Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Fill.cpp « Fill « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 93360eb75da78cba66407c4738505861f14328a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
#include <assert.h>
#include <stdio.h>
#include <memory>

#include "../ClipperUtils.hpp"
#include "../Geometry.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"

#include "FillBase.hpp"
#include "FillRectilinear.hpp"

namespace Slic3r {

struct SurfaceFillParams : FillParams
{
    // Infill pattern, adjusted for the density etc.
    InfillPattern   pattern = InfillPattern(0);

    // FillBase
    // in unscaled coordinates
    double        spacing = 0.;
    // infill / perimeter overlap, in unscaled coordinates
    double        overlap = 0.;
    // Angle as provided by the region config, in radians.
    float           angle = 0.f;
    // Non-negative for a bridge.
    float           bridge_angle = 0.f;

    // Various print settings?

    // Index of this entry in a linear vector.
    size_t          idx = 0;


    bool operator<(const SurfaceFillParams &rhs) const {
#define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false;
#define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false;

        // Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other.
        if (this->bridge_angle > rhs.bridge_angle) return true; 
        if (this->bridge_angle < rhs.bridge_angle) return false;

        RETURN_COMPARE_NON_EQUAL(extruder);
        RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern);
        RETURN_COMPARE_NON_EQUAL(spacing);
        RETURN_COMPARE_NON_EQUAL(overlap);
        RETURN_COMPARE_NON_EQUAL(angle);
        RETURN_COMPARE_NON_EQUAL(density);
        RETURN_COMPARE_NON_EQUAL(monotonic);
        RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, connection);
        RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);

        RETURN_COMPARE_NON_EQUAL(anchor_length);        RETURN_COMPARE_NON_EQUAL(fill_exactly);
        RETURN_COMPARE_NON_EQUAL(flow.width);
        RETURN_COMPARE_NON_EQUAL(flow.height);
        RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter);
        RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, flow.bridge);
        RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, role);
        RETURN_COMPARE_NON_EQUAL_TYPED(int32_t, priority);
        return false;
    }

    bool operator==(const SurfaceFillParams &rhs) const {
        return  this->extruder              == rhs.extruder         &&
                this->pattern               == rhs.pattern          &&
                this->pattern               == rhs.pattern          &&
                this->spacing               == rhs.spacing          &&
                this->overlap               == rhs.overlap          &&
                this->angle                 == rhs.angle            &&
                this->density               == rhs.density          &&
                this->monotonic             == rhs.monotonic        &&
                this->connection            == rhs.connection       &&
                this->dont_adjust           == rhs.dont_adjust      &&
                this->anchor_length         == rhs.anchor_length    &&
                this->anchor_length_max     == rhs.anchor_length_max&&
                this->fill_exactly          == rhs.fill_exactly     &&
                this->flow                  == rhs.flow             &&
                this->role                  == rhs.role             &&
                this->priority              == rhs.priority;
    }
};

struct SurfaceFill {
    SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stNone, ExPolygon()), params(params) {}

    size_t                 region_id;
    Surface             surface;
    ExPolygons           expolygons;
    SurfaceFillParams    params;
};

std::vector<SurfaceFill> group_fills(const Layer &layer)
{
    std::vector<SurfaceFill> surface_fills;

    // Fill in a map of a region & surface to SurfaceFillParams.
    std::set<SurfaceFillParams>                         set_surface_params;
    std::vector<std::vector<const SurfaceFillParams*>>     region_to_surface_params(layer.regions().size(), std::vector<const SurfaceFillParams*>());
    SurfaceFillParams                                    params;
    bool                                                 has_internal_voids = false;
    for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
        const LayerRegion  &layerm = *layer.regions()[region_id];
        region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr);
        for (const Surface &surface : layerm.fill_surfaces.surfaces)
            if (surface.surface_type == (stPosInternal | stDensVoid)) {
                has_internal_voids = true;
            } else {
                const PrintRegionConfig &region_config = layerm.region()->config();
                FlowRole extrusion_role = surface.has_pos_top() ? frTopSolidInfill : (surface.has_fill_solid() ? frSolidInfill : frInfill);
                bool     is_bridge      = layer.id() > 0 && surface.has_mod_bridge();
                bool     is_denser      = false;
                params.extruder         = layerm.region()->extruder(extrusion_role, *layer.object());
                params.pattern          = region_config.fill_pattern.value;
                params.density          = float(region_config.fill_density) / 100.f;
                params.dont_adjust      = false;
                params.connection       = region_config.infill_connection.value;
                params.priority         = 0;

