Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'xs/src/libslic3r/Slicing.cpp')
-rw-r--r--xs/src/libslic3r/Slicing.cpp585
1 files changed, 585 insertions, 0 deletions
diff --git a/xs/src/libslic3r/Slicing.cpp b/xs/src/libslic3r/Slicing.cpp
new file mode 100644
index 000000000..82813770f
--- /dev/null
+++ b/xs/src/libslic3r/Slicing.cpp
@@ -0,0 +1,585 @@
+#include "Slicing.hpp"
+#include "SlicingAdaptive.hpp"
+#include "PrintConfig.hpp"
+#include "Model.hpp"
+
+// #define SLIC3R_DEBUG
+
+// Make assert active if SLIC3R_DEBUG
+#ifdef SLIC3R_DEBUG
+ #undef NDEBUG
+ #define DEBUG
+ #define _DEBUG
+ #include "SVG.hpp"
+ #undef assert
+ #include <cassert>
+#endif
+
+namespace Slic3r
+{
+
+SlicingParameters create_from_config(
+ const PrintConfig &print_config,
+ const PrintObjectConfig &object_config,
+ coordf_t object_height,
+ const std::set<size_t> &object_extruders)
+{
+ coordf_t first_layer_height = (object_config.first_layer_height.value <= 0) ?
+ object_config.layer_height.value :
+ object_config.first_layer_height.get_abs_value(object_config.layer_height.value);
+ coordf_t support_material_extruder_dmr = print_config.nozzle_diameter.get_at(object_config.support_material_extruder.value - 1);
+ coordf_t support_material_interface_extruder_dmr = print_config.nozzle_diameter.get_at(object_config.support_material_interface_extruder.value - 1);
+ bool soluble_interface = object_config.support_material_contact_distance.value == 0.;
+
+ SlicingParameters params;
+ params.layer_height = object_config.layer_height.value;
+ params.first_object_layer_height = first_layer_height;
+ params.object_print_z_min = 0.;
+ params.object_print_z_max = object_height;
+ params.base_raft_layers = object_config.raft_layers.value;
+
+ if (params.base_raft_layers > 0) {
+ params.interface_raft_layers = (params.base_raft_layers + 1) / 2;
+ params.base_raft_layers -= params.interface_raft_layers;
+ // Use as large as possible layer height for the intermediate raft layers.
+ params.base_raft_layer_height = std::max(params.layer_height, 0.75 * support_material_extruder_dmr);
+ params.interface_raft_layer_height = std::max(params.layer_height, 0.75 * support_material_interface_extruder_dmr);
+ params.contact_raft_layer_height_bridging = false;
+ params.first_object_layer_bridging = false;
+ #if 1
+ params.contact_raft_layer_height = std::max(params.layer_height, 0.75 * support_material_interface_extruder_dmr);
+ if (! soluble_interface) {
+ // Compute the average of all nozzles used for printing the object over a raft.
+ //FIXME It is expected, that the 1st layer of the object is printed with a bridging flow over a full raft. Shall it not be vice versa?
+ coordf_t average_object_extruder_dmr = 0.;
+ if (! object_extruders.empty()) {
+ for (std::set<size_t>::const_iterator it_extruder = object_extruders.begin(); it_extruder != object_extruders.end(); ++ it_extruder)
+ average_object_extruder_dmr += print_config.nozzle_diameter.get_at(*it_extruder);
+ average_object_extruder_dmr /= coordf_t(object_extruders.size());
+ }
+ params.first_object_layer_height = average_object_extruder_dmr;
+ params.first_object_layer_bridging = true;
+ }
+ #else
+ params.contact_raft_layer_height = soluble_interface ? support_material_interface_extruder_dmr : 0.75 * support_material_interface_extruder_dmr;
+ params.contact_raft_layer_height_bridging = ! soluble_interface;
+ ...
+ #endif
+ }
+
+ if (params.has_raft()) {
+ // Raise first object layer Z by the thickness of the raft itself plus the extra distance required by the support material logic.
+ //FIXME The last raft layer is the contact layer, which shall be printed with a bridging flow for ease of separation. Currently it is not the case.
