]), len(ud.words) - sentence_start + 1))

            try:
                head_id = int(columns[HEAD])
            except:
                raise UDError("Cannot parse HEAD '{}'".format(_encode(columns[HEAD])))
            if head_id < 0:
                raise UDError("HEAD cannot be negative")

            ud.words.append(UDWord(ud.tokens[-1], columns, is_multiword=False))

    if sentence_start is not None:
        raise UDError("The CoNLL-U file does not end with empty line")

    return ud

# Evaluate the gold and system treebanks (loaded using load_conllu).
def evaluate(gold_ud, system_ud):
    class Score:
        def __init__(self, gold_total, system_total, correct, aligned_total=None):
            self.correct = correct
            self.gold_total = gold_total
            self.system_total = system_total
            self.aligned_total = aligned_total
            self.precision = correct / system_total if system_total else 0.0
            self.recall = correct / gold_total if gold_total else 0.0
            self.f1 = 2 * correct / (system_total + gold_total) if system_total + gold_total else 0.0
            self.aligned_accuracy = correct / aligned_total if aligned_total else aligned_total
    class AlignmentWord:
        def __init__(self, gold_word, system_word):
            self.gold_word = gold_word
            self.system_word = system_word
    class Alignment:
        def __init__(self, gold_words, system_words):
            self.gold_words = gold_words
            self.system_words = system_words
            self.matched_words = []
            self.matched_words_map = {}
        def append_aligned_words(self, gold_word, system_word):
            self.matched_words.append(AlignmentWord(gold_word, system_word))
            self.matched_words_map[system_word] = gold_word

    def spans_score(gold_spans, system_spans):
        correct, gi, si = 0, 0, 0
        while gi < len(gold_spans) and si < len(system_spans):
            if system_spans[si].start < gold_spans[gi].start:
                si += 1
            elif gold_spans[gi].start < system_spans[si].start:
                gi += 1
            else:
                correct += gold_spans[gi].end == system_spans[si].end
                si += 1
                gi += 1

        return Score(len(gold_spans), len(system_spans), correct)

    def alignment_score(alignment, key_fn=None, filter_fn=None):
        if filter_fn is not None:
            gold = sum(1 for gold in alignment.gold_words if filter_fn(gold))
            system = sum(1 for system in alignment.system_words if filter_fn(system))
            aligned = sum(1 for word in alignment.matched_words if filter_fn(word.gold_word))
        else:
            gold = len(alignment.gold_words)
            system = len(alignment.system_words)
            aligned = len(alignment.matched_words)

        if key_fn is None:
            # Return score for whole aligned words
            return Score(gold, system, aligned)

        def gold_aligned_gold(word):
            return word
        def gold_aligned_system(word):
            return alignment.matched_words_map.get(word, "NotAligned") if word is not None else None
        correct = 0
        for words in alignment.matched_words:
            if filter_fn is None or filter_fn(words.gold_word):
                if key_fn(words.gold_word, gold_aligned_gold) == key_fn(words.system_word, gold_aligned_system):
                    correct += 1

        return Score(gold, system, correct, aligned)

    def beyond_end(words, i, multiword_span_end):
        if i >= len(words):
            return True
        if words[i].is_multiword:
            return words[i].span.start >= multiword_span_end
        return words[i].span.end > multiword_span_end

    def extend_end(word, multiword_span_end):
        if word.is_multiword and word.span.end > multiword_span_end:
            return word.span.end
        return multiword_span_end

    def find_multiword_span(gold_words, system_words, gi, si):
        # We know gold_words[gi].is_multiword or system_words[si].is_multiword.
        # Find the start of the multiword span (gs, ss), so the multiword span is minimal.
        # Initialize multiword_span_end characters index.
        if gold_words[gi].is_multiword:
            multiword_span_end = gold_words[gi].span.end
            if not system_words[si].is_multiword and system_words[si].span.start < gold_words[gi].span.start:
                si += 1
        else: # if system_words[si].is_multiword
            multiword_span_end = system_words[si].span.end
            if not gold_words[gi].is_multiword and gold_words[gi].span.start < system_words[si].span.start:
                gi += 1
        gs, ss = gi, si

        # Find the end of the multiword span
        # (so both gi and si are pointing to the word following the multiword span end).
        while not beyond_end(gold_words, gi, multiword_span_end) or \
              not beyond_end(system_words, si, multiword_span_end):
            if gi < len(gold_words) and (si >= len(system_words) or
                                         gold_words[gi].span.start <= system_words[si].span.start):
                multiword_span_end = extend_end(gold_words[gi], multiword_span_end)
                gi += 1
            else:
                multiword_span_end = extend_end(system_words[si], multiword_span_end)
                si += 1
        return gs, ss, gi, si