                if (surface.has_fill_solid()) {
                    params.density = 1.f;
                    params.pattern = ipRectilinear;
                    params.connection = region_config.infill_connection_solid.value;
                    if (surface.has_pos_top())
                        params.connection = region_config.infill_connection_top.value;
                    if (surface.has_pos_bottom())
                        params.connection = region_config.infill_connection_bottom.value;
                    if (is_bridge)
                        params.connection = InfillConnection::icConnected;
                    if (surface.has_pos_external() && !is_bridge)
                        params.pattern = surface.has_pos_top() ? region_config.top_fill_pattern.value : region_config.bottom_fill_pattern.value;
                    else if (!is_bridge)
                        params.pattern = region_config.solid_fill_pattern.value;
                } else {
                    if (is_bridge)
                        params.connection = InfillConnection::icConnected;
                    if (region_config.infill_dense.getBool()
                        && region_config.fill_density < 40
                        && surface.maxNbSolidLayersOnTop == 1) {
                        params.density = 0.42f;
                        is_denser = true;
                        is_bridge = true;
                        params.pattern = ipRectiWithPerimeter;
                        params.priority = surface.priority;
                        params.dont_adjust = true; // keep the 42% density
                        params.connection = InfillConnection::icConnected;
                    }
                    if (params.density <= 0 && !is_denser)
                        continue;
                }
                //adjust spacing/density (to over-extrude when needed)
                if (surface.has_mod_overBridge()) {
                    params.density = float(region_config.over_bridge_flow_ratio.get_abs_value(1));
                }

                //note: same as getRoleFromSurfaceType()
                params.role = erInternalInfill;
                if (is_bridge) {
                    if(surface.has_pos_bottom())
                        params.role = erBridgeInfill;
                    else
                        params.role = erInternalBridgeInfill;
                } else if (surface.has_fill_solid()) {
                    if (surface.has_pos_top()) {
                        params.role = erTopSolidInfill;
                    } else {
                        params.role = erSolidInfill;
                    }
                }
                params.fill_exactly = region_config.enforce_full_fill_volume.getBool();
                params.bridge_angle = float(surface.bridge_angle);
                if (is_denser) {
                    params.angle = 0;
                } else {
                    params.angle = float(Geometry::deg2rad(region_config.fill_angle.value));
                    params.angle += float(PI * (region_config.fill_angle_increment.value * layerm.layer()->id()) / 180.f);
                }
		        params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);

                //adjust flow (to over-extrude when needed)
                params.flow_mult = 1;
                if (surface.has_pos_top())
                    params.flow_mult *= float(region_config.fill_top_flow_ratio.get_abs_value(1));

                params.config = &layerm.region()->config();

                // calculate the actual flow we'll be using for this infill
                params.flow = layerm.region()->flow(
                    extrusion_role,
                    (surface.thickness == -1) ? layer.height : surface.thickness,   // extrusion height
                    is_bridge,                                                      // bridge flow?
                    layer.id() == 0,                                                // first layer?
                    -1,                                                             // auto width
                    *layer.object()
                );
                
                // Calculate flow spacing for infill pattern generation.
                if (surface.has_fill_solid() || is_bridge) {
                    params.spacing = params.flow.spacing();
                    // Don't limit anchor length for solid or bridging infill.
                    // use old algo to prevent possible weird stuff from sparse bridging
                    params.anchor_length = is_bridge?0:1000.f;
                } else {
                    // it's internal infill, so we can calculate a generic flow spacing 
                    // for all layers, for avoiding the ugly effect of
                    // misaligned infill on first layer because of different extrusion width and
                    // layer height
                    params.spacing = layerm.region()->flow(
                            frInfill,
                            layer.object()->config().layer_height.value,  // TODO: handle infill_every_layers?
                            false,  // no bridge
                            false,  // no first layer
                            -1,     // auto width
                            *layer.object()
                        ).spacing();
                    // Anchor a sparse infill to inner perimeters with the following anchor length:
                    params.anchor_length = float(region_config.infill_anchor);
                    if (region_config.infill_anchor.percent)
                        params.anchor_length = float(params.anchor_length * 0.01 * params.spacing);
                    params.anchor_length_max = float(region_config.infill_anchor_max);
                    if (region_config.infill_anchor_max.percent)
                        params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing);
                    params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
                }

