Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BridgeDetector.cpp « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 407a8d7cef232d789444df170f8f856a78402a43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#include "BridgeDetector.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include <algorithm>

namespace Slic3r {

BridgeDetector::BridgeDetector(
    ExPolygon         _expolygon,
    const ExPolygons &_lower_slices, 
    coord_t           _spacing) :
    // The original infill polygon, not inflated.
    expolygons(expolygons_owned),
    // All surfaces of the object supporting this region.
    lower_slices(_lower_slices),
    spacing(_spacing)
{
    this->expolygons_owned.push_back(std::move(_expolygon));
    initialize();
}

BridgeDetector::BridgeDetector(
    const ExPolygons  &_expolygons,
    const ExPolygons  &_lower_slices,
    coord_t            _spacing) : 
    // The original infill polygon, not inflated.
    expolygons(_expolygons),
    // All surfaces of the object supporting this region.
    lower_slices(_lower_slices),
    spacing(_spacing)
{
    initialize();
}

void BridgeDetector::initialize()
{
    // 2 degrees stepping
    this->resolution = PI/(90); 
    // output angle not known
    this->angle = -1.;

    // Outset our bridge by an arbitrary amout; we'll use this outer margin for detecting anchors.
    Polygons grown = offset(this->expolygons, float(this->spacing));
    
    // Detect possible anchoring edges of this bridging region.
    // Detect what edges lie on lower slices by turning bridge contour and holes
    // into polylines and then clipping them with each lower slice's contour.
    // Currently _edges are only used to set a candidate direction of the bridge (see bridge_direction_candidates()).
    Polygons contours;
    contours.reserve(this->lower_slices.size());
    for (const ExPolygon &expoly : this->lower_slices)
        contours.push_back(expoly.contour);
    this->_edges = intersection_pl(to_polylines(grown), contours);
    
    #ifdef SLIC3R_DEBUG
    printf("  bridge has %zu support(s)\n", this->_edges.size());
    #endif
    
    // detect anchors as intersection between our bridge expolygon and the lower slices
    // safety offset required to avoid Clipper from detecting empty intersection while Boost actually found some edges
    this->_anchor_regions = intersection_ex(grown, union_safety_offset(this->lower_slices));
    
    /*
    if (0) {
        require "Slic3r/SVG.pm";
        Slic3r::SVG::output("bridge.svg",
            expolygons      => [ $self->expolygon ],
            red_expolygons  => $self->lower_slices,
            polylines       => $self->_edges,
        );
    }
    */
}

bool BridgeDetector::detect_angle(double bridge_direction_override)
{
    if (this->_edges.empty() || this->_anchor_regions.empty()) 
        // The bridging region is completely in the air, there are no anchors available at the layer below.
        return false;

    std::vector<BridgeDirection> candidates;
    if (bridge_direction_override == 0.) {
        candidates = bridge_direction_candidates();
    } else
        candidates.emplace_back(BridgeDirection(bridge_direction_override));
    
    /*  Outset the bridge expolygon by half the amount we used for detecting anchors;
        we'll use this one to clip our test lines and be sure that their endpoints
        are inside the anchors and not on their contours leading to false negatives. */
    Polygons clip_area = offset(this->expolygons, 0.5f * float(this->spacing));
    
    /*  we'll now try several directions using a rudimentary visibility check:
        bridge in several directions and then sum the length of lines having both
        endpoints within anchors */
        
    bool have_coverage = false;
    for (size_t i_angle = 0; i_angle < candidates.size(); ++ i_angle)
    {
        const double angle = candidates[i_angle].angle;
        Lines lines;
        {
            // Get an oriented bounding box around _anchor_regions.
            BoundingBox bbox = get_extents_rotated(this->_anchor_regions, - angle);
            // Cover the region with line segments.
            lines.reserve((bbox.max.y() - bbox.min.y() + this->spacing - SCALED_EPSILON) / this->spacing);
            double s = sin(angle);
            double c = cos(angle);
            // As The lines be spaced half the line width from the edge
            // FIXME: some of the test cases may fail. Need to adjust the test cases
            for (coord_t y = bbox.min.y() + this->spacing / 2; y <= bbox.max.y(); y += this->spacing)
            //for (coord_t y = bbox.min.y(); y <= bbox.max.y(); y += this->spacing) //this is the old version
                lines.push_back(Line(
                    Point((coord_t)round(c * bbox.min.x() - s * y), (coord_t)round(c * y + s * bbox.min.x())),
                    Point((coord_t)round(c * bbox.max.x() - s * y), (coord_t)round(c * y + s * bbox.max.x()))));
        }

