Welcome to mirror list, hosted at ThFree Co, Russian Federation.

AvoidCrossingPerimeters.cpp « GCode « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1d40a62bd3d7403c6886c178352f63aa02a42cff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
#include "../Layer.hpp"
#include "../GCode.hpp"
#include "../EdgeGrid.hpp"
#include "../Print.hpp"
#include "../Polygon.hpp"
#include "../ExPolygon.hpp"
#include "../Geometry.hpp"
#include "../ClipperUtils.hpp"
#include "../SVG.hpp"
#include "AvoidCrossingPerimeters.hpp"

#include <numeric>
#include <unordered_set>

namespace Slic3r {

struct TravelPoint
{
    Point point;
    // Index of the polygon containing this point. A negative value indicates that the point is not on any border.
    int   border_idx;
};

struct Intersection
{
    // Index of the polygon containing this point of intersection.
    size_t border_idx;
    // Index of the line on the polygon containing this point of intersection.
    size_t line_idx;
    // Point of intersection.
    Point  point;
    // Distance from the first point in the corresponding boundary
    float  distance;
};

// Finding all intersections of a set of contours with a line segment.
struct AllIntersectionsVisitor
{
    AllIntersectionsVisitor(const EdgeGrid::Grid &grid, std::vector<Intersection> &intersections) : grid(grid), intersections(intersections)
    {
        intersection_set.reserve(intersections.capacity());
    }

    AllIntersectionsVisitor(const EdgeGrid::Grid &grid, std::vector<Intersection> &intersections, const Line &travel_line)
        : grid(grid), intersections(intersections), travel_line(travel_line)
    {
        intersection_set.reserve(intersections.capacity());
    }

    void reset() {
        intersection_set.clear();
    }

    bool operator()(coord_t iy, coord_t ix)
    {
        // Called with a row and colum of the grid cell, which is intersected by a line.
        auto cell_data_range = grid.cell_data_range(iy, ix);
        for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
            Point intersection_point;
            if (travel_line.intersection(grid.line(*it_contour_and_segment), &intersection_point) &&
                intersection_set.find(*it_contour_and_segment) == intersection_set.end()) {
                intersections.push_back({ it_contour_and_segment->first, it_contour_and_segment->second, intersection_point });
                intersection_set.insert(*it_contour_and_segment);
            }
        }
        // Continue traversing the grid along the edge.
        return true;
    }

    const EdgeGrid::Grid                                                                 &grid;
    std::vector<Intersection>                                                            &intersections;
    Line                                                                                  travel_line;
    std::unordered_set<std::pair<size_t, size_t>, boost::hash<std::pair<size_t, size_t>>> intersection_set;
};

// Visitor to check for any collision of a line segment with any contour stored inside the edge_grid.
struct FirstIntersectionVisitor
{
    explicit FirstIntersectionVisitor(const EdgeGrid::Grid &grid) : grid(grid) {}

    bool operator()(coord_t iy, coord_t ix)
    {
        assert(pt_current != nullptr);
        assert(pt_next != nullptr);
        // Called with a row and colum of the grid cell, which is intersected by a line.
        auto cell_data_range = grid.cell_data_range(iy, ix);
        this->intersect      = false;
        for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
            // End points of the line segment and their vector.
            auto segment = grid.segment(*it_contour_and_segment);
            if (Geometry::segments_intersect(segment.first, segment.second, *pt_current, *pt_next)) {
                this->intersect = true;
                return false;
            }
        }
        // Continue traversing the grid along the edge.
        return true;
    }

    const EdgeGrid::Grid &grid;
    const Slic3r::Point  *pt_current = nullptr;
    const Slic3r::Point  *pt_next    = nullptr;
    bool                  intersect  = false;
};

// point_idx is the index from which is different vertex is searched.
template<bool forward>
static Point find_first_different_vertex(const Polygon &polygon, const size_t point_idx, const Point &point)
{
    assert(point_idx < polygon.size());
    // Solve case when vertex on passed index point_idx is different that pass point. This helps the following code keep simple.
    if (point != polygon.points[point_idx])
        return polygon.points[point_idx];

    auto line_idx = (int(point_idx) + 1) % int(polygon.points.size());
    assert(line_idx != int(point_idx));
    if constexpr (forward)
        for (; point == polygon.points[line_idx] && line_idx != int(point_idx); line_idx = line_idx + 1 < int(polygon.points.size()) ? line_idx + 1 : 0);
    else
        for (; point == polygon.points[line_idx] && line_idx != int(point_idx); line_idx = line_idx - 1 >= 0 ? line_idx - 1 : int(polygon.points.size()) - 1);
    assert(point != polygon.points[line_idx]);
    return polygon.points[line_idx];
}

static Vec2d three_points_inward_normal(const Point &left, const Point &middle, const Point &right)
{
    assert(left != middle);
    assert(middle != right);
    return (perp(Point(middle - left)).cast<double>().normalized() + perp(Point(right - middle)).cast<double>().normalized()).normalized();
}