                auto it_params = set_surface_params.find(params);
                if (it_params == set_surface_params.end())
                    it_params = set_surface_params.insert(it_params, params);
                region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params);
            }
    }

    surface_fills.reserve(set_surface_params.size());
    for (const SurfaceFillParams &params : set_surface_params) {
        const_cast<SurfaceFillParams&>(params).idx = surface_fills.size();
        surface_fills.emplace_back(params);
    }

    for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
        const LayerRegion &layerm = *layer.regions()[region_id];
        for (const Surface &surface : layerm.fill_surfaces.surfaces)
            if (surface.surface_type != (stPosInternal | stDensVoid)) {
                const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()];
                if (params != nullptr) {
                    SurfaceFill &fill = surface_fills[params->idx];
                    if (fill.region_id == size_t(-1)) {
                        fill.region_id = region_id;
                        fill.surface = surface;
                        fill.expolygons.emplace_back(std::move(fill.surface.expolygon));
                    } else
                        fill.expolygons.emplace_back(surface.expolygon);
                }
            }
    }

    {
        Polygons all_polygons;
        for (SurfaceFill &fill : surface_fills)
            if (! fill.expolygons.empty()) {
                if (fill.params.priority > 0) {
                    append(all_polygons, to_polygons(fill.expolygons));
                }else if (fill.expolygons.size() > 1 || !all_polygons.empty()) {
                    Polygons polys = to_polygons(std::move(fill.expolygons));
                    // Make a union of polygons, use a safety offset, subtract the preceding polygons.
                    // Bridges are processed first (see SurfaceFill::operator<())
                    fill.expolygons = all_polygons.empty() ? union_ex(polys, true) : diff_ex(polys, all_polygons, true);
                    append(all_polygons, std::move(polys));
                } else if (&fill != &surface_fills.back())
                    append(all_polygons, to_polygons(fill.expolygons));
            }
    }