    def compute_lcs(gold_words, system_words, gi, si, gs, ss):
        lcs = [[0] * (si - ss) for i in range(gi - gs)]
        for g in reversed(range(gi - gs)):
            for s in reversed(range(si - ss)):
                if gold_words[gs + g].columns[FORM].lower() == system_words[ss + s].columns[FORM].lower():
                    lcs[g][s] = 1 + (lcs[g+1][s+1] if g+1 < gi-gs and s+1 < si-ss else 0)
                lcs[g][s] = max(lcs[g][s], lcs[g+1][s] if g+1 < gi-gs else 0)
                lcs[g][s] = max(lcs[g][s], lcs[g][s+1] if s+1 < si-ss else 0)
        return lcs

    def align_words(gold_words, system_words):
        alignment = Alignment(gold_words, system_words)

        gi, si = 0, 0
        while gi < len(gold_words) and si < len(system_words):
            if gold_words[gi].is_multiword or system_words[si].is_multiword:
                # A: Multi-word tokens => align via LCS within the whole "multiword span".
                gs, ss, gi, si = find_multiword_span(gold_words, system_words, gi, si)

                if si > ss and gi > gs:
                    lcs = compute_lcs(gold_words, system_words, gi, si, gs, ss)

                    # Store aligned words
                    s, g = 0, 0
                    while g < gi - gs and s < si - ss:
                        if gold_words[gs + g].columns[FORM].lower() == system_words[ss + s].columns[FORM].lower():
                            alignment.append_aligned_words(gold_words[gs+g], system_words[ss+s])
                            g += 1
                            s += 1
                        elif lcs[g][s] == (lcs[g+1][s] if g+1 < gi-gs else 0):
                            g += 1
                        else:
                            s += 1
            else:
                # B: No multi-word token => align according to spans.
                if (gold_words[gi].span.start, gold_words[gi].span.end) == (system_words[si].span.start, system_words[si].span.end):
                    alignment.append_aligned_words(gold_words[gi], system_words[si])
                    gi += 1
                    si += 1
                elif gold_words[gi].span.start <= system_words[si].span.start:
                    gi += 1
                else:
                    si += 1

        return alignment

    # Check that the underlying character sequences do match.
    if gold_ud.characters != system_ud.characters:
        index = 0
        while index < len(gold_ud.characters) and index < len(system_ud.characters) and \
                gold_ud.characters[index] == system_ud.characters[index]:
            index += 1

        raise UDError(
            "The concatenation of tokens in gold file and in system file differ!\n" +
            "First 20 differing characters in gold file: '{}' and system file: '{}'".format(
                "".join(map(_encode, gold_ud.characters[index:index + 20])),
                "".join(map(_encode, system_ud.characters[index:index + 20]))
            )
        )

    # Align words
    alignment = align_words(gold_ud.words, system_ud.words)

    # Compute the F1-scores
    return {
        "Tokens": spans_score(gold_ud.tokens, system_ud.tokens),
        "Sentences": spans_score(gold_ud.sentences, system_ud.sentences),
        "Words": alignment_score(alignment),
        "UPOS": alignment_score(alignment, lambda w, _: w.columns[UPOS]),
        "XPOS": alignment_score(alignment, lambda w, _: w.columns[XPOS]),
        "UFeats": alignment_score(alignment, lambda w, _: w.columns[FEATS]),
        "AllTags": alignment_score(alignment, lambda w, _: (w.columns[UPOS], w.columns[XPOS], w.columns[FEATS])),
        "Lemmas": alignment_score(alignment, lambda w, ga: w.columns[LEMMA] if ga(w).columns[LEMMA] != "_" else "_"),
        "UAS": alignment_score(alignment, lambda w, ga: ga(w.parent)),
        "LAS": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL])),
        "CLAS": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL]),
                                filter_fn=lambda w: w.is_content_deprel),
        "MLAS": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL], w.columns[UPOS], w.columns[FEATS],
                                                         [(ga(c), c.columns[DEPREL], c.columns[UPOS], c.columns[FEATS])
                                                          for c in w.functional_children]),
                                filter_fn=lambda w: w.is_content_deprel),
        "BLEX": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL],
                                                          w.columns[LEMMA] if ga(w).columns[LEMMA] != "_" else "_"),
                                filter_fn=lambda w: w.is_content_deprel),
    }


def load_conllu_file(path):
    _file = open(path, mode="r", **({"encoding": "utf-8"} if sys.version_info >= (3, 0) else {}))
    return load_conllu(_file)

def evaluate_wrapper(args):
    # Load CoNLL-U files
    gold_ud = load_conllu_file(args.gold_file)
    system_ud = load_conllu_file(args.system_file)
    return evaluate(gold_ud, system_ud)

def main():
    # Parse arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("gold_file", type=str,
                        help="Name of the CoNLL-U file with the gold data.")
    parser.add_argument("system_file", type=str,
                        help="Name of the CoNLL-U file with the predicted data.")
    parser.add_argument("--verbose", "-v", default=False, action="store_true",
                        help="Print all metrics.")
    parser.add_argument("--counts", "-c", default=False, action="store_true",
                        help="Print raw counts of correct/gold/system/aligned words instead of prec/rec/F1 for all metrics.")
    args = parser.parse_args()