        //create boundingbox for anchor regions
        std::vector<BoundingBox> anchor_bb;
        for (ExPolygon& poly : this->_anchor_regions) {
            anchor_bb.emplace_back(poly.contour.bounding_box());
        }

        //compute stat on line with anchors, and their lengths.
        BridgeDirection& c = candidates[i_angle];
        std::vector<coordf_t> dist_anchored;
        {
            Lines clipped_lines = intersection_ln(lines, clip_area);
            for (size_t i = 0; i < clipped_lines.size(); ++i) {
                // this can be called 100 000 time per detect_angle, please optimise
                const Line &line = clipped_lines[i];
                bool good_line = false;
                coordf_t len = line.length();
                //is anchored?
                size_t line_a_anchor_idx = -1;
                size_t line_b_anchor_idx = -1;
                for (int i = 0; i < _anchor_regions.size(); ++i) {
                    ExPolygon& poly = this->_anchor_regions[i];
                    BoundingBox& polybb = anchor_bb[i];
                    if (polybb.contains(line.a) && poly.contains(line.a)) { // using short-circuit evaluation to test boundingbox and only then the other
                        line_a_anchor_idx = i;
                    }
                    if (polybb.contains(line.b) && poly.contains(line.b)) { // using short-circuit evaluation to test boundingbox and only then the other
                        line_b_anchor_idx = i;
                    }
                    if (line_a_anchor_idx < clipped_lines.size() && line_b_anchor_idx < clipped_lines.size())
                        break;
                }
                //check if the anchor search has been successful
                if ( (line_a_anchor_idx < clipped_lines.size()) & (line_b_anchor_idx < clipped_lines.size())) { // this 'if' isn't very effective (culls ~ 10% on a benchy) but it's almost free to compute
                    good_line = true;
                    //test if it's not a fake bridge
                    if (line_a_anchor_idx == line_b_anchor_idx) {
                        good_line = false;
                        //check that the line go out of the anchor into the briding area 
                        // don't call intersection_ln here, as even if we succeed to limit the number of candidates to ~100, here we can have hundreds of lines, so that means dozen of thousands of calls (or more)!
                        // add some points (at least the middle) to test, it's quick
                        Point middle_point = line.midpoint();
                        for (int i = 0; i < _anchor_regions.size(); ++i) {
                            ExPolygon& poly = this->_anchor_regions[i];
                            BoundingBox& polybb = anchor_bb[i];
                            if (!polybb.contains(middle_point) || !poly.contains(middle_point)) { // using short-circuit evaluation to test boundingbox and only then the other
                                good_line = true;
                                break;
                            }
                        }
                        // if still bad, the line is long enough to warrant two more test point? (1/2000 on a benchy)
                        if (!good_line && len > this->spacing * 10) {
                            //now test with to more points
                            Line middle_line;
                            middle_line.a = (line.a + middle_point) / 2;
                            middle_line.b = (line.b + middle_point) / 2;
                            for (int i = 0; i < _anchor_regions.size(); ++i) {
                                ExPolygon& poly = this->_anchor_regions[i];
                                BoundingBox& polybb = anchor_bb[i];
                                if (!polybb.contains(middle_line.a) || !poly.contains(middle_line.a)) { // using short-circuit evaluation to test boundingbox and only then the other
                                    good_line = true;
                                    break;
                                }
                                if (!polybb.contains(middle_line.b) || !poly.contains(middle_line.b)) { // using short-circuit evaluation to test boundingbox and only then the other
                                    good_line = true;
                                    break;
                                }
                            }
                        }
                        // If the line is still bad and is a long one, use the more costly intersection_ln. This case is rare enough to swallow the cost. (1/10000 on a benchy)
                        if (!good_line && len > this->spacing * 40) {
                            //now test with intersection_ln
                            Lines lines = intersection_ln(line, to_polygons(this->_anchor_regions));
                            good_line = lines.size() > 1;
                        }
                    }
                }
                if(good_line) {
                    // This line could be anchored at both side and goes over the void to bridge it in its middle.
                    //store stats
                    c.total_length_anchored += len;
                    c.max_length_anchored = std::max(c.max_length_anchored, len);
                    c.nb_lines_anchored++;
                    dist_anchored.push_back(len);
                } else {
                    // this line could NOT be anchored.
                    c.total_length_free += len;
                    c.max_length_free = std::max(c.max_length_free, len);
                    c.nb_lines_free++;
                }
            }        
        }
        if (c.total_length_anchored == 0. || c.nb_lines_anchored == 0) {
            continue;
        } else {
            have_coverage = true;
            // compute median
            if (!dist_anchored.empty()) {
                std::sort(dist_anchored.begin(), dist_anchored.end());
                c.median_length_anchor = dist_anchored[dist_anchored.size() / 2];
            }