    // we need to detect any narrow surfaces that might collapse
    // when adding spacing below
    // such narrow surfaces are often generated in sloping walls
    // by bridge_over_infill() and combine_infill() as a result of the
    // subtraction of the combinable area from the layer infill area,
    // which leaves small areas near the perimeters
    // we are going to grow such regions by overlapping them with the void (if any)
    // TODO: detect and investigate whether there could be narrow regions without
    // any void neighbors
    if (has_internal_voids) {
        // Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active.
        coord_t  distance_between_surfaces = 0;
        Polygons surfaces_polygons;
        Polygons voids;
        int      region_internal_infill = -1;
        int         region_solid_infill = -1;
        int         region_some_infill = -1;
        for (SurfaceFill &surface_fill : surface_fills)
            if (! surface_fill.expolygons.empty()) {
                distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing());
                append((surface_fill.surface.surface_type == (stPosInternal | stDensVoid)) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons));
                if (surface_fill.surface.surface_type == (stPosInternal | stDensSolid))
                    region_internal_infill = (int)surface_fill.region_id;
                if (surface_fill.surface.has_fill_solid())
                    region_solid_infill = (int)surface_fill.region_id;
                if (surface_fill.surface.surface_type != (stPosInternal | stDensVoid))
                    region_some_infill = (int)surface_fill.region_id;
            }
        if (! voids.empty() && ! surfaces_polygons.empty()) {
            // First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping.
            voids = diff(voids, surfaces_polygons);
            // Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2
            Polygons collapsed = diff(
                surfaces_polygons,
                offset2(surfaces_polygons, (float)-distance_between_surfaces/2, (float)+distance_between_surfaces/2),
                true);
            //FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being
            // added if two offsetted void regions merge.
            // polygons_append(voids, collapsed);
            ExPolygons extensions = intersection_ex(offset(collapsed, (float)distance_between_surfaces), voids, true);
            // Now find an internal infill SurfaceFill to add these extrusions to.
            SurfaceFill *internal_solid_fill = nullptr;
            unsigned int region_id = 0;
            if (region_internal_infill != -1)
                region_id = region_internal_infill;
            else if (region_solid_infill != -1)
                region_id = region_solid_infill;
            else if (region_some_infill != -1)
                region_id = region_some_infill;
            const LayerRegion& layerm = *layer.regions()[region_id];
            for (SurfaceFill &surface_fill : surface_fills)
                if (surface_fill.surface.surface_type == (stPosInternal | stDensVoid) && std::abs(layer.height - surface_fill.params.flow.height) < EPSILON) {
                    internal_solid_fill = &surface_fill;
                    break;
                }
            if (internal_solid_fill == nullptr) {
                // Produce another solid fill.
                params.extruder = layerm.region()->extruder(frSolidInfill, *layer.object());
                params.pattern  = layerm.region()->config().solid_fill_pattern.value;
                params.density  = 100.f;
                params.role     = erInternalInfill;
                params.angle    = float(Geometry::deg2rad(layerm.region()->config().fill_angle.value));
                // calculate the actual flow we'll be using for this infill
                params.flow = layerm.region()->flow(
                    frSolidInfill,
                    layer.height,         // extrusion height
                    false,                 // bridge flow?
                    layer.id() == 0,    // first layer?
                    -1,                 // auto width
                    *layer.object()
                );
                params.spacing = params.flow.spacing();            
                surface_fills.emplace_back(params);
                surface_fills.back().surface.surface_type = (stPosInternal | stDensSolid);
                surface_fills.back().surface.thickness = layer.height;
                surface_fills.back().expolygons = std::move(extensions);
            } else {
                append(extensions, std::move(internal_solid_fill->expolygons));
                internal_solid_fill->expolygons = union_ex(extensions);
            }
        }
    }

    return surface_fills;
}

#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill> &fills)
{
    BoundingBox bbox;
    for (const auto &fill : fills)
        for (const auto &expoly : fill.expolygons)
            bbox.merge(get_extents(expoly));
    Point legend_size = export_surface_type_legend_to_svg_box_size();
    Point legend_pos(bbox.min(0), bbox.max(1));
    bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));

    SVG svg(path, bbox);
    const float transparency = 0.5f;
    for (const auto &fill : fills)
        for (const auto &expoly : fill.expolygons)
            svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency);
    export_surface_type_legend_to_svg(svg, legend_pos);
    svg.Close(); 
}
#endif

// friend to Layer
void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree)
{
    for (LayerRegion* layerm : m_regions) {
        layerm->fills.clear();
        layerm->ironings.clear();
    }


#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
//    this->export_region_fill_surfaces_to_svg_debug("10_fill-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */

    std::vector<SurfaceFill>  surface_fills = group_fills(*this);
    const Slic3r::BoundingBox bbox = this->object()->bounding_box();

    std::sort(surface_fills.begin(), surface_fills.end(), [](SurfaceFill& s1, SurfaceFill& s2) {
        if (s1.region_id == s2.region_id)
            return s1.params.priority < s2.params.priority;
        return s1.region_id < s2.region_id;
        });

#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
    {
        static int iRun = 0;
        export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills);
    }
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
    std::vector<ExtrusionEntityCollection*> fills_by_priority;
    auto store_fill = [&fills_by_priority, this](size_t region_id) {
        if (fills_by_priority.size() == 1) {
            m_regions[region_id]->fills.append(fills_by_priority[0]->entities);
            delete fills_by_priority[0];
        } else {
            m_regions[region_id]->fills.set_can_sort_reverse(false, false);
            ExtrusionEntityCollection* eec = new ExtrusionEntityCollection();
            eec->set_can_sort_reverse(false, false);
            m_regions[region_id]->fills.entities.push_back(eec);
            for (ExtrusionEntityCollection* per_priority : fills_by_priority) {
                if (!per_priority->entities.empty())
                    eec->entities.push_back(per_priority);
                else
                    delete per_priority;
            }
        }
        fills_by_priority.clear();
    };
    //surface_fills is sorted by region_id
    size_t current_region_id = -1;
    for (SurfaceFill &surface_fill : surface_fills) {
        // store the region fill when changing region. 
        if (current_region_id != size_t(-1) && current_region_id != surface_fill.region_id) {
            store_fill(current_region_id);
        }
        current_region_id = surface_fill.region_id;
        const LayerRegion* layerm = this->m_regions[surface_fill.region_id];
        
