Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorbubnikv <bubnikv@gmail.com>2016-09-13 12:26:38 +0300
committerbubnikv <bubnikv@gmail.com>2016-09-13 12:26:38 +0300
commita5b7f14dfa291039fd6971a356efd011fab84440 (patch)
tree5c461348757c237b6ff0aaab845726816c3b3358 /xs/src/libslic3r/Fill/FillRectilinear2.cpp
parentb2a6f439234e691421e74cdf7ff2b16e3c7a59d3 (diff)
Updates in the C++ infill code.
Diffstat (limited to 'xs/src/libslic3r/Fill/FillRectilinear2.cpp')
-rw-r--r--xs/src/libslic3r/Fill/FillRectilinear2.cpp592
1 files changed, 413 insertions, 179 deletions
diff --git a/xs/src/libslic3r/Fill/FillRectilinear2.cpp b/xs/src/libslic3r/Fill/FillRectilinear2.cpp
index 40905de0d..4e741ab08 100644
--- a/xs/src/libslic3r/Fill/FillRectilinear2.cpp
+++ b/xs/src/libslic3r/Fill/FillRectilinear2.cpp
@@ -1,4 +1,5 @@
#include <assert.h>
+#include <stdlib.h>
#include <stdint.h>
#include <algorithm>
@@ -13,28 +14,14 @@
#include "FillRectilinear2.hpp"
+#define SLIC3R_DEBUG
+
#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif
-#if defined(SLIC3R_DEBUG) && defined(_WIN32)
-#include <Windows.h>
-#pragma comment(lib, "user32.lib")
- static inline void assert_fail(const char *assertion, const char *file, unsigned line, const char *function)
- {
- printf("Assert: %s in function %s\nfile %s:%d\n", assertion, function, file, line);
- if (IsDebuggerPresent()) {
- DebugBreak();
- } else {
- ExitProcess(-1);
- }
- }
- #undef assert
- #define assert(expr) \
- ((expr) \
- ? static_cast<void>(0) \
- : assert_fail (#expr, __FILE__, __LINE__, __FUNCTION__))
-#endif /* SLIC3R_DEBUG */
+// We want our version of assert.
+#include "../libslic3r.h"
namespace Slic3r {
@@ -81,7 +68,7 @@ enum Orientation
// which means, the coord_t types must not have some of the topmost bits utilized.
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
- BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
+ // BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
@@ -94,7 +81,7 @@ static inline Orientation orient(const Point &a, const Point &b, const Point &c)
static inline bool is_ccw(const Polygon &poly)
{
// The polygon shall be at least a triangle.
- assert(poly.points.size() >= 3);
+ myassert(poly.points.size() >= 3);
if (poly.points.size() < 3)
return true;
@@ -113,7 +100,7 @@ static inline bool is_ccw(const Polygon &poly)
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
// or overlapping segments.
- assert(o != ORIENTATION_COLINEAR);
+ myassert(o != ORIENTATION_COLINEAR);
return o == ORIENTATION_CCW;
}
@@ -134,8 +121,8 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po
std::swap(pa.x, pb.x);
if (pa.y > pb.y)
std::swap(pa.y, pb.y);
- assert(px.x >= pa.x && px.x <= pb.x);
- assert(px.y >= pa.y && px.y <= pb.y);
+ myassert(px.x >= pa.x && px.x <= pb.x);
+ myassert(px.y >= pa.y && px.y <= pb.y);
}
#endif /* SLIC3R_DEBUG */
const Point *pPrev = &p1;
@@ -262,45 +249,65 @@ public:
struct ExPolygonWithOffset
{
public:
- ExPolygonWithOffset(const ExPolygon &aexpolygon, coord_t aoffset) : expolygon(aexpolygon)
+ ExPolygonWithOffset(
+ const ExPolygon &expolygon,
+ float angle,
+ coord_t aoffset1,
+ coord_t aoffset2)
{
- polygons_inner = offset((Polygons)expolygon, aoffset,
- CLIPPER_OFFSET_SCALE,
- ClipperLib::jtMiter,
- // for the infill pattern, don't cut the corners.
- // default miterLimt = 3
- 10.);
- n_contours_outer = 1 + expolygon.holes.size();
+ // Copy and rotate the source polygons.
+ polygons_src = (Polygons)expolygon;
+ for (Polygons::iterator it = polygons_src.begin(); it != polygons_src.end(); ++ it)
+ it->rotate(angle);
+
+ double mitterLimit = 3.;
+ // for the infill pattern, don't cut the corners.