+ coordf_t print_z = first_layer_height + object_config.support_material_contact_distance.value;
+ if (params.raft_layers() == 1) {
+ params.contact_raft_layer_height = first_layer_height;
+ } else {
+ print_z +=
+ // Number of the base raft layers is decreased by the first layer, which has already been added to print_z.
+ coordf_t(params.base_raft_layers - 1) * params.base_raft_layer_height +
+ // Number of the interface raft layers is decreased by the contact layer.
+ coordf_t(params.interface_raft_layers - 1) * params.interface_raft_layer_height +
+ params.contact_raft_layer_height;
+ }
+ params.object_print_z_min = print_z;
+ params.object_print_z_max += print_z;
+ }
+
+ params.min_layer_height = std::min(params.layer_height, first_layer_height);
+ params.max_layer_height = std::max(params.layer_height, first_layer_height);
+
+ //FIXME add it to the print configuration
+ params.min_layer_height = 0.05;
+
+ // Calculate the maximum layer height as 0.75 from the minimum nozzle diameter.
+ if (! object_extruders.empty()) {
+ coordf_t min_object_extruder_dmr = 1000000.;
+ for (std::set<size_t>::const_iterator it_extruder = object_extruders.begin(); it_extruder != object_extruders.end(); ++ it_extruder)
+ min_object_extruder_dmr = std::min(min_object_extruder_dmr, print_config.nozzle_diameter.get_at(*it_extruder));
+ // Allow excessive maximum layer height higher than 0.75 * min_object_extruder_dmr
+ params.max_layer_height = std::max(std::max(params.layer_height, first_layer_height), 0.75 * min_object_extruder_dmr);
+ }
+
+ return params;
+}
+
+// Convert layer_height_ranges to layer_height_profile. Both are referenced to z=0, meaning the raft layers are not accounted for
+// in the height profile and the printed object may be lifted by the raft thickness at the time of the G-code generation.
+std::vector<coordf_t> layer_height_profile_from_ranges(
+ const SlicingParameters &slicing_params,
+ const t_layer_height_ranges &layer_height_ranges)
+{
+ // 1) If there are any height ranges, trim one by the other to make them non-overlapping. Insert the 1st layer if fixed.
+ std::vector<std::pair<t_layer_height_range,coordf_t>> ranges_non_overlapping;
+ ranges_non_overlapping.reserve(layer_height_ranges.size() * 4);
+ if (slicing_params.first_object_layer_height_fixed())
+ ranges_non_overlapping.push_back(std::pair<t_layer_height_range,coordf_t>(
+ t_layer_height_range(0., slicing_params.first_object_layer_height),
+ slicing_params.first_object_layer_height));
+ // The height ranges are sorted lexicographically by low / high layer boundaries.
+ for (t_layer_height_ranges::const_iterator it_range = layer_height_ranges.begin(); it_range != layer_height_ranges.end(); ++ it_range) {
+ coordf_t lo = it_range->first.first;
+ coordf_t hi = std::min(it_range->first.second, slicing_params.object_print_z_height());
+ coordf_t height = it_range->second;
+ if (! ranges_non_overlapping.empty())
+ // Trim current low with the last high.
+ lo = std::max(lo, ranges_non_overlapping.back().first.second);
+ if (lo + EPSILON < hi)
+ // Ignore too narrow ranges.
+ ranges_non_overlapping.push_back(std::pair<t_layer_height_range,coordf_t>(t_layer_height_range(lo, hi), height));
+ }
+
+ // 2) Convert the trimmed ranges to a height profile, fill in the undefined intervals between z=0 and z=slicing_params.object_print_z_max()
+ // with slicing_params.layer_height
+ std::vector<coordf_t> layer_height_profile;
+ for (std::vector<std::pair<t_layer_height_range,coordf_t>>::const_iterator it_range = ranges_non_overlapping.begin(); it_range != ranges_non_overlapping.end(); ++ it_range) {
+ coordf_t lo = it_range->first.first;
+ coordf_t hi = it_range->first.second;
+ coordf_t height = it_range->second;
+ coordf_t last_z = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 2];
+ coordf_t last_height = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 1];
+ if (lo > last_z + EPSILON) {
+ // Insert a step of normal layer height.