        // Create the filler object.
        std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
        f->set_bounding_box(bbox);
        f->layer_id = this->id();
        f->z        = this->print_z;
        f->angle    = surface_fill.params.angle;
        f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;

        // calculate flow spacing for infill pattern generation
        bool using_internal_flow = ! surface_fill.surface.has_fill_solid() && ! surface_fill.params.flow.bridge;
        //init spacing, it may also use & modify a bit the surface_fill.params, so most of these should be set before.
        // note that the bridge overlap is applied here via the rectilinear init_spacing. 
        f->init_spacing(surface_fill.params.spacing, surface_fill.params);
        double link_max_length = 0.;
        if (! surface_fill.params.flow.bridge) {
#if 0
            link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
//            printf("flow spacing: %f,  is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
#else
            if (surface_fill.params.density > .8) // 80%
                link_max_length = 3. * f->get_spacing();
#endif
        }

        // Maximum length of the perimeter segment linking two infill lines.
        f->link_max_length = (coord_t)scale_(link_max_length);

        //give the overlap size to let the infill do his overlap
        //add overlap if at least one perimeter
        const float perimeter_spacing = layerm->flow(frPerimeter).spacing();

        // Used by the concentric infill pattern to clip the loops to create extrusion paths.
        f->loop_clipping = scale_t(layerm->region()->config().get_computed_value("seam_gap", surface_fill.params.extruder - 1) * surface_fill.params.flow.nozzle_diameter);

        // apply half spacing using this flow's own spacing and generate infill
        //FillParams params;
        //params.density         = float(0.01 * surface_fill.params.density);
        //params.dont_adjust     = surface_fill.params.dont_adjust; // false
        //params.anchor_length = surface_fill.params.anchor_length;
        //params.anchor_length_max = surface_fill.params.anchor_length_max;

        if (using_internal_flow) {
            // if we used the internal flow we're not doing a solid infill
            // so we can safely ignore the slight variation that might have
            // been applied to $f->flow_spacing
        } else {
            float overlap = surface_fill.params.config->get_computed_value("filament_max_overlap", surface_fill.params.extruder - 1);
            surface_fill.params.flow = Flow::new_from_spacing((float)f->get_spacing(), surface_fill.params.flow.nozzle_diameter, (float)surface_fill.params.flow.height, overlap, surface_fill.params.flow.bridge);
        }


        for (ExPolygon &expoly : surface_fill.expolygons) {
            //set overlap polygons
            f->no_overlap_expolygons.clear();
            if (surface_fill.params.config->perimeters > 0) {
                f->overlap = surface_fill.params.config->infill_overlap.get_abs_value((perimeter_spacing + (f->get_spacing())) / 2);
                if (f->overlap != 0) {
                    f->no_overlap_expolygons = intersection_ex(layerm->fill_no_overlap_expolygons, ExPolygons() = { expoly });
                } else {
                    f->no_overlap_expolygons.push_back(expoly);
                }
            } else {
                f->overlap = 0;
                f->no_overlap_expolygons.push_back(expoly);
            }

            //init the surface with the current polygon
            if (!expoly.contour.empty()) {
                surface_fill.surface.expolygon = std::move(expoly);