+ // default miterLimt = 3
+ //double mitterLimit = 10.;
+ myassert(aoffset1 < 0);
+ myassert(aoffset2 < 0);
+ myassert(aoffset2 < aoffset1);
+ polygons_outer = offset(polygons_src, aoffset1,
+ CLIPPER_OFFSET_SCALE,
+ ClipperLib::jtMiter,
+ mitterLimit);
+ polygons_inner = offset(polygons_src, aoffset2,
+ CLIPPER_OFFSET_SCALE,
+ ClipperLib::jtMiter,
+ mitterLimit);
+ n_contours_outer = polygons_outer.size();
n_contours_inner = polygons_inner.size();
n_contours = n_contours_outer + n_contours_inner;
- polygons_inner_ccw.assign(polygons_inner.size(), false);
- for (size_t i = 0; i < polygons_inner.size(); ++ i)
- polygons_inner_ccw[i] = is_ccw(polygons_inner[i]);
- #ifdef SLIC3R_DEBUG
- // Verify orientation of the expolygon.
- assert(is_ccw(expolygon.contour));
- for (size_t i = 0; i < expolygon.holes.size(); ++ i)
- assert(is_ccw(expolygon.holes[i]));
- #endif /* SLIC3R_DEBUG */
+ polygons_ccw.assign(n_contours, false);
+ for (size_t i = 0; i < n_contours; ++ i) {
+ contour(i).remove_duplicate_points();
+ myassert(! contour(i).has_duplicate_points());
+ polygons_ccw[i] = is_ccw(contour(i));
+ }
}
- // Outer contour of the expolygon.
- bool is_contour_external(size_t idx) const { return idx == 0; }
- // Any contour of the expolygon.
- bool is_contour_outer(size_t idx) const { return idx < n_contours_inner; }
- // Contour of the shrunk expolygon.
- bool is_contour_inner(size_t idx) const { return idx >= n_contours_inner; }
+ // Any contour with offset1
+ bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
+ // Any contour with offset2
+ bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
- const Polygon& contour(size_t idx) const {
- return is_contour_external(idx) ? expolygon.contour :
- (is_contour_outer(idx) ? expolygon.holes[idx - 1] : polygons_inner[idx - n_contours_inner]);
- }
+ const Polygon& contour(size_t idx) const
+ { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
- bool is_contour_ccw(size_t idx) const {
- return is_contour_external(idx) || (is_contour_inner(idx) && polygons_inner_ccw[idx - n_contours_inner]);
- }
+ Polygon& contour(size_t idx)
+ { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
- const ExPolygon &expolygon;
+ bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
+
+ BoundingBox bounding_box_src() const
+ { return _bounding_box_polygons(polygons_src); }
+ BoundingBox bounding_box_outer() const
+ { return _bounding_box_polygons(polygons_outer); }
+ BoundingBox bounding_box_inner() const
+ { return _bounding_box_polygons(polygons_inner); }
+
+ Polygons polygons_src;
+ Polygons polygons_outer;
Polygons polygons_inner;
size_t n_contours_outer;
@@ -308,11 +315,30 @@ public:
size_t n_contours;
protected:
-
// For each polygon of polygons_inner, remember its orientation.
- std::vector<unsigned char> polygons_inner_ccw;
+ std::vector<unsigned char> polygons_ccw;
+
+ static BoundingBox _bounding_box_polygons(const Polygons &poly) {
+ BoundingBox bbox;
+ if (! poly.empty()) {
+ bbox = poly.front().bounding_box();
+ for (size_t i = 1; i < poly.size(); ++ i)
+ bbox.merge(poly[i]);
+ }
+ return bbox;
+ }
};
+static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
+{
+ int d = int(seg2) - int(seg1);
+ if (! forward)
+ d = - d;
+ if (d < 0)
+ d += int(poly.points.size());
+ return d;
+}
+
// For a vertical line, an inner contour and an intersection point,
// find an intersection point on the previous resp. next vertical line.