+ layer_height_profile.push_back(last_z);
+ layer_height_profile.push_back(slicing_params.layer_height);
+ layer_height_profile.push_back(lo);
+ layer_height_profile.push_back(slicing_params.layer_height);
+ }
+ // Insert a step of the overriden layer height.
+ layer_height_profile.push_back(lo);
+ layer_height_profile.push_back(height);
+ layer_height_profile.push_back(hi);
+ layer_height_profile.push_back(height);
+ }
+
+ coordf_t last_z = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 2];
+ coordf_t last_height = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 1];
+ if (last_z < slicing_params.object_print_z_height()) {
+ // Insert a step of normal layer height up to the object top.
+ layer_height_profile.push_back(last_z);
+ layer_height_profile.push_back(slicing_params.layer_height);
+ layer_height_profile.push_back(slicing_params.object_print_z_height());
+ layer_height_profile.push_back(slicing_params.layer_height);
+ }
+
+ return layer_height_profile;
+}
+
+// Based on the work of @platsch
+// Fill layer_height_profile by heights ensuring a prescribed maximum cusp height.
+std::vector<coordf_t> layer_height_profile_adaptive(
+ const SlicingParameters &slicing_params,
+ const t_layer_height_ranges &layer_height_ranges,
+ const ModelVolumePtrs &volumes)
+{
+ // 1) Initialize the SlicingAdaptive class with the object meshes.
+ SlicingAdaptive as;
+ as.set_slicing_parameters(slicing_params);
+ for (ModelVolumePtrs::const_iterator it = volumes.begin(); it != volumes.end(); ++ it)
+ if (! (*it)->modifier)
+ as.add_mesh(&(*it)->mesh);
+ as.prepare();
+
+ // 2) Generate layers using the algorithm of @platsch
+ // loop until we have at least one layer and the max slice_z reaches the object height
+ //FIXME make it configurable
+ // Cusp value: A maximum allowed distance from a corner of a rectangular extrusion to a chrodal line, in mm.
+ const coordf_t cusp_value = 0.2; // $self->config->get_value('cusp_value');
+
+ std::vector<coordf_t> layer_height_profile;
+ layer_height_profile.push_back(0.);
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ if (slicing_params.first_object_layer_height_fixed()) {
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ }
+ coordf_t slice_z = slicing_params.first_object_layer_height;
+ coordf_t height = slicing_params.first_object_layer_height;
+ coordf_t cusp_height = 0.;
+ int current_facet = 0;
+ while ((slice_z - height) <= slicing_params.object_print_z_height()) {
+ height = 999;
+ // Slic3r::debugf "\n Slice layer: %d\n", $id;
+ // determine next layer height
+ coordf_t cusp_height = as.cusp_height(slice_z, cusp_value, current_facet);
+ // check for horizontal features and object size
+ /*
+ if($self->config->get_value('match_horizontal_surfaces')) {
+ my $horizontal_dist = $adaptive_slicing[$region_id]->horizontal_facet_distance(scale $slice_z+$cusp_height, $min_height);
+ if(($horizontal_dist < $min_height) && ($horizontal_dist > 0)) {
+ Slic3r::debugf "Horizontal feature ahead, distance: %f\n", $horizontal_dist;
+ # can we shrink the current layer a bit?