            // size is 20%
        }
    }

    // if no direction produced coverage, then there's no bridge direction ?
    if (!have_coverage) {
        //try again to choose the least worse
        // use only poly contour angles
        if (bridge_direction_override == 0.) {
            candidates = bridge_direction_candidates(true);
        } else
            candidates.emplace_back(BridgeDirection(bridge_direction_override));
        for (size_t i_angle = 0; i_angle < candidates.size(); ++i_angle)
        {
            const double angle = candidates[i_angle].angle;
            //use the whole polygon
            Lines lines;
            {
                // Get an oriented bounding box around _anchor_regions.
                BoundingBox bbox = get_extents_rotated(clip_area, -angle);
                // Cover the region with line segments.
                lines.reserve((bbox.max.y() - bbox.min.y() + this->spacing - SCALED_EPSILON) / this->spacing);
                double s = sin(angle);
                double c = cos(angle);
                // The lines be spaced half the line width from the edge
                for (coord_t y = bbox.min.y() + this->spacing / 2; y <= bbox.max.y(); y += this->spacing)
                    lines.push_back(Line(
                        Point((coord_t)round(c * bbox.min.x() - s * y), (coord_t)round(c * y + s * bbox.min.x())),
                        Point((coord_t)round(c * bbox.max.x() - s * y), (coord_t)round(c * y + s * bbox.max.x()))));
            }
            //compute stat on line with anchors, and their lengths.
            BridgeDirection& c = candidates[i_angle];
            std::vector<coordf_t> dist_anchored;
            {
                Lines clipped_lines = intersection_ln(lines, clip_area);
                for (size_t i = 0; i < clipped_lines.size(); ++i) {
                    const Line& line = clipped_lines[i];
                    if (expolygons_contain(this->_anchor_regions, line.a) || expolygons_contain(this->_anchor_regions, line.b)) {
                        // This line has one anchor (or is totally anchored)
                        coordf_t len = line.length();
                        //store stats
                        c.total_length_anchored += len;
                        c.max_length_anchored = std::max(c.max_length_anchored, len);
                        c.nb_lines_anchored++;
                        dist_anchored.push_back(len);
                    } else {
                        // this line could NOT be anchored.
                        coordf_t len = line.length();
                        c.total_length_free += len;
                        c.max_length_free = std::max(c.max_length_free, len);
                        c.nb_lines_free++;
                    }
                }
            }
            if (c.total_length_anchored == 0. || c.nb_lines_anchored == 0) {
                continue;
            } else {
                have_coverage = true;
                // compute median
                if (!dist_anchored.empty()) {
                    std::sort(dist_anchored.begin(), dist_anchored.end());
                    c.median_length_anchor = dist_anchored[dist_anchored.size() / 2];
                }