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
@@ -339,7 +365,8 @@ static inline int intersection_on_prev_next_vertical_line(
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
- const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
+// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
+ const bool forward = itsct.is_low() == dir_is_next;
// Resulting index of an intersection point on il2.
int out = -1;
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
@@ -349,13 +376,30 @@ static inline int intersection_on_prev_next_vertical_line(
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il2.intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
+ /*
+ if (itsct.is_low()) {
+ myassert(itsct.type == SegmentIntersection::INNER_LOW);
+ myassert(iIntersection > 0);
+ myassert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
+ myassert(i > 0);
+ if (il2.intersections[i-1].is_inner())
+ // Take only the lowest inner intersection point.
+ continue;
+ myassert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
+ } else {
+ myassert(itsct.type == SegmentIntersection::INNER_HIGH);
+ myassert(iIntersection+1 < il.intersections.size());
+ myassert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
+ myassert(i+1 < il2.intersections.size());
+ if (il2.intersections[i+1].is_inner())
+ // Take only the highest inner intersection point.
+ continue;
+ myassert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
+ }
+ */
// The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest path in the direction of the contour.
- int d = int(itsct2.iSegment) - int(itsct.iSegment);
- if (ccw != dir_is_next)
- d = - d;
- if (d < 0)
- d += int(poly.points.size());
+ int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
if (d < dmin) {
out = i;
dmin = d;
@@ -395,17 +439,26 @@ static inline int intersection_unused_on_prev_next_vertical_line(
size_t iIntersection,
bool dir_is_next)
{
+ //FIXME This routine will propose a connecting line even if the connecting perimeter segment intersects
+ // iVertical line multiple times before reaching iIntersectionOther.
int iIntersectionOther = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, dir_is_next);
if (iIntersectionOther == -1)
return -1;
- //FIXME this routine will propose a connecting line even if the connecting perimeter segment intersects iVertical line multiple times before reaching iIntersectionOther.
- assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
+ myassert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
- assert(itsct_other.is_inner());
- assert(itsct_other.is_low() || iIntersectionOther > 1);
+ myassert(itsct_other.is_inner());
+ myassert(iIntersectionOther > 0);
+ myassert(iIntersectionOther + 1 < il_other.intersections.size());
+ // Is iIntersectionOther at the boundary of a vertical segment?
+ const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
+ if (itsct_other2.is_inner())
+ // Cannot follow a perimeter segment into the middle of another vertical segment.
+ // Only perimeter segments connecting to the end of a vertical segment are followed.
+ return -1;
+ myassert(itsct_other.is_low() == itsct_other2.is_low());
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
// This perimeter segment was already consumed.
return -1;
@@ -460,11 +513,11 @@ static inline coordf_t measure_perimeter_prev_next_segment_length(
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
- const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- assert(itsct.type == itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- assert(itsct.is_inner());
- const bool forward = (itsct.is_low() == ccw) == dir_is_next;
+// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
+ myassert(itsct.type == itsct2.type);
+ myassert(itsct.iContour == itsct2.iContour);
+ myassert(itsct.is_inner());
+ const bool forward = itsct.is_low() == dir_is_next;
Point p1(il.pos, itsct.pos);
Point p2(il2.pos, itsct2.pos);
@@ -511,9 +564,9 @@ static inline void emit_perimeter_prev_next_segment(
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
++ iVerticalLineOther;
- assert(iVerticalLineOther < segs.size());
+ myassert(iVerticalLineOther < segs.size());
} else {
- assert(iVerticalLineOther > 0);
+ myassert(iVerticalLineOther > 0);
-- iVerticalLineOther;
}
@@ -522,11 +575,11 @@ static inline void emit_perimeter_prev_next_segment(
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
- const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- assert(itsct.type == itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- assert(itsct.is_inner());
- const bool forward = (itsct.is_low() == ccw) == dir_is_next;
+// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
+ myassert(itsct.type == itsct2.type);
+ myassert(itsct.iContour == itsct2.iContour);
+ myassert(itsct.is_inner());
+ const bool forward = itsct.is_low() == dir_is_next;
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
@@ -537,71 +590,91 @@ static inline void emit_perimeter_prev_next_segment(
out.points.push_back(Point(il2.pos, itsct2.pos));
}
-Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams &params)
+void FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams &params, float angleBase, Polylines &polylines_out)
{
- // rotate polygons so that we can work with vertical lines here
- ExPolygon expolygon = surface->expolygon;
- std::pair<float, Point> rotate_vector = this->infill_direction(surface);
- expolygon.rotate(- rotate_vector.first);
- // No need to translate the polygon anyhow for the infill.
- // The infill will be performed inside a bounding box of the expolygon and its absolute position does not matter.