                //adjust the bridge density
                if (surface_fill.params.flow.bridge && surface_fill.params.density > 0.99 /*&& layerm->region()->config().bridge_overlap.get_abs_value(1) != 1*/) {
                    ////varies the overlap to have teh best coverage for the bridge
                    //surface_fill.params.density *= float(layerm->region()->config().bridge_overlap.get_abs_value(1));
                    double min_spacing = 0.999 * surface_fill.params.spacing / surface_fill.params.config->bridge_overlap.get_abs_value(surface_fill.params.density);
                    double max_spacing = 1.001 * surface_fill.params.spacing / surface_fill.params.config->bridge_overlap_min.get_abs_value(surface_fill.params.density);
                    double factor = 1.00001;
                    if (min_spacing < max_spacing * 1.01) {
                        // create a bouding box of the rotated surface
                        coord_t bounding_box_size_x = 0;
                        Polygon poly = surface_fill.surface.expolygon.contour;
                        coord_t bounding_box_min_x = 0;
                        poly.rotate(PI / 2 - (surface_fill.params.bridge_angle < 0 ? surface_fill.params.angle : surface_fill.params.bridge_angle));
                        ExPolygons expolys;
                        if (surface_fill.params.bridge_angle > 0 && !f->no_overlap_expolygons.empty()) {
                            //take only the no-overlap area
                            expolys = offset_ex(intersection_ex(ExPolygons{ ExPolygon{surface_fill.surface.expolygon.contour} }, f->no_overlap_expolygons), -scale_t(surface_fill.params.spacing) / 2 - 10);
                        } else {
                            expolys = offset_ex(ExPolygon{surface_fill.surface.expolygon.contour}, -scale_t(surface_fill.params.spacing) / 2 - 10);
                        }
                        BoundingBox bb;
                        bool first = true;
                        for (ExPolygon& expoly : expolys) {
                            expoly.holes.clear();
                            expoly.rotate(PI / 2 - (surface_fill.params.bridge_angle < 0 ? surface_fill.params.angle : surface_fill.params.bridge_angle));
                            if (first) {
                                bb = expoly.contour.bounding_box();
                                first = false;
                            } else {
                                bb.merge(expoly.contour.points);
                            }
                        }
                        bounding_box_size_x = bb.size().x();
                        bounding_box_min_x = bb.min.x();

                        //compute the dist
                        double new_spacing = unscaled(f->_adjust_solid_spacing(bounding_box_size_x, scale_t(min_spacing), 2));
                        if (new_spacing <= max_spacing) {
                            surface_fill.params.density = factor * surface_fill.params.spacing / new_spacing;
                        } else {
                            double new_spacing2 = unscaled(f->_adjust_solid_spacing(bounding_box_size_x, scale_t(min_spacing * 1.999 - new_spacing), 2));
                            if (new_spacing2 < min_spacing) {
                                if (min_spacing - new_spacing2 < new_spacing - max_spacing) {
                                    surface_fill.params.density = surface_fill.params.config->bridge_overlap.get_abs_value(surface_fill.params.density);
                                } else {
                                    surface_fill.params.density = surface_fill.params.config->bridge_overlap_min.get_abs_value(surface_fill.params.density);
                                }
                            } else {
                                //use the highest density
                                surface_fill.params.density = surface_fill.params.config->bridge_overlap.get_abs_value(surface_fill.params.density);
                            }
                        }
                        surface_fill.params.dont_adjust = true;
                        surface_fill.params.bridge_offset = std::abs(poly.bounding_box().min.x() - bounding_box_min_x);
                    }
                }

                //make fill
                while ((size_t)surface_fill.params.priority >= fills_by_priority.size())
                    fills_by_priority.push_back(new ExtrusionEntityCollection());
                f->fill_surface_extrusion(&surface_fill.surface, surface_fill.params, fills_by_priority[(size_t)surface_fill.params.priority]->entities);
            }
        }
    }
    if(current_region_id != size_t(-1))
        store_fill(current_region_id);

    // add thin fill regions
    // Unpacks the collection, creates multiple collections per path.
    // The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
    // Why the paths are unpacked?
    for (LayerRegion *layerm : m_regions)
        for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) {
            ExtrusionEntityCollection *collection = new ExtrusionEntityCollection();
            if (!layerm->fills.can_sort() && layerm->fills.entities.size() > 0 && layerm->fills.entities[0]->is_collection()) {
                ExtrusionEntityCollection* no_sort_fill = static_cast<ExtrusionEntityCollection*>(layerm->fills.entities[0]);
                if (!no_sort_fill->can_sort() && no_sort_fill->entities.size() > 0 && no_sort_fill->entities[0]->is_collection())
                    static_cast<ExtrusionEntityCollection*>(no_sort_fill->entities[0])->entities.push_back(collection);
            } else
                layerm->fills.entities.push_back(collection);
            collection->entities.push_back(thin_fill->clone());
        }