+ if($cusp_height-($min_height-$horizontal_dist) > $min_height) {
+ # yes we can
+ $cusp_height = $cusp_height-($min_height-$horizontal_dist);
+ Slic3r::debugf "Shrink layer height to %f\n", $cusp_height;
+ }else{
+ # no, current layer would become too thin
+ $cusp_height = $cusp_height+$horizontal_dist;
+ Slic3r::debugf "Widen layer height to %f\n", $cusp_height;
+ }
+ }
+ }
+ */
+ height = std::min(cusp_height, height);
+
+ // apply z-gradation
+ /*
+ my $gradation = $self->config->get_value('adaptive_slicing_z_gradation');
+ if($gradation > 0) {
+ $height = $height - unscale((scale($height)) % (scale($gradation)));
+ }
+ */
+
+ // look for an applicable custom range
+ /*
+ if (my $range = first { $_->[0] <= $slice_z && $_->[1] > $slice_z } @{$self->layer_height_ranges}) {
+ $height = $range->[2];
+
+ # if user set custom height to zero we should just skip the range and resume slicing over it
+ if ($height == 0) {
+ $slice_z += $range->[1] - $range->[0];
+ next;
+ }
+ }
+ */
+
+ layer_height_profile.push_back(slice_z);
+ layer_height_profile.push_back(height);
+ slice_z += height;
+ layer_height_profile.push_back(slice_z);
+ layer_height_profile.push_back(height);
+ }
+
+ coordf_t last = std::max(slicing_params.first_object_layer_height, layer_height_profile[layer_height_profile.size() - 2]);
+ layer_height_profile.push_back(last);
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ layer_height_profile.push_back(slicing_params.object_print_z_height());
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+
+ return layer_height_profile;
+}
+
+template <typename T>
+static inline T clamp(const T low, const T high, const T value)
+{
+ return std::max(low, std::min(high, value));
+}
+
+template <typename T>
+static inline T lerp(const T a, const T b, const T t)
+{
+ assert(t >= T(-EPSILON) && t <= T(1.+EPSILON));
+ return (1. - t) * a + t * b;
+}
+
+void adjust_layer_height_profile(
+ const SlicingParameters &slicing_params,
+ std::vector<coordf_t> &layer_height_profile,
+ coordf_t z,
+ coordf_t layer_thickness_delta,
+ coordf_t band_width,
+ int action)
+{
+ // Constrain the profile variability by the 1st layer height.
+ std::pair<coordf_t, coordf_t> z_span_variable =
+ std::pair<coordf_t, coordf_t>(
+ slicing_params.first_object_layer_height_fixed() ? slicing_params.first_object_layer_height : 0.,
+ slicing_params.object_print_z_height());
+ if (z < z_span_variable.first || z > z_span_variable.second)
+ return;
+
+ assert(layer_height_profile.size() >= 2);
+
+ // 1) Get the current layer thickness at z.
+ coordf_t current_layer_height = slicing_params.layer_height;
+ for (size_t i = 0; i < layer_height_profile.size(); i += 2) {
+ if (i + 2 == layer_height_profile.size()) {
+ current_layer_height = layer_height_profile[i + 1];
+ break;
+ } else if (layer_height_profile[i + 2] > z) {
+ coordf_t z1 = layer_height_profile[i];
+ coordf_t h1 = layer_height_profile[i + 1];
+ coordf_t z2 = layer_height_profile[i + 2];
+ coordf_t h2 = layer_height_profile[i + 3];
+ current_layer_height = lerp(h1, h2, (z - z1) / (z2 - z1));
+ break;
+ }
+ }
+
+ // 2) Is it possible to apply the delta?
+ switch (action) {
+ case 0:
+ default:
+ if (layer_thickness_delta > 0) {
+ if (current_layer_height >= slicing_params.max_layer_height - EPSILON)
+ return;
+ layer_thickness_delta = std::min(layer_thickness_delta, slicing_params.max_layer_height - current_layer_height);
+ } else {
+ if (current_layer_height <= slicing_params.min_layer_height + EPSILON)
+ return;
+ layer_thickness_delta = std::max(layer_thickness_delta, slicing_params.min_layer_height - current_layer_height);
+ }
+ break;
+ case 1:
+ layer_thickness_delta = std::abs(layer_thickness_delta);
+ layer_thickness_delta = std::min(layer_thickness_delta, std::abs(slicing_params.layer_height - current_layer_height));
+ if (layer_thickness_delta < EPSILON)
+ return;
+ break;
+ }
+
+ // 3) Densify the profile inside z +- band_width/2, remove duplicate Zs from the height profile inside the band.