-// expolygon.translate(rotate_vector.second.x, rotate_vector.second.y);
+ // At the end, only the new polylines will be rotated back.
+ size_t n_polylines_out_initial = polylines_out.size();
+
+ // Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
+// const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
+ const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
+ myassert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
+
+ // Rotate polygons so that we can work with vertical lines here
+ std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
+ rotate_vector.first += angleBase;
this->_min_spacing = scale_(this->spacing);
- assert(params.density > 0.0001f && params.density <= 1.f);
+ myassert(params.density > 0.0001f && params.density <= 1.f);
this->_line_spacing = coord_t(coordf_t(this->_min_spacing) / params.density);
this->_diagonal_distance = this->_line_spacing * 2;
- BoundingBox bounding_box = expolygon.contour.bounding_box();
-
+
+ // On the polygons of poly_with_offset, the infill lines will be connected.
+ ExPolygonWithOffset poly_with_offset(
+ surface->expolygon,
+ - rotate_vector.first,
+ scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
+ scale_(- 0.5 * this->spacing));
+ if (poly_with_offset.n_contours_inner == 0) {
+ //FIXME maybe one shall trigger the gap fill here?
+ return;
+ }
+
+ BoundingBox bounding_box = poly_with_offset.bounding_box_outer();
+
// define flow spacing according to requested density
- if (params.density > 0.9999f && !params.dont_adjust) {
- this->_line_spacing = this->adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
- this->spacing = unscale(this->_line_spacing);
+ bool full_infill = params.density > 0.9999f;
+ if (full_infill && !params.dont_adjust) {
+// this->_min_spacing = this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
+// this->spacing = unscale(this->_line_spacing);
} else {
// extend bounding box so that our pattern will be aligned with other layers
- bounding_box.merge(Point(
- bounding_box.min.x - (bounding_box.min.x % this->_line_spacing),
- bounding_box.min.y - (bounding_box.min.y % this->_line_spacing)));
+ // Transform the reference point to the rotated coordinate system.
+ bounding_box.merge(_align_to_grid(
+ bounding_box.min,
+ Point(this->_line_spacing, this->_line_spacing),
+ rotate_vector.second.rotated(- rotate_vector.first)));
}
// Intersect a set of euqally spaced vertical lines wiht expolygon.
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / this->_line_spacing;
coord_t x0 = bounding_box.min.x + this->_line_spacing;
- // On these polygons the infill lines will be connected.
- ExPolygonWithOffset poly_with_offset(expolygon, - _min_spacing / 2);
#ifdef SLIC3R_DEBUG
char path[2048];
static int iRun = 0;
sprintf(path, "out/FillRectilinear2-%d.svg", iRun);
- BoundingBox bbox_svg = expolygon.contour.bounding_box();
- bbox_svg.min.x -= coord_t(1. / SCALING_FACTOR);
- bbox_svg.min.y -= coord_t(1. / SCALING_FACTOR);
- bbox_svg.max.x += coord_t(1. / SCALING_FACTOR);
- bbox_svg.max.y += coord_t(1. / SCALING_FACTOR);
- ::Slic3r::SVG svg(path, bbox_svg);
- svg.draw(expolygon.lines());
- svg.draw(poly_with_offset.polygons_inner);
+ BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
+ ::Slic3r::SVG svg(path, bbox_svg); // , scale_(1.));
+ for (size_t i = 0; i < poly_with_offset.polygons_src.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_src[i].lines());
+ for (size_t i = 0; i < poly_with_offset.polygons_outer.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_outer[i].lines(), "green");
+ for (size_t i = 0; i < poly_with_offset.polygons_inner.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_inner[i].lines(), "brown");
{
char path2[2048];
sprintf(path2, "out/FillRectilinear2-initial-%d.svg", iRun);
- ::Slic3r::SVG svg(path2, bbox_svg);
- svg.draw(expolygon.lines());
- svg.draw(poly_with_offset.polygons_inner);
- svg.Close();
+ ::Slic3r::SVG svg(path2, bbox_svg); // , scale_(1.));
+ for (size_t i = 0; i < poly_with_offset.polygons_src.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_src[i].lines());
+ for (size_t i = 0; i < poly_with_offset.polygons_outer.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_outer[i].lines(), "green");
+ for (size_t i = 0; i < poly_with_offset.polygons_inner.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_inner[i].lines(), "brown");
}
iRun ++;
#endif /* SLIC3R_DEBUG */
// For each contour
- // Allocate the storage for the segments.