                // size is 20%
            }
        }
    }

    // if no direction produced coverage, then there's no bridge direction
    if (!have_coverage)
        return false;

    //compute global stat (max & min median & max length)
    std::vector<coordf_t> all_median_length;
    std::vector<coordf_t> all_max_length;
    for (BridgeDirection &c : candidates) {
        all_median_length.push_back(c.median_length_anchor);
        all_max_length.push_back(c.max_length_anchored);
    }
    std::sort(all_median_length.begin(), all_median_length.end());
    std::sort(all_max_length.begin(), all_max_length.end());
    coordf_t median_max_length = all_max_length[all_max_length.size() / 2];
    coordf_t min_max_length = all_max_length.front();
    coordf_t max_max_length = all_max_length.back();
    coordf_t median_median_length = all_median_length[all_median_length.size() / 2];
    coordf_t min_median_length = all_median_length.front();
    coordf_t max_median_length = all_median_length.back();

    //compute individual score
    for (BridgeDirection& c : candidates) {
        c.coverage = 0;
        //ratio_anchored is 70% of the score
        double ratio_anchored = c.total_length_anchored / (c.total_length_anchored + c.total_length_free);
        c.coverage = 70 * ratio_anchored;
        //median is 15% (and need to invert it)
        double ratio_median = 1 - double(c.median_length_anchor - min_median_length) / (double)std::max(1., max_median_length - min_median_length);
        c.coverage += 15 * ratio_median;
        //max is 15 % (and need to invert it)
        double ratio_max = 1 - double(c.max_length_anchored - min_max_length) / (double)std::max(1., max_max_length - min_max_length);
        c.coverage += 15 * ratio_max;
        //bonus for perimeter dir
        if (c.along_perimeter_length > 0)
            c.coverage += 5;

    }
    
    // if any other direction is within extrusion width of coverage, prefer it if shorter
    // shorter = shorter max length, or if in espilon (10) range, the shorter mean length.
    // TODO: There are two options here - within width of the angle with most coverage, or within width of the currently perferred?
    size_t i_best = 0;
    for (size_t i = 1; i < candidates.size(); ++ i)
        if (candidates[i].coverage > candidates[i_best].coverage)
            i_best = i;

    this->angle = candidates[i_best].angle;
    if (this->angle >= PI)
        this->angle -= PI;
    
    #ifdef SLIC3R_DEBUG
    printf("  Optimal infill angle is %d degrees\n", (int)Slic3r::Geometry::rad2deg(this->angle));
    #endif

    return true;
}

std::vector<BridgeDetector::BridgeDirection> BridgeDetector::bridge_direction_candidates(bool only_from_polygon) const
{
    std::vector<BridgeDirection> angles;
    // we test angles according to configured resolution
    if (!only_from_polygon)
        for (int i = 0; i <= PI/this->resolution; ++i)
            angles.emplace_back(i * this->resolution);
    
    // we also test angles of each bridge contour
    {
        Lines lines = to_lines(this->expolygons);
        //if many lines, only takes the bigger ones.
        float mean_sqr_size = 0;
        if (lines.size() > 200) {
            for (int i = 0; i < 200; i++) {
                mean_sqr_size += (float)lines[i].a.distance_to_square(lines[i].b);
            }
            mean_sqr_size /= 200;
            for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
                float dist_sqr = line->a.distance_to_square(line->b);
                if (dist_sqr > mean_sqr_size)
                    angles.emplace_back(line->direction(), dist_sqr);
            }
        }else
            for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line)
                angles.emplace_back(line->direction(), line->a.distance_to_square(line->b));
    }
    
    /*  we also test angles of each open supporting edge
        (this finds the optimal angle for C-shaped supports) */
    for (const Polyline &edge : this->_edges)
        if (edge.first_point() != edge.last_point())
            angles.emplace_back(Line(edge.first_point(), edge.last_point()).direction());
    
    // remove duplicates
    std::sort(angles.begin(), angles.end(), [](const BridgeDirection& bt1, const BridgeDirection& bt2) { return bt1.angle < bt2.angle; });