+ coordf_t lo = std::max(z_span_variable.first, z - 0.5 * band_width);
+ coordf_t hi = std::min(z_span_variable.second, z + 0.5 * band_width);
+ coordf_t z_step = 0.1;
+ size_t i = 0;
+ while (i < layer_height_profile.size() && layer_height_profile[i] < lo)
+ i += 2;
+ i -= 2;
+
+ std::vector<double> profile_new;
+ profile_new.reserve(layer_height_profile.size());
+ assert(i >= 0 && i + 1 < layer_height_profile.size());
+ profile_new.insert(profile_new.end(), layer_height_profile.begin(), layer_height_profile.begin() + i + 2);
+ coordf_t zz = lo;
+ while (zz < hi) {
+ size_t next = i + 2;
+ coordf_t z1 = layer_height_profile[i];
+ coordf_t h1 = layer_height_profile[i + 1];
+ coordf_t height = h1;
+ if (next < layer_height_profile.size()) {
+ coordf_t z2 = layer_height_profile[next];
+ coordf_t h2 = layer_height_profile[next + 1];
+ height = lerp(h1, h2, (zz - z1) / (z2 - z1));
+ }
+ // Adjust height by layer_thickness_delta.
+ coordf_t weight = std::abs(zz - z) < 0.5 * band_width ? (0.5 + 0.5 * cos(2. * M_PI * (zz - z) / band_width)) : 0.;
+ coordf_t height_new = height;
+ switch (action) {
+ case 0:
+ default:
+ height += weight * layer_thickness_delta;
+ break;
+ case 1:
+ {
+ coordf_t delta = height - slicing_params.layer_height;
+ coordf_t step = weight * layer_thickness_delta;
+ step = (std::abs(delta) > step) ?
+ (delta > 0) ? -step : step :
+ -delta;
+ height += step;
+ break;
+ }
+ }
+ // Avoid entering a too short segment.
+ if (profile_new[profile_new.size() - 2] + EPSILON < zz) {
+ profile_new.push_back(zz);
+ profile_new.push_back(clamp(slicing_params.min_layer_height, slicing_params.max_layer_height, height));
+ }
+ zz += z_step;
+ i = next;
+ while (i < layer_height_profile.size() && layer_height_profile[i] < zz)
+ i += 2;
+ i -= 2;
+ }
+
+ i += 2;
+ if (i < layer_height_profile.size()) {
+ if (profile_new[profile_new.size() - 2] + z_step < layer_height_profile[i]) {
+ profile_new.push_back(profile_new[profile_new.size() - 2] + z_step);
+ profile_new.push_back(layer_height_profile[i + 1]);
+ }
+ profile_new.insert(profile_new.end(), layer_height_profile.begin() + i, layer_height_profile.end());
+ }
+ layer_height_profile = std::move(profile_new);
+
+ assert(layer_height_profile.size() > 2);
+ assert(layer_height_profile.size() % 2 == 0);
+ assert(layer_height_profile[0] == 0.);
+#ifdef _DEBUG
+ for (size_t i = 2; i < layer_height_profile.size(); i += 2)
+ assert(layer_height_profile[i - 2] <= layer_height_profile[i]);
+ for (size_t i = 1; i < layer_height_profile.size(); i += 2) {
+ assert(layer_height_profile[i] > slicing_params.min_layer_height - EPSILON);
+ assert(layer_height_profile[i] < slicing_params.max_layer_height + EPSILON);
+ }
+#endif /* _DEBUG */
+}
+
+// Produce object layers as pairs of low / high layer boundaries, stored into a linear vector.