+ // Allocate storage for the segments.
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
for (size_t i = 0; i < n_vlines; ++ i) {
segs[i].idx = i;
segs[i].pos = x0 + i * this->_line_spacing;
}
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
- const Points &contour = poly_with_offset.contour(iContour);
+ const Points &contour = poly_with_offset.contour(iContour).points;
if (contour.size() < 2)
continue;
// For each segment
@@ -626,10 +699,14 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
if (il > ir)
// No vertical line intersects this segment.
continue;
- assert(il >= 0 && il < segs.size());
- assert(ir >= 0 && ir < segs.size());
+ myassert(il >= 0 && il < segs.size());
+ myassert(ir >= 0 && ir < segs.size());
if (l == r) {
// The segment is vertical.
+ // Don't insert vertical segments at all.
+ // If the contour is not degenerate, then this vertical line will be crossed
+ // by the non-vertical segments preceding resp. succeeding this vertical segment.
+ /*
SegmentIntersection is;
is.iContour = iContour;
is.iSegment = iSegment;
@@ -637,24 +714,25 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
segs[il].intersections.push_back(is);
is.pos = p2.y;
segs[il].intersections.push_back(is);
+ */
continue;
}
for (int i = il; i <= ir; ++ i) {
SegmentIntersection is;
is.iContour = iContour;
is.iSegment = iSegment;
- assert(l <= segs[i].pos);
- assert(r >= segs[i].pos);
+ myassert(l <= segs[i].pos);
+ myassert(r >= segs[i].pos);
// Calculate the intersection position in y axis. x is known.
double t = double(segs[i].pos - p1.x) / double(p2.x - p1.x);
- assert(t > -0.000001 && t < 1.000001);
+ myassert(t > -0.000001 && t < 1.000001);
t = clamp(0., 1., t);
coord_t lo = p1.y;
coord_t hi = p2.y;
if (lo > hi)
std::swap(lo, hi);
is.pos = p1.y + coord_t(t * double(p2.y - p1.y));
- assert(is.pos > lo - 0.000001 && is.pos < hi + 0.000001);
+ myassert(is.pos > lo - 0.000001 && is.pos < hi + 0.000001);
is.pos = clamp(lo, hi, is.pos);
segs[i].intersections.push_back(is);
}
@@ -674,8 +752,8 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
for (size_t i = 1; i < sil.intersections.size(); ++ i) {
size_t iContour1 = sil.intersections[i-1].iContour;
size_t iContour2 = sil.intersections[i].iContour;
- const Points &contour1 = poly_with_offset.contour(iContour1);
- const Points &contour2 = poly_with_offset.contour(iContour2);
+ const Points &contour1 = poly_with_offset.contour(iContour1).points;
+ const Points &contour2 = poly_with_offset.contour(iContour2).points;
size_t iSegment1 = sil.intersections[i-1].iSegment;
size_t iPrev1 = ((iSegment1 == 0) ? contour1.size() : iSegment1) - 1;
size_t iSegment2 = sil.intersections[i].iSegment;
@@ -683,7 +761,7 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
bool swap = false;
if (iContour1 == iContour2 && iSegment1 == iSegment2) {
// The same segment, it has to be vertical.
- assert(iPrev1 == iPrev2);
+ myassert(iPrev1 == iPrev2);
swap = contour1[iPrev1].y > contour1[iContour1].y;
#ifdef SLIC3R_DEBUG
if (swap)
@@ -706,27 +784,43 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
const Point x2(sil.pos, sil.intersections[i ].pos);
bool successive = false;
#endif /* SLIC3R_DEBUG */
+ // Sort the points in the two segments by x.
if (a->x > b->x)
std::swap(a, b);
if (c->x > d->x)
std::swap(c, d);
+ myassert(a->x <= sil.pos);
+ myassert(c->x <= sil.pos);
+ myassert(b->x >= sil.pos);
+ myassert(d->x >= sil.pos);
+ // Sort the two segments, so the segment <a,b> will be on the left of <c,d>.
bool upper_more_left = false;
if (a->x > c->x) {
upper_more_left = true;
std::swap(a, c);
std::swap(b, d);
}
- if (a == c || b == c) {
- assert(iContour1 == iContour2);
- assert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
+ if (a == c) {
+ // The segments iSegment1 and iSegment2 are directly connected.
