Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'xs/src/slic3r/GUI/GLGizmo.cpp')
-rw-r--r--xs/src/slic3r/GUI/GLGizmo.cpp325
1 files changed, 321 insertions, 4 deletions
diff --git a/xs/src/slic3r/GUI/GLGizmo.cpp b/xs/src/slic3r/GUI/GLGizmo.cpp
index 39ba440c3..fa5b931e9 100644
--- a/xs/src/slic3r/GUI/GLGizmo.cpp
+++ b/xs/src/slic3r/GUI/GLGizmo.cpp
@@ -4,10 +4,12 @@
#include "../../slic3r/GUI/GLCanvas3D.hpp"
#include <Eigen/Dense>
+#include "../../libslic3r/Geometry.hpp"
#include <GL/glew.h>
#include <iostream>
+#include <numeric>
static const float DEFAULT_BASE_COLOR[3] = { 0.625f, 0.625f, 0.625f };
static const float DEFAULT_DRAG_COLOR[3] = { 1.0f, 1.0f, 1.0f };
@@ -163,7 +165,6 @@ GLGizmoBase::GLGizmoBase(GLCanvas3D& parent)
, m_group_id(-1)
, m_state(Off)
, m_hover_id(-1)
- , m_is_container(false)
{
::memcpy((void*)m_base_color, (const void*)DEFAULT_BASE_COLOR, 3 * sizeof(float));
::memcpy((void*)m_drag_color, (const void*)DEFAULT_DRAG_COLOR, 3 * sizeof(float));
@@ -172,7 +173,7 @@ GLGizmoBase::GLGizmoBase(GLCanvas3D& parent)
void GLGizmoBase::set_hover_id(int id)
{
- if (m_is_container || (id < (int)m_grabbers.size()))
+ if (m_grabbers.empty() || (id < (int)m_grabbers.size()))
{
m_hover_id = id;
on_set_hover_id();
@@ -602,8 +603,6 @@ GLGizmoRotate3D::GLGizmoRotate3D(GLCanvas3D& parent)
, m_y(parent, GLGizmoRotate::Y)
, m_z(parent, GLGizmoRotate::Z)
{
- m_is_container = true;
-
m_x.set_group_id(0);
m_y.set_group_id(1);
m_z.set_group_id(2);
@@ -1165,5 +1164,323 @@ double GLGizmoScale3D::calc_ratio(unsigned int preferred_plane_id, const Linef3&
return ratio;
}
+
+GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent)
+ : GLGizmoBase(parent)
+ , m_normal(0.0, 0.0, 0.0)
+{
+}
+
+bool GLGizmoFlatten::on_init()
+{
+ std::string path = resources_dir() + "/icons/overlay/";
+
+ std::string filename = path + "layflat_off.png";
+ if (!m_textures[Off].load_from_file(filename, false))
+ return false;
+
+ filename = path + "layflat_hover.png";
+ if (!m_textures[Hover].load_from_file(filename, false))
+ return false;
+
+ filename = path + "layflat_on.png";
+ if (!m_textures[On].load_from_file(filename, false))
+ return false;
+
+ return true;
+}
+
+void GLGizmoFlatten::on_start_dragging()
+{
+ if (m_hover_id != -1)
+ m_normal = m_planes[m_hover_id].normal;
+}
+
+void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const
+{
+ // the dragged_offset is a vector measuring where was the object moved
+ // with the gizmo being on. This is reset in set_flattening_data and
+ // does not work correctly when there are multiple copies.