+std::vector<coordf_t> generate_object_layers(
+ const SlicingParameters &slicing_params,
+ const std::vector<coordf_t> &layer_height_profile)
+{
+ coordf_t print_z = 0;
+ coordf_t height = 0;
+
+ std::vector<coordf_t> out;
+
+ if (slicing_params.first_object_layer_height_fixed()) {
+ out.push_back(0);
+ print_z = slicing_params.first_object_layer_height;
+ out.push_back(print_z);
+ }
+
+ size_t idx_layer_height_profile = 0;
+ // loop until we have at least one layer and the max slice_z reaches the object height
+ coordf_t slice_z = print_z + 0.5 * slicing_params.min_layer_height;
+ while (slice_z < slicing_params.object_print_z_height()) {
+ height = slicing_params.min_layer_height;
+ if (idx_layer_height_profile < layer_height_profile.size()) {
+ size_t next = idx_layer_height_profile + 2;
+ for (;;) {
+ if (next >= layer_height_profile.size() || slice_z < layer_height_profile[next])
+ break;
+ idx_layer_height_profile = next;
+ next += 2;
+ }
+ coordf_t z1 = layer_height_profile[idx_layer_height_profile];
+ coordf_t h1 = layer_height_profile[idx_layer_height_profile + 1];
+ height = h1;
+ if (next < layer_height_profile.size()) {
+ coordf_t z2 = layer_height_profile[next];
+ coordf_t h2 = layer_height_profile[next + 1];
+ height = lerp(h1, h2, (slice_z - z1) / (z2 - z1));
+ assert(height >= slicing_params.min_layer_height - EPSILON && height <= slicing_params.max_layer_height + EPSILON);
+ }
+ }
+ slice_z = print_z + 0.5 * height;
+ if (slice_z >= slicing_params.object_print_z_height())
+ break;
+ assert(height > slicing_params.min_layer_height - EPSILON);
+ assert(height < slicing_params.max_layer_height + EPSILON);
+ out.push_back(print_z);
+ print_z += height;
+ slice_z = print_z + 0.5 * slicing_params.min_layer_height;
+ out.push_back(print_z);
+ }
+
+ //FIXME Adjust the last layer to align with the top object layer exactly?
+ return out;
+}
+
+int generate_layer_height_texture(
+ const SlicingParameters &slicing_params,
+ const std::vector<coordf_t> &layers,
+ void *data, int rows, int cols, bool level_of_detail_2nd_level)
+{
+// https://github.com/aschn/gnuplot-colorbrewer
+ std::vector<Point3> palette_raw;
+ palette_raw.push_back(Point3(0x0B2, 0x018, 0x02B));
+ palette_raw.push_back(Point3(0x0D6, 0x060, 0x04D));
+ palette_raw.push_back(Point3(0x0F4, 0x0A5, 0x082));
+ palette_raw.push_back(Point3(0x0FD, 0x0DB, 0x0C7));
+ palette_raw.push_back(Point3(0x0D1, 0x0E5, 0x0F0));
+ palette_raw.push_back(Point3(0x092, 0x0C5, 0x0DE));
+ palette_raw.push_back(Point3(0x043, 0x093, 0x0C3));
+ palette_raw.push_back(Point3(0x021, 0x066, 0x0AC));
+
+ // Clear the main texture and the 2nd LOD level.
+ memset(data, 0, rows * cols * 5);
+ // 2nd LOD level data start
+ unsigned char *data1 = reinterpret_cast<unsigned char*>(data) + rows * cols * 4;
+ int ncells = std::min((cols-1) * rows, int(ceil(16. * (slicing_params.object_print_z_height() / slicing_params.min_layer_height))));
+ int ncells1 = ncells / 2;
+ int cols1 = cols / 2;
+ coordf_t z_to_cell = coordf_t(ncells-1) / slicing_params.object_print_z_height();
+ coordf_t cell_to_z = slicing_params.object_print_z_height() / coordf_t(ncells-1);
+ coordf_t z_to_cell1 = coordf_t(ncells1-1) / slicing_params.object_print_z_height();
+ coordf_t cell_to_z1 = slicing_params.object_print_z_height() / coordf_t(ncells1-1);
+ // for color scaling
+ coordf_t hscale = 2.f * std::max(slicing_params.max_layer_height - slicing_params.layer_height, slicing_params.layer_height - slicing_params.min_layer_height);
+ if (hscale == 0)
+ // All layers have the same height. Provide some height scale to avoid division by zero.