+ myassert(iContour1 == iContour2);
+ myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
std::swap(c, d);
- assert(a != c && b != c);
+ myassert(a != c && b != c);
#ifdef SLIC3R_DEBUG
successive = true;
#endif /* SLIC3R_DEBUG */
}
+#ifdef SLIC3R_DEBUG
+ else if (b == d) {
+ // The segments iSegment1 and iSegment2 are directly connected.
+ myassert(iContour1 == iContour2);
+ myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
+ myassert(a != c && b != c);
+ successive = true;
+ }
+#endif /* SLIC3R_DEBUG */
Orientation o = orient(*a, *b, *c);
- assert(! ORIENTATION_COLINEAR);
+ myassert(o != ORIENTATION_COLINEAR);
swap = upper_more_left != (o == ORIENTATION_CW);
#ifdef SLIC3R_DEBUG
if (swap)
@@ -737,7 +831,7 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
}
}
if (swap) {
- // Swap the intersection points, but keep the original positions, so they are sorted.
+ // Swap the intersection points, but keep the original positions, so they stay sorted by the y axis.
std::swap(sil.intersections[i-1], sil.intersections[i]);
std::swap(sil.intersections[i-1].pos, sil.intersections[i].pos);
modified = true;
@@ -745,19 +839,40 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
}
} while (modified);
// Assign the intersection types.
+ size_t j = 0;
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
// What is the orientation of the segment at the intersection point?
size_t iContour = sil.intersections[i].iContour;
- const Points &contour = poly_with_offset.contour(iContour);
+ const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
coord_t dir = contour[iSegment].x - contour[iPrev].x;
- bool ccw = poly_with_offset.is_contour_ccw(iContour);
- bool low = (dir > 0) == ccw;
+ // bool ccw = poly_with_offset.is_contour_ccw(iContour);
+ // bool low = (dir > 0) == ccw;
+ bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
+ if (j > 0 &&
+ sil.intersections[i].pos == sil.intersections[j-1].pos &&
+ sil.intersections[i].type == sil.intersections[j-1].type &&
+ sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
+ // This has to be a corner point crossing the vertical line.
+ // Remove the second intersection point.
+#ifdef SLIC3R_DEBUG
+ size_t iSegment2 = sil.intersections[j-1].iSegment;
+ size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
+ myassert(iSegment == iPrev2 || iSegment2 == iPrev);
+#endif /* SLIC3R_DEBUG */
+ } else {
+ if (j < i)
+ sil.intersections[j] = sil.intersections[i];
+ ++ j;
+ }
}
+ // Shrink the list of intersections, if any of the intersection was removed during the classification.
+ if (j < sil.intersections.size())
+ sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
}
#ifdef SLIC3R_DEBUG
@@ -765,18 +880,18 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// The intersection points have to be even.
- assert((sil.intersections.size() & 1) == 0);
+ myassert((sil.intersections.size() & 1) == 0);
for (size_t i = 0; i < sil.intersections.size();) {
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
- assert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
+ myassert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
size_t j = i + 1;
- assert(j < sil.intersections.size());
- assert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
+ myassert(j < sil.intersections.size());
+ myassert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
- assert(j < sil.intersections.size());
- assert((j & 1) == 1);
- assert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
- assert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
+ myassert(j < sil.intersections.size());
+ myassert((j & 1) == 1);
+ myassert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
+ myassert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
if (i + 1 == j) {
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos), Point(sil.pos, sil.intersections[j].pos)), "blue");
} else {
@@ -788,6 +903,26 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
}
}
svg.Close();
+
+ // Verify the segments & paint them.
+ for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
+ SegmentedIntersectionLine &sil = segs[i_seg];
+ // The intersection points have to be even.
+ myassert((sil.intersections.size() & 1) == 0);
+ for (size_t i = 0; i < sil.intersections.size();) {
+ // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
+ myassert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
+ size_t j = i + 1;
+ myassert(j < sil.intersections.size());
+ myassert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
+ for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
+ myassert(j < sil.intersections.size());
+ myassert((j & 1) == 1);
+ myassert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
+ myassert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
+ i = j + 1;
+ }
+ }
#endif /* SLIC3R_DEBUG */
// Now construct a graph.
@@ -798,8 +933,9 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
// Follow the line, connect the lines into a graph.