+ if (!m_center) // this is the first bounding box that we see
+ m_center.reset(new Vec3d(box.center()));
+
+ Vec3d dragged_offset = box.center() - *m_center;
+
+ bool blending_was_enabled = ::glIsEnabled(GL_BLEND);
+ bool depth_test_was_enabled = ::glIsEnabled(GL_DEPTH_TEST);
+ ::glEnable(GL_BLEND);
+ ::glEnable(GL_DEPTH_TEST);
+
+ for (int i=0; i<(int)m_planes.size(); ++i) {
+ if (i == m_hover_id)
+ ::glColor4f(0.9f, 0.9f, 0.9f, 0.75f);
+ else
+ ::glColor4f(0.9f, 0.9f, 0.9f, 0.5f);
+
+ for (Vec2d offset : m_instances_positions) {
+ offset += to_2d(dragged_offset);
+ ::glBegin(GL_POLYGON);
+ for (const Vec3d& vertex : m_planes[i].vertices)
+ ::glVertex3f((GLfloat)(vertex(0) + offset(0)), (GLfloat)(vertex(1) + offset(1)), (GLfloat)vertex(2));
+ ::glEnd();
+ }
+ }
+
+ if (!blending_was_enabled)
+ ::glDisable(GL_BLEND);
+ if (!depth_test_was_enabled)
+ ::glDisable(GL_DEPTH_TEST);
+}
+
+void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const
+{
+ static const GLfloat INV_255 = 1.0f / 255.0f;
+
+ ::glDisable(GL_DEPTH_TEST);
+
+ for (unsigned int i = 0; i < m_planes.size(); ++i)
+ {
+ ::glColor3f(1.0f, 1.0f, (254.0f - (float)i) * INV_255);
+ for (const Vec2d& offset : m_instances_positions) {
+ ::glBegin(GL_POLYGON);
+ for (const Vec3d& vertex : m_planes[i].vertices)
+ ::glVertex3f((GLfloat)(vertex(0) + offset(0)), (GLfloat)vertex(1) + offset(1), (GLfloat)vertex(2));
+ ::glEnd();
+ }
+ }
+}
+
+// TODO - remove and use Eigen instead
+static Vec3d super_rotation(Vec3d axis, float angle, const Vec3d& point)
+{
+ axis.normalize();
+ float x = (float)axis(0);
+ float y = (float)axis(1);
+ float z = (float)axis(2);
+ float s = sin(angle);
+ float c = cos(angle);
+ float D = 1 - c;
+ float matrix[3][3] = { { c + x*x*D, x*y*D - z*s, x*z*D + y*s },
+ { y*x*D + z*s, c + y*y*D, y*z*D - x*s },
+ { z*x*D - y*s, z*y*D + x*s, c + z*z*D } };
+ float in[3] = { (float)point(0), (float)point(1), (float)point(2) };
+ float out[3] = { 0, 0, 0 };
+
+ for (unsigned char i = 0; i<3; ++i)
+ for (unsigned char j = 0; j<3; ++j)
+ out[i] += matrix[i][j] * in[j];
+
+ return Vec3d((double)out[0], (double)out[1], (double)out[2]);
+}
+
+void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
+{
+ m_center.release(); // object is not being dragged (this would not be called otherwise) - we must forget about the bounding box position...
+ m_model_object = model_object;
+
+ // ...and save the updated positions of the object instances:
+ if (m_model_object && !m_model_object->instances.empty()) {
+ m_instances_positions.clear();
+ for (const auto* instance : m_model_object->instances)
+ m_instances_positions.emplace_back(instance->offset);
+ }
+
+ if (is_plane_update_necessary())
+ update_planes();
+}
+
+void GLGizmoFlatten::update_planes()
+{
+ TriangleMesh ch;
+ for (const ModelVolume* vol : m_model_object->volumes)
+ ch.merge(vol->get_convex_hull());
+ ch = ch.convex_hull_3d();
+ ch.scale(m_model_object->instances.front()->scaling_factor);
+ ch.rotate_z(m_model_object->instances.front()->rotation);
+
+ m_planes.clear();
+
+ // Now we'll go through all the facets and append Points of facets sharing the same normal:
+ const int num_of_facets = ch.stl.stats.number_of_facets;
+ std::vector<int> facet_queue(num_of_facets, 0);
+ std::vector<bool> facet_visited(num_of_facets, false);
+ int facet_queue_cnt = 0;
+ const stl_normal* normal_ptr = nullptr;
+ while (1) {
+ // Find next unvisited triangle:
+ int facet_idx = 0;
+ for (; facet_idx < num_of_facets; ++ facet_idx)
+ if (!facet_visited[facet_idx]) {
+ facet_queue[facet_queue_cnt ++] = facet_idx;
+ facet_visited[facet_idx] = true;
+ normal_ptr = &ch.stl.facet_start[facet_idx].normal;
+ m_planes.emplace_back();
+ break;
+ }
+ if (facet_idx == num_of_facets)
+ break; // Everything was visited already
+
+ while (facet_queue_cnt > 0) {
+ int facet_idx = facet_queue[-- facet_queue_cnt];
+ const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal;
+ if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
+ stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
+ for (int j=0; j<3; ++j)
+ m_planes.back().vertices.emplace_back(first_vertex[j](0), first_vertex[j](1), first_vertex[j](2));
+
+ facet_visited[facet_idx] = true;
+ for (int j = 0; j < 3; ++ j) {
+ int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
+ if (! facet_visited[neighbor_idx])
+ facet_queue[facet_queue_cnt ++] = neighbor_idx;
+ }
+ }
+ }
+ m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2));
+
+ // if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway):
+ if (m_planes.back().vertices.size() == 3 &&
+ (m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.f
+ || (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.f)
+ m_planes.pop_back();
+ }
+
+ // Now we'll go through all the polygons, transform the points into xy plane to process them:
+ for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
+ Pointf3s& polygon = m_planes[polygon_id].vertices;
+ const Vec3d& normal = m_planes[polygon_id].normal;
+
+ // We are going to rotate about z and y to flatten the plane
+ float angle_z = 0.f;
+ float angle_y = 0.f;
+ if (std::abs(normal(1)) > 0.001)
+ angle_z = -atan2(normal(1), normal(0)); // angle to rotate so that normal ends up in xz-plane