+ hscale = slicing_params.layer_height;
+ for (size_t idx_layer = 0; idx_layer < layers.size(); idx_layer += 2) {
+ coordf_t lo = layers[idx_layer];
+ coordf_t hi = layers[idx_layer + 1];
+ coordf_t mid = 0.5f * (lo + hi);
+ assert(mid <= slicing_params.object_print_z_height());
+ coordf_t h = hi - lo;
+ hi = std::min(hi, slicing_params.object_print_z_height());
+ int cell_first = clamp(0, ncells-1, int(ceil(lo * z_to_cell)));
+ int cell_last = clamp(0, ncells-1, int(floor(hi * z_to_cell)));
+ for (int cell = cell_first; cell <= cell_last; ++ cell) {
+ coordf_t idxf = (0.5 * hscale + (h - slicing_params.layer_height)) * coordf_t(palette_raw.size()) / hscale;
+ int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
+ int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
+ coordf_t t = idxf - coordf_t(idx1);
+ const Point3 &color1 = palette_raw[idx1];
+ const Point3 &color2 = palette_raw[idx2];
+
+ coordf_t z = cell_to_z * coordf_t(cell);
+ assert(z >= lo && z <= hi);
+ // Intensity profile to visualize the layers.
+ coordf_t intensity = cos(M_PI * 0.7 * (mid - z) / h);
+
+ // Color mapping from layer height to RGB.
+ Pointf3 color(
+ intensity * lerp(coordf_t(color1.x), coordf_t(color2.x), t),
+ intensity * lerp(coordf_t(color1.y), coordf_t(color2.y), t),
+ intensity * lerp(coordf_t(color1.z), coordf_t(color2.z), t));
+
+ int row = cell / (cols - 1);
+ int col = cell - row * (cols - 1);
+ assert(row >= 0 && row < rows);
+ assert(col >= 0 && col < cols);
+ unsigned char *ptr = (unsigned char*)data + (row * cols + col) * 4;
+ ptr[0] = clamp<int>(0, 255, int(floor(color.x + 0.5)));
+ ptr[1] = clamp<int>(0, 255, int(floor(color.y + 0.5)));
+ ptr[2] = clamp<int>(0, 255, int(floor(color.z + 0.5)));
+ ptr[3] = 255;
+ if (col == 0 && row > 0) {
+ // Duplicate the first value in a row as a last value of the preceding row.
+ ptr[-4] = ptr[0];
+ ptr[-3] = ptr[1];
+ ptr[-2] = ptr[2];
+ ptr[-1] = ptr[3];
+ }
+ }
+ if (level_of_detail_2nd_level) {
+ cell_first = clamp(0, ncells1-1, int(ceil(lo * z_to_cell1)));
+ cell_last = clamp(0, ncells1-1, int(floor(hi * z_to_cell1)));
+ for (int cell = cell_first; cell <= cell_last; ++ cell) {
+ coordf_t idxf = (0.5 * hscale + (h - slicing_params.layer_height)) * coordf_t(palette_raw.size()) / hscale;
+ int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
+ int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
+ coordf_t t = idxf - coordf_t(idx1);
+ const Point3 &color1 = palette_raw[idx1];
+ const Point3 &color2 = palette_raw[idx2];
+
+ coordf_t z = cell_to_z1 * coordf_t(cell);
+ assert(z >= lo && z <= hi);
+
+ // Color mapping from layer height to RGB.
+ Pointf3 color(
+ lerp(coordf_t(color1.x), coordf_t(color2.x), t),
+ lerp(coordf_t(color1.y), coordf_t(color2.y), t),
+ lerp(coordf_t(color1.z), coordf_t(color2.z), t));
+
+ int row = cell / (cols1 - 1);
+ int col = cell - row * (cols1 - 1);
+ assert(row >= 0 && row < rows/2);
+ assert(col >= 0 && col < cols/2);
+ unsigned char *ptr = data1 + (row * cols1 + col) * 4;
+ ptr[0] = clamp<int>(0, 255, int(floor(color.x + 0.5)));
+ ptr[1] = clamp<int>(0, 255, int(floor(color.y + 0.5)));
+ ptr[2] = clamp<int>(0, 255, int(floor(color.z + 0.5)));
+ ptr[3] = 255;
+ if (col == 0 && row > 0) {
+ // Duplicate the first value in a row as a last value of the preceding row.
+ ptr[-4] = ptr[0];
+ ptr[-3] = ptr[1];
+ ptr[-2] = ptr[2];
+ ptr[-1] = ptr[3];
+ }
+ }
+ }
+ }
+
+ // Returns number of cells of the 0th LOD level.
+ return ncells;
+}
+
+}; // namespace Slic3r