    //first delete angles too close to an angle from a perimeter  
    for (size_t i = 1; i < angles.size(); ++i) {
        if (angles[i - 1].along_perimeter_length > 0 && angles[i].along_perimeter_length == 0)
            if (Slic3r::Geometry::directions_parallel(angles[i].angle, angles[i - 1].angle, this->resolution)) {
                angles.erase(angles.begin() + i);
                --i;
                continue;
            }
        if (angles[i].along_perimeter_length > 0 && angles[i - 1].along_perimeter_length == 0)
            if (Slic3r::Geometry::directions_parallel(angles[i].angle, angles[i - 1].angle, this->resolution)) {
                angles.erase(angles.begin() + (i-1));
                --i;
                continue;
            }
    }
    //then delete angle to close to each other (high resolution)
    double min_resolution = this->resolution / 8;
    for (size_t i = 1; i < angles.size(); ++i) {
        if (Slic3r::Geometry::directions_parallel(angles[i].angle, angles[i - 1].angle, min_resolution)) {
            // keep the longest of the two.
            if (angles[i].along_perimeter_length < angles[i - 1].along_perimeter_length) {
                angles.erase(angles.begin() + i);
                --i;
            } else {
                angles.erase(angles.begin() + (i-1));
                --i;
            }
        }
    }
    //then, if too much angles, delete more
    while (angles.size() > 200) {
        min_resolution *= 2;
        for (size_t i = 1; i < angles.size(); ++i) {
            if (Slic3r::Geometry::directions_parallel(angles[i].angle, angles[i - 1].angle, min_resolution)) {
                // keep the longest of the two.
                if (angles[i].along_perimeter_length < angles[i - 1].along_perimeter_length) {
                    angles.erase(angles.begin() + i);
                    --i;
                } else {
                    angles.erase(angles.begin() + (i - 1));
                    --i;
                }
            }
        }
    }
    /*  compare first value with last one and remove the greatest one (PI) 
        in case they are parallel (PI, 0) */
    if (Slic3r::Geometry::directions_parallel(angles.front().angle, angles.back().angle, min_resolution))
        angles.pop_back();

    return angles;
}

/*
static void get_trapezoids(const ExPolygon &expoly, Polygons* polygons) const
{
    ExPolygons expp;
    expp.push_back(expoly);
    boost::polygon::get_trapezoids(*polygons, expp);
}

void ExPolygon::get_trapezoids(ExPolygon clone, Polygons* polygons, double angle) const
{
    clone.rotate(PI/2 - angle, Point(0,0));
    clone.get_trapezoids(polygons);
    for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
        polygon->rotate(-(PI/2 - angle), Point(0,0));
}
*/

// This algorithm may return more trapezoids than necessary
// (i.e. it may break a single trapezoid in several because
// other parts of the object have x coordinates in the middle)
static void get_trapezoids2(const ExPolygon& expoly, Polygons* polygons)
{
    Polygons     src_polygons = to_polygons(expoly);
    // get all points of this ExPolygon
    const Points pp = to_points(src_polygons);

    // build our bounding box
    BoundingBox bb(pp);

    // get all x coordinates
    std::vector<coord_t> xx;
    xx.reserve(pp.size());
    for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
        xx.push_back(p->x());
    std::sort(xx.begin(), xx.end());

    // find trapezoids by looping from first to next-to-last coordinate
    Polygons rectangle;
    rectangle.emplace_back(Polygon());
    for (std::vector<coord_t>::const_iterator x = xx.begin(); x != xx.end()-1; ++x) {
        coord_t next_x = *(x + 1);
        if (*x != next_x) {
            // intersect with rectangle
            // append results to return value
            rectangle.front() = { { *x, bb.min.y() }, { next_x, bb.min.y() }, { next_x, bb.max.y() }, { *x, bb.max.y() } };
            polygons_append(*polygons, intersection(rectangle, src_polygons));
        }
    }
}

static void get_trapezoids2(const ExPolygon &expoly, Polygons* polygons, double angle)
{
    ExPolygon clone = expoly;
    clone.rotate(PI/2 - angle, Point(0,0));
    get_trapezoids2(clone, polygons);
    for (Polygon &polygon : *polygons)
        polygon.rotate(-(PI/2 - angle), Point(0,0));
}



void get_trapezoids3_half(const ExPolygon& expoly, Polygons* polygons, float spacing)
{