+ if (std::abs(normal(0)*cos(angle_z) - normal(1)*sin(angle_z)) > 0.001)
+ angle_y = -atan2(normal(0)*cos(angle_z) - normal(1)*sin(angle_z), normal(2)); // angle to rotate to make normal point upwards
+ else {
+ // In case it already was in z-direction, we must ensure it is not the wrong way:
+ angle_y = normal(2) > 0.f ? 0 : -PI;
+ }
+
+ // Rotate all points to the xy plane:
+ for (auto& vertex : polygon) {
+ vertex = super_rotation(Vec3d::UnitZ(), angle_z, vertex);
+ vertex = super_rotation(Vec3d::UnitY(), angle_y, vertex);
+ }
+ polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points
+
+ // We will calculate area of the polygon and discard ones that are too small
+ // The limit is more forgiving in case the normal is in the direction of the coordinate axes
+ const float minimal_area = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? 1.f : 20.f;
+ float& area = m_planes[polygon_id].area;
+ area = 0.f;
+ for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
+ area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
+ area = std::abs(area / 2.f);
+ if (area < minimal_area) {
+ m_planes.erase(m_planes.begin()+(polygon_id--));
+ continue;
+ }
+
+ // We will shrink the polygon a little bit so it does not touch the object edges:
+ Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0));
+ centroid /= (double)polygon.size();
+ for (auto& vertex : polygon)
+ vertex = 0.9f*vertex + 0.1f*centroid;
+
+ // Polygon is now simple and convex, we'll round the corners to make them look nicer.
+ // The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
+ // towards their average (controlled by 'aggressivity'). This is repeated k times.
+ // In next iterations, the neighbours are not always taken at the middle (to increase the
+ // rounding effect at the corners, where we need it most).
+ const unsigned int k = 10; // number of iterations
+ const float aggressivity = 0.2f; // agressivity
+ const unsigned int N = polygon.size();
+ std::vector<std::pair<unsigned int, unsigned int>> neighbours;
+ if (k != 0) {
+ Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
+ for (unsigned int j=0; j<N; ++j) {
+ points_out[j*2*k] = polygon[j];
+ neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
+ }
+
+ for (unsigned int i=0; i<k; ++i) {
+ // Calculate middle of each edge so that neighbours points to something useful:
+ for (unsigned int j=0; j<N; ++j)
+ if (i==0)
+ points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
+ else {
+ float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
+ points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
+ points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
+ }
+ // Now we have a triangle and valid neighbours, we can do an iteration:
+ for (unsigned int j=0; j<N; ++j)
+ points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
+ aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
+
+ for (auto& n : neighbours) {
+ ++n.first;
+ --n.second;
+ }
+ }
+ polygon = points_out; // replace the coarse polygon with the smooth one that we just created
+ }
+
+ // Transform back to 3D;
+ for (auto& b : polygon) {
+ b(0) += 0.1f; // raise a bit above the object surface to avoid flickering
+ b = super_rotation(Vec3d::UnitY(), -angle_y, b);
+ b = super_rotation(Vec3d::UnitZ(), -angle_z, b);
+ }
+ }
+
+ // We'll sort the planes by area and only keep the 255 largest ones (because of the picking pass limitations):
+ std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
+ m_planes.resize(std::min((int)m_planes.size(), 255));
+
+ // Planes are finished - let's save what we calculated it from:
+ m_source_data.bounding_boxes.clear();
+ for (const auto& vol : m_model_object->volumes)
+ m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box());
+ m_source_data.scaling_factor = m_model_object->instances.front()->scaling_factor;
+ m_source_data.rotation = m_model_object->instances.front()->rotation;
+ const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
+ m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
+}
+
+// Check if the bounding boxes of each volume's convex hull is the same as before
+// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
+bool GLGizmoFlatten::is_plane_update_necessary() const
+{
+ if (m_state != On || !m_model_object || m_model_object->instances.empty())
+ return false;
+
+ if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size()
+ || m_model_object->instances.front()->scaling_factor != m_source_data.scaling_factor
+ || m_model_object->instances.front()->rotation != m_source_data.rotation)
+ return true;
+
+ // now compare the bounding boxes:
+ for (unsigned int i=0; i<m_model_object->volumes.size(); ++i)
+ if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i])
+ return true;
+
+ const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
+ Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
+ if (first_point != m_source_data.mesh_first_point)
+ return true;
+
+ return false;
+}
+
+Vec3d GLGizmoFlatten::get_flattening_normal() const {
+ Transform3d m = Transform3d::Identity();
+ m.rotate(Eigen::AngleAxisd(-m_model_object->instances.front()->rotation, Vec3d::UnitZ()));
+ Vec3d normal = m * m_normal;
+ m_normal = Vec3d::Zero();
+ return normal;
+}
+
} // namespace GUI
} // namespace Slic3r