#ifndef NDEBUG
    for (LayerRegion *layerm : m_regions)
        for (size_t i1 = 0; i1 < layerm->fills.entities.size(); ++i1) {
            assert(dynamic_cast<ExtrusionEntityCollection*>(layerm->fills.entities[i1]) != nullptr);
            if (!layerm->fills.can_sort() && layerm->fills.entities.size() > 0 && i1 == 0){
                ExtrusionEntityCollection* no_sort_fill = static_cast<ExtrusionEntityCollection*>(layerm->fills.entities[0]);
                assert(no_sort_fill != nullptr);
                assert(!no_sort_fill->empty());
                for (size_t i2 = 0; i2 < no_sort_fill->entities.size(); ++i2) {
                    ExtrusionEntityCollection* priority_fill = dynamic_cast<ExtrusionEntityCollection*>(no_sort_fill->entities[i2]);
                    assert(priority_fill != nullptr);
                    assert(!priority_fill->empty());
                    if (!no_sort_fill->can_sort()) {
                        for (size_t i3 = 0; i3 < priority_fill->entities.size(); ++i3)
                            assert(dynamic_cast<ExtrusionEntityCollection*>(priority_fill->entities[i3]) != nullptr);
                    }
                }
            }
        }
#endif
}

// Create ironing extrusions over top surfaces.
void Layer::make_ironing()
{
    // LayerRegion::slices contains surfaces marked with SurfaceType.
    // Here we want to collect top surfaces extruded with the same extruder.
    // A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle.

    // First classify regions based on the extruder used.
    struct IroningParams {
        int         extruder     = -1;
        bool         just_infill = false;
        // Spacing of the ironing lines, also to calculate the extrusion flow from.
        double         line_spacing;
        // Height of the extrusion, to calculate the extrusion flow from.
        double         height;
        double         speed;
        double         angle;
        IroningType    type;

        bool operator<(const IroningParams &rhs) const {
            if (this->extruder < rhs.extruder)
                return true;
            if (this->extruder > rhs.extruder)
                return false;
            if (int(this->just_infill) < int(rhs.just_infill))
                return true;
            if (int(this->just_infill) > int(rhs.just_infill))
                return false;
            if (this->line_spacing < rhs.line_spacing)
                return true;
            if (this->line_spacing > rhs.line_spacing)
                return false;
            if (this->height < rhs.height)
                return true;
            if (this->height > rhs.height)
                return false;
            if (this->speed < rhs.speed)
                return true;
            if (this->speed > rhs.speed)
                return false;
            if (this->angle < rhs.angle)
                return true;
            if (this->angle > rhs.angle)
                return false;
            return false;
        }

        bool operator==(const IroningParams &rhs) const {
            return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill &&
                   this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed &&
                this->angle == rhs.angle &&
                this->type == rhs.type;
        }

        LayerRegion *layerm        = nullptr;

        // IdeaMaker: ironing
        // ironing flowrate (5% percent)
        // ironing speed (10 mm/sec)

        // Kisslicer: 
        // iron off, Sweep, Group
        // ironing speed: 15 mm/sec

        // Cura:
        // Pattern (zig-zag / concentric)
        // line spacing (0.1mm)
        // flow: from normal layer height. 10%
        // speed: 20 mm/sec
    };

    std::vector<IroningParams> by_extruder;
    bool   extruder_dont_care   = this->object()->config().wipe_into_objects;
    double default_layer_height = this->object()->config().layer_height;