    // get all points of this ExPolygon
    Points pp = expoly;

    if (pp.empty()) return;

    // build our bounding box
    BoundingBox bb(pp);

    // get all x coordinates
    coord_t min_x = pp[0].x(), max_x = pp[0].x();
    std::vector<coord_t> xx;
    for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p) {
        if (min_x > p->x()) min_x = p->x();
        if (max_x < p->x()) max_x = p->x();
    }
    for (coord_t x = min_x; x < max_x - (coord_t)(spacing / 2); x += (coord_t)spacing) {
        xx.push_back(x);
    }
    xx.push_back(max_x);
    //std::sort(xx.begin(), xx.end());

    // find trapezoids by looping from first to next-to-last coordinate
    for (std::vector<coord_t>::const_iterator x = xx.begin(); x != xx.end() - 1; ++x) {
        coord_t next_x = *(x + 1);
        if (*x == next_x) continue;

        // build rectangle
        Polygon poly;
        poly.points.resize(4);
        poly[0].x() = *x + (coord_t)spacing / 4;
        poly[0].y() = bb.min(1);
        poly[1].x() = next_x - (coord_t)spacing / 4;
        poly[1].y() = bb.min(1);
        poly[2].x() = next_x - (coord_t)spacing / 4;
        poly[2].y() = bb.max(1);
        poly[3].x() = *x + (coord_t)spacing / 4;
        poly[3].y() = bb.max(1);

        // intersect with this expolygon
        // append results to return value
        polygons_append(*polygons, intersection(Polygons{ poly }, to_polygons(expoly)));
    }
}

Polygons BridgeDetector::coverage(double angle, bool precise) const
{
    if (angle == -1)
        angle = this->angle;

    Polygons covered;

    if (angle != -1) {
        // Get anchors, convert them to Polygons and rotate them.
        Polygons anchors = to_polygons(this->_anchor_regions);
        polygons_rotate(anchors, PI / 2.0 - angle);
        //same for region which do not need bridging
        //Polygons supported_area = diff(this->lower_slices.expolygons, this->_anchor_regions, true);
        //polygons_rotate(anchors, PI / 2.0 - angle);

        for (ExPolygon expolygon : this->expolygons) {
            // Clone our expolygon and rotate it so that we work with vertical lines.
            expolygon.rotate(PI / 2.0 - angle);
            // Outset the bridge expolygon by half the amount we used for detecting anchors;
            // we'll use this one to generate our trapezoids and be sure that their vertices
            // are inside the anchors and not on their contours leading to false negatives.
            for (ExPolygon &expoly : offset_ex(expolygon, 0.5f * float(this->spacing))) {
                // Compute trapezoids according to a vertical orientation
                Polygons trapezoids;
                if (!precise) get_trapezoids2(expoly, &trapezoids, PI / 2);
                else get_trapezoids3_half(expoly, &trapezoids, float(this->spacing));
                for (Polygon &trapezoid : trapezoids) {
                    size_t n_supported = 0;
                    if (!precise) {
                        // not nice, we need a more robust non-numeric check
                        // imporvment 1: take into account when we go in the supported area.
                        for (const Line &supported_line : intersection_ln(trapezoid.lines(), anchors))
                            if (supported_line.length() >= this->spacing)
                                ++n_supported;
                    } else {
                        Polygons intersects = intersection(Polygons{trapezoid}, anchors);
                        n_supported = intersects.size();