// Until no new line could be added to the output path:
Point pointLast;
- Polylines polylines_out;
Polyline *polyline_current = NULL;
+ if (! polylines_out.empty())
+ pointLast = polylines_out.back().points.back();
for (;;) {
if (i_intersection == size_t(-1)) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
@@ -807,14 +943,14 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
const SegmentedIntersectionLine &seg = segs[i_vline2];
if (! seg.intersections.empty()) {
- assert(seg.intersections.size() > 1);
+ myassert(seg.intersections.size() > 1);
// Even number of intersections with the loops.
- assert((seg.intersections.size() & 1) == 0);
- assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
+ myassert((seg.intersections.size() & 1) == 0);
+ myassert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
for (size_t i = 0; i < seg.intersections.size(); ++ i) {
const SegmentIntersection &intrsctn = seg.intersections[i];
if (intrsctn.is_outer()) {
- assert(intrsctn.is_low() || i > 0);
+ myassert(intrsctn.is_low() || i > 0);
bool consumed = intrsctn.is_low() ?
intrsctn.consumed_vertical_up :
seg.intersections[i-1].consumed_vertical_up;
@@ -852,11 +988,11 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
bool going_up = intrsctn->is_low();
bool try_connect = false;
if (going_up) {
- assert(! intrsctn->consumed_vertical_up);
- assert(i_intersection + 1 < seg.intersections.size());
+ myassert(! intrsctn->consumed_vertical_up);
+ myassert(i_intersection + 1 < seg.intersections.size());
// Step back to the beginning of the vertical segment to mark it as consumed.
if (intrsctn->is_inner()) {
- assert(i_intersection > 0);
+ myassert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
}
@@ -865,25 +1001,25 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
intrsctn->consumed_vertical_up = true;
++ intrsctn;
++ i_intersection;
- assert(i_intersection < seg.intersections.size());
+ myassert(i_intersection < seg.intersections.size());
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
if ((intrsctn - 1)->is_inner()) {
// Step back.
-- intrsctn;
-- i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
+ myassert(intrsctn->type == SegmentIntersection::INNER_HIGH);
try_connect = true;
}
} else {
// Going down.
- assert(intrsctn->is_high());
- assert(i_intersection > 0);
- assert(! (intrsctn - 1)->consumed_vertical_up);
+ myassert(intrsctn->is_high());
+ myassert(i_intersection > 0);
+ myassert(! (intrsctn - 1)->consumed_vertical_up);
// Consume the complete vertical segment up to the outer contour.
if (intrsctn->is_inner())
intrsctn->consumed_vertical_up = true;
do {
- assert(i_intersection > 0);
+ myassert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
intrsctn->consumed_vertical_up = true;
@@ -892,7 +1028,7 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
// Step back.
++ intrsctn;
++ i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_LOW);
+ myassert(intrsctn->type == SegmentIntersection::INNER_LOW);
try_connect = true;
}
}
@@ -901,31 +1037,81 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
int iPrev = intersection_unused_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
int iNext = intersection_unused_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
if (iPrev != -1 || iNext != -1) {
- // Zig zag
- coord_t distPrev = (iPrev == -1) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
- coord_t distNext = (iNext == -1) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
- // Take the shorter path.
- bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : distNext != -1;
- assert(intrsctn->is_inner());
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
- emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
- // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
- if (iPrev != -1)
- segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
- if (iNext != -1)
- intrsctn->consumed_perimeter_right = true;
- //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
- // Advance to the neighbor line.
- if (take_next) {
- ++ i_vline;
- i_intersection = iNext;
- } else {
- -- i_vline;
- i_intersection = iPrev;
+ // Does the perimeter intersect the current vertical line?
+ SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
+ SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
+ // Does the perimeter intersect the current vertical line above intrsctn?
+ int iSegAbove = -1;
+ for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
+ if (seg.intersections[i].iContour == intrsctn->iContour &&
+ seg.intersections[i].type == type_crossing) {
+ iSegAbove = seg.intersections[i].iSegment;
+ break;
+ }
+ // Does the perimeter intersect the current vertical line below intrsctn?
+ int iSegBelow = -1;
+ for (size_t i = i_intersection - 1; i > 0; -- i)
+ if (seg.intersections[i].iContour == intrsctn->iContour &&
+ seg.intersections[i].type == type_crossing) {
+ iSegBelow = seg.intersections[i].iSegment;
+ break;
+ }
+ if (iSegBelow != -1 || iSegAbove != -1) {
+ // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
+ // The perimeter contour orientation.