    for (LayerRegion *layerm : m_regions)
        if (! layerm->slices().empty()) {
            IroningParams ironing_params;
            const PrintRegionConfig &config = layerm->region()->config();
            if (config.ironing && 
                (config.ironing_type == IroningType::AllSolid ||
                     (config.top_solid_layers > 0 && 
                        (config.ironing_type == IroningType::TopSurfaces ||
                         (config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) {
                if (config.perimeter_extruder == config.solid_infill_extruder || config.perimeters == 0) {
                    // Iron the whole face.
                    ironing_params.extruder = config.solid_infill_extruder;
                } else {
                    // Iron just the infill.
                    ironing_params.extruder = config.solid_infill_extruder;
                }
            }
            if (ironing_params.extruder != -1) {
                ironing_params.type              = config.ironing_type;
                ironing_params.just_infill     = false;
                ironing_params.line_spacing = config.ironing_spacing;
                ironing_params.height         = default_layer_height * 0.01 * config.ironing_flowrate;
                ironing_params.speed         = config.ironing_speed;
                ironing_params.angle         = config.ironing_angle <0 ? config.fill_angle * M_PI / 180. : config.ironing_angle * M_PI / 180.;
                ironing_params.layerm         = layerm;
                by_extruder.emplace_back(ironing_params);
            }
        }
    std::sort(by_extruder.begin(), by_extruder.end());

    FillRectilinear 	fill;
    FillParams             fill_params;
    fill.set_bounding_box(this->object()->bounding_box());
    fill.layer_id           = this->id();
    fill.z                  = this->print_z;
    fill.overlap            = 0;
    fill_params.density     = 1.;
    fill_params.connection  = InfillConnection::icConnected;
    fill_params.monotonic  = true;

    for (size_t i = 0; i < by_extruder.size(); ++ i) {
        // Find span of regions equivalent to the ironing operation.
        IroningParams &ironing_params = by_extruder[i];
        size_t j = i;
        for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ;

        // Create the ironing extrusions for regions <i, j)
        ExPolygons ironing_areas;
        double nozzle_dmr = this->object()->print()->config().nozzle_diameter.values[ironing_params.extruder - 1];
        if (ironing_params.just_infill) {
            // Just infill.
        } else {
            // Infill and perimeter.
            if (ironing_params.type == IroningType::AllSolid) {
                // Merge top surfaces with the same ironing parameters.
                Polygons polys;
                for (size_t k = i; k < j; ++k)
                    for (const Surface& surface : by_extruder[k].layerm->slices().surfaces)
                        if (surface.has_fill_solid())
                            polygons_append(polys, surface.expolygon);
                // Trim the top surfaces with half the nozzle diameter.
                ironing_areas = intersection_ex(polys, offset(this->lslices, -float(scale_(0.5 * nozzle_dmr))));
            } else {
                // Merge top surfaces with the same ironing parameters.
                Polygons polys;
                for (size_t k = i; k < j; ++k)
                    for (const Surface& surface : by_extruder[k].layerm->slices().surfaces)
                        if (surface.has_pos_top())
                            polygons_append(polys, surface.expolygon);
                // Trim the top surfaces with half the nozzle diameter.
                ironing_areas = intersection_ex(polys, offset(this->lslices, -float(scale_(0.5 * nozzle_dmr))));
            }
        }

        // Create the filler object.
        fill.init_spacing(ironing_params.line_spacing, fill_params);
        fill.angle = float(ironing_params.angle + 0.25 * M_PI);
        fill.link_max_length = (coord_t)scale_(3. * fill.get_spacing());
        double height = ironing_params.height * fill.get_spacing() / nozzle_dmr;
        Flow flow = Flow::new_from_spacing(float(nozzle_dmr), 0., float(height), 1.f, false);
        double flow_mm3_per_mm = flow.mm3_per_mm();
        Surface surface_fill((stPosTop | stDensSolid), ExPolygon());
        for (ExPolygon &expoly : ironing_areas) {
            surface_fill.expolygon = std::move(expoly);
            Polylines polylines;
            try {
                polylines = fill.fill_surface(&surface_fill, fill_params);
            } catch (InfillFailedException &) {
            }
            if (! polylines.empty()) {
                // Save into layer.
                ExtrusionEntityCollection *eec = new ExtrusionEntityCollection();
                ironing_params.layerm->ironings.entities.push_back(eec);
                // Don't sort the ironing infill lines as they are monotonicly ordered.
                eec->set_can_sort_reverse(false, false);
                extrusion_entities_append_paths(
                    eec->entities, std::move(polylines),
                    erIroning,
                    flow_mm3_per_mm, float(flow.width), float(height));
            }
        }
    }
}

} // namespace Slic3r