    # Evaluate
    evaluation = evaluate_wrapper(args)

    # Print the evaluation
    if not args.verbose and not args.counts:
        print("LAS F1 Score: {:.2f}".format(100 * evaluation["LAS"].f1))
        print("MLAS Score: {:.2f}".format(100 * evaluation["MLAS"].f1))
        print("BLEX Score: {:.2f}".format(100 * evaluation["BLEX"].f1))
    else:
        if args.counts:
            print("Metric     | Correct   |      Gold | Predicted | Aligned")
        else:
            print("Metric     | Precision |    Recall |  F1 Score | AligndAcc")
        print("-----------+-----------+-----------+-----------+-----------")
        for metric in["Tokens", "Sentences", "Words", "UPOS", "XPOS", "UFeats", "AllTags", "Lemmas", "UAS", "LAS", "CLAS", "MLAS", "BLEX"]:
            if args.counts:
                print("{:11}|{:10} |{:10} |{:10} |{:10}".format(
                    metric,
                    evaluation[metric].correct,
                    evaluation[metric].gold_total,
                    evaluation[metric].system_total,
                    evaluation[metric].aligned_total or (evaluation[metric].correct if metric == "Words" else "")
                ))
            else:
                print("{:11}|{:10.2f} |{:10.2f} |{:10.2f} |{}".format(
                    metric,
                    100 * evaluation[metric].precision,
                    100 * evaluation[metric].recall,
                    100 * evaluation[metric].f1,
                    "{:10.2f}".format(100 * evaluation[metric].aligned_accuracy) if evaluation[metric].aligned_accuracy is not None else ""
                ))

if __name__ == "__main__":
    main()

# Tests, which can be executed with `python -m unittest conll18_ud_eval`.
class TestAlignment(unittest.TestCase):
    @staticmethod
    def _load_words(words):
        """Prepare fake CoNLL-U files with fake HEAD to prevent multiple roots errors."""
        lines, num_words = [], 0
        for w in words:
            parts = w.split(" ")
            if len(parts) == 1:
                num_words += 1
                lines.append("{}\t{}\t_\t_\t_\t_\t{}\t_\t_\t_".format(num_words, parts[0], int(num_words>1)))
            else:
                lines.append("{}-{}\t{}\t_\t_\t_\t_\t_\t_\t_\t_".format(num_words + 1, num_words + len(parts) - 1, parts[0]))
                for part in parts[1:]:
                    num_words += 1
                    lines.append("{}\t{}\t_\t_\t_\t_\t{}\t_\t_\t_".format(num_words, part, int(num_words>1)))
        return load_conllu((io.StringIO if sys.version_info >= (3, 0) else io.BytesIO)("\n".join(lines+["\n"])))

    def _test_exception(self, gold, system):
        self.assertRaises(UDError, evaluate, self._load_words(gold), self._load_words(system))

    def _test_ok(self, gold, system, correct):
        metrics = evaluate(self._load_words(gold), self._load_words(system))
        gold_words = sum((max(1, len(word.split(" ")) - 1) for word in gold))
        system_words = sum((max(1, len(word.split(" ")) - 1) for word in system))
        self.assertEqual((metrics["Words"].precision, metrics["Words"].recall, metrics["Words"].f1),
                         (correct / system_words, correct / gold_words, 2 * correct / (gold_words + system_words)))

    def test_exception(self):
        self._test_exception(["a"], ["b"])

    def test_equal(self):
        self._test_ok(["a"], ["a"], 1)
        self._test_ok(["a", "b", "c"], ["a", "b", "c"], 3)

    def test_equal_with_multiword(self):
        self._test_ok(["abc a b c"], ["a", "b", "c"], 3)
        self._test_ok(["a", "bc b c", "d"], ["a", "b", "c", "d"], 4)
        self._test_ok(["abcd a b c d"], ["ab a b", "cd c d"], 4)
        self._test_ok(["abc a b c", "de d e"], ["a", "bcd b c d", "e"], 5)

    def test_alignment(self):
        self._test_ok(["abcd"], ["a", "b", "c", "d"], 0)
        self._test_ok(["abc", "d"], ["a", "b", "c", "d"], 1)
        self._test_ok(["a", "bc", "d"], ["a", "b", "c", "d"], 2)
        self._test_ok(["a", "bc b c", "d"], ["a", "b", "cd"], 2)
        self._test_ok(["abc a BX c", "def d EX f"], ["ab a b", "cd c d", "ef e f"], 4)
        self._test_ok(["ab a b", "cd bc d"], ["a", "bc", "d"], 2)
        self._test_ok(["a", "bc b c", "d"], ["ab AX BX", "cd CX a"], 1)