+ const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
+ const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
+ if (iPrev != -1) {
+ int d1 = distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
+ int d2 = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
+ if (iSegAbove != -1)
+ d2 = std::min(d2, distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward));
+ if (d2 < d1)
+ // The vertical crossing comes eralier than the prev crossing.
+ // Disable the perimeter going back.
+ iPrev = -1;
+ }
+ if (iNext != -1) {
+ int d1 = distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
+ int d2 = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
+ if (iSegAbove != -1)
+ d2 = std::min(d2, distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward));
+ if (d2 < d1)
+ // The vertical crossing comes eralier than the prev crossing.
+ // Disable the perimeter going forward.
+ iNext = -1;
+ }
+ }
+ if (iPrev != -1 || iNext != -1) {
+ // Zig zag
+ coord_t distPrev = (iPrev == -1) ? std::numeric_limits<coord_t>::max() :
+ measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
+ coord_t distNext = (iNext == -1) ? std::numeric_limits<coord_t>::max() :
+ measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
+ // Take the shorter path.
+ bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : iNext != -1;
+ myassert(intrsctn->is_inner());
+ pointLast = Point(seg.pos, intrsctn->pos);
+ polyline_current->points.push_back(pointLast);
+ emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
+ // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
+ if (iPrev != -1)
+ segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
+ if (iNext != -1)
+ intrsctn->consumed_perimeter_right = true;
+ //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
+ // Advance to the neighbor line.
+ if (take_next) {
+ ++ i_vline;
+ i_intersection = iNext;
+ } else {
+ -- i_vline;
+ i_intersection = iPrev;
+ }
+ continue;
}
- continue;
}
// Take the complete line up to the outer contour.
if (going_up)
@@ -935,21 +1121,69 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
}
// Finish the current vertical line,
// reset the current vertical line to pick a new starting point in the next round.
- assert(intrsctn->is_outer());
- assert(intrsctn->is_high() == going_up);
+ myassert(intrsctn->is_outer());
+ myassert(intrsctn->is_high() == going_up);
pointLast = Point(seg.pos, intrsctn->pos);
polyline_current->points.push_back(pointLast);
+ // Handle duplicate points and zero length segments.
+ polyline_current->remove_duplicate_points();
+ myassert(! polyline_current->has_duplicate_points());
+ // Handle nearly zero length edges.
+ if (polyline_current->points.size() <= 1 ||
+ (polyline_current->points.size() == 2 &&
+ std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
+ std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
+ polylines_out.pop_back();
intrsctn = NULL;
i_intersection = -1;
polyline_current = NULL;
}
+#ifdef SLIC3R_DEBUG
+ {
+ sprintf(path, "out/FillRectilinear2-final-%d.svg", iRun);
+ ::Slic3r::SVG svg(path, bbox_svg); // , scale_(1.));
+ for (size_t i = 0; i < poly_with_offset.polygons_src.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_src[i].lines());
+ for (size_t i = 0; i < poly_with_offset.polygons_outer.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_outer[i].lines(), "green");
+ for (size_t i = 0; i < poly_with_offset.polygons_inner.size(); ++ i)
+ svg.draw(poly_with_offset.polygons_inner[i].lines(), "brown");
+ for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
+ svg.draw(polylines_out[i].lines(), "black");
+ }
+#endif /* SLIC3R_DEBUG */
+
// paths must be rotated back
- for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it) {
+ for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
+ myassert(! it->has_duplicate_points());
it->rotate(rotate_vector.first);
+ //FIXME rather simplify the paths to avoid very short edges?
+ //myassert(! it->has_duplicate_points());
+ it->remove_duplicate_points();
}
+
+#ifdef SLIC3R_DEBUG
+ // Verify, that there are no duplicate points in the sequence.
+ for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it)
+ myassert(! it->has_duplicate_points());
+#endif /* SLIC3R_DEBUG */
+}
+
+Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams &params)
+{
+ Polylines polylines_out;
+ fill_surface_by_lines(surface, params, 0.f, polylines_out);
+ return polylines_out;
+}
+
+Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams &params)
+{
+ Polylines polylines_out;
+ fill_surface_by_lines(surface, params, 0.f, polylines_out);
+ fill_surface_by_lines(surface, params, float(M_PI / 2.), polylines_out);
return polylines_out;
}