                        if (n_supported >= 2) {
                            // trim it to not allow to go outside of the intersections
                            BoundingBox center_bound = intersects[0].bounding_box();
                            coord_t min_y = center_bound.center()(1), max_y = center_bound.center()(1);
                            for (Polygon &poly_bound : intersects) {
                                center_bound = poly_bound.bounding_box();
                                if (min_y > center_bound.center()(1)) min_y = center_bound.center()(1);
                                if (max_y < center_bound.center()(1)) max_y = center_bound.center()(1);
                            }
                            coord_t min_x = trapezoid[0](0), max_x = trapezoid[0](0);
                            for (Point &p : trapezoid.points) {
                                if (min_x > p(0)) min_x = p(0);
                                if (max_x < p(0)) max_x = p(0);
                            }
                            //add what get_trapezoids3 has removed (+EPSILON)
                            min_x -= (this->spacing / 4 + 1);
                            max_x += (this->spacing / 4 + 1);
                            coord_t mid_x = (min_x + max_x) / 2;
                            for (Point &p : trapezoid.points) {
                                if (p(1) < min_y) p(1) = min_y;
                                if (p(1) > max_y) p(1) = max_y;
                                if (p(0) > min_x && p(0) < mid_x) p(0) = min_x;
                                if (p(0) < max_x && p(0) > mid_x) p(0) = max_x;
                            }
                        }
                    }

                    if (n_supported >= 2) {
                        //add it
                        covered.push_back(std::move(trapezoid));
                    }
                }
            }
        }

        // Unite the trapezoids before rotation, as the rotation creates tiny gaps and intersections between the trapezoids
        // instead of exact overlaps.
        covered = union_(covered);
        // Intersect trapezoids with actual bridge area to remove extra margins and append it to result.
        polygons_rotate(covered, -(PI/2.0 - angle));
        //covered = intersection(this->expolygons, covered);
#if 0
        {
            my @lines = map @{$_->lines}, @$trapezoids;
            $_->rotate(-(PI/2 - $angle), [0,0]) for @lines;
            
            require "Slic3r/SVG.pm";
            Slic3r::SVG::output(
                "coverage_" . rad2deg($angle) . ".svg",
                expolygons          => [$self->expolygon],
                green_expolygons    => $self->_anchor_regions,
                red_expolygons      => $coverage,
                lines               => \@lines,
            );
        }
#endif
    }
    return covered;
}

/*  This method returns the bridge edges (as polylines) that are not supported
    but would allow the entire bridge area to be bridged with detected angle
    if supported too */
void BridgeDetector::unsupported_edges(double angle, Polylines* unsupported) const
{
    if (angle == -1) angle = this->angle;
    if (angle == -1) return;

    Polygons grown_lower = offset(this->lower_slices, float(this->spacing));

    for (ExPolygons::const_iterator it_expoly = this->expolygons.begin(); it_expoly != this->expolygons.end(); ++ it_expoly) {    
        // get unsupported bridge edges (both contour and holes)
        Lines unsupported_lines = to_lines(diff_pl(to_polylines(*it_expoly), grown_lower));
        /*  Split into individual segments and filter out edges parallel to the bridging angle
            TODO: angle tolerance should probably be based on segment length and flow width,
            so that we build supports whenever there's a chance that at least one or two bridge
            extrusions would be anchored within such length (i.e. a slightly non-parallel bridging
            direction might still benefit from anchors if long enough)
            double angle_tolerance = PI / 180.0 * 5.0; */
        for (const Line &line : unsupported_lines)
            if (! Slic3r::Geometry::directions_parallel(line.direction(), angle)) {
                unsupported->emplace_back(Polyline());
                unsupported->back().points.emplace_back(line.a);
                unsupported->back().points.emplace_back(line.b);
            }
    }
    
    /*
    if (0) {
        require "Slic3r/SVG.pm";
        Slic3r::SVG::output(
            "unsupported_" . rad2deg($angle) . ".svg",
            expolygons          => [$self->expolygon],
            green_expolygons    => $self->_anchor_regions,
            red_expolygons      => union_ex($grown_lower),
            no_arrows           => 1,
            polylines           => \@bridge_edges,
            red_polylines       => $unsupported,
        );
    }
    */
}

Polylines BridgeDetector::unsupported_edges(double angle) const {
    Polylines pp;
    this->unsupported_edges(angle, &pp);
    return pp;
}

}