// Compute normal of the polygon's vertex in an inward direction
static Vec2d get_polygon_vertex_inward_normal(const Polygon &polygon, const size_t point_idx)
{
    const size_t left_idx  = prev_idx_modulo(point_idx, polygon.points);
    const size_t right_idx = next_idx_modulo(point_idx, polygon.points);
    const Point &middle    = polygon.points[point_idx];
    const Point &left      = find_first_different_vertex<false>(polygon, left_idx, middle);
    const Point &right     = find_first_different_vertex<true>(polygon, right_idx, middle);
    return three_points_inward_normal(left, middle, right);
}

// Compute offset of point_idx of the polygon in a direction of inward normal
static Point get_polygon_vertex_offset(const Polygon &polygon, const size_t point_idx, const int offset)
{
    return polygon.points[point_idx] + (get_polygon_vertex_inward_normal(polygon, point_idx) * double(offset)).cast<coord_t>();
}

// Compute offset (in the direction of inward normal) of the point(passed on "middle") based on the nearest points laying on the polygon (left_idx and right_idx).
static Point get_middle_point_offset(const Polygon &polygon, const size_t left_idx, const size_t right_idx, const Point &middle, const coord_t offset)
{
    const Point &left  = find_first_different_vertex<false>(polygon, left_idx, middle);
    const Point &right = find_first_different_vertex<true>(polygon, right_idx, middle);
    return middle + (three_points_inward_normal(left, middle, right) * double(offset)).cast<coord_t>();
}

static Polyline to_polyline(const std::vector<TravelPoint> &travel)
{
    Polyline result;
    result.points.reserve(travel.size());
    for (const TravelPoint &t_point : travel)
        result.append(t_point.point);
    return result;
}

// #define AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT

#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
static void export_travel_to_svg(const Polygons                  &boundary,
                                 const Line                      &original_travel,
                                 const Polyline                  &result_travel,
                                 const std::vector<Intersection> &intersections,
                                 const std::string               &path)
{
    BoundingBox   bbox = get_extents(boundary);
    ::Slic3r::SVG svg(path, bbox);
    svg.draw_outline(boundary, "green");
    svg.draw(original_travel, "blue");
    svg.draw(result_travel, "red");
    svg.draw(original_travel.a, "black");
    svg.draw(original_travel.b, "grey");

    for (const Intersection &intersection : intersections)
        svg.draw(intersection.point, "lightseagreen");
}

static void export_travel_to_svg(const Polygons                  &boundary,
                                 const Line                      &original_travel,
                                 const std::vector<TravelPoint>  &result_travel,
                                 const std::vector<Intersection> &intersections,
                                 const std::string               &path)
{
    export_travel_to_svg(boundary, original_travel, to_polyline(result_travel), intersections, path);
}
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */

// Returns a direction of the shortest path along the polygon boundary
enum class Direction { Forward, Backward };
// Returns a direction of the shortest path along the polygon boundary
static Direction get_shortest_direction(const AvoidCrossingPerimeters::Boundary &boundary,
                                        const Intersection                      &intersection_first,
                                        const Intersection                      &intersection_second,
                                        float                                    contour_length)
{
    assert(intersection_first.border_idx == intersection_second.border_idx);
    const Polygon &poly        = boundary.boundaries[intersection_first.border_idx];
    float          dist_first  = intersection_first.distance;
    float          dist_second = intersection_second.distance;

    assert(dist_first  >= 0.f && dist_first  <= contour_length);
    assert(dist_second >= 0.f && dist_second <= contour_length);

    bool reversed = false;
    if (dist_first > dist_second) {
        std::swap(dist_first, dist_second);
        reversed = true;
    }
    float total_length_forward  = dist_second - dist_first;
    float total_length_backward = dist_first + contour_length - dist_second;
    if (reversed) std::swap(total_length_forward, total_length_backward);

    total_length_forward  -= (intersection_first.point - poly[intersection_first.line_idx]).cast<float>().norm();
    total_length_backward -= (poly[(intersection_first.line_idx + 1) % poly.size()] - intersection_first.point).cast<float>().norm();

    total_length_forward  -= (poly[(intersection_second.line_idx + 1) % poly.size()] - intersection_second.point).cast<float>().norm();
    total_length_backward -= (intersection_second.point - poly[intersection_second.line_idx]).cast<float>().norm();

    if (total_length_forward < total_length_backward) return Direction::Forward;
    return Direction::Backward;
}

// Straighten the travel path as long as it does not collide with the contours stored in edge_grid.
static std::vector<TravelPoint> simplify_travel(const AvoidCrossingPerimeters::Boundary &boundary, const std::vector<TravelPoint> &travel)
{
    FirstIntersectionVisitor visitor(boundary.grid);
    std::vector<TravelPoint> simplified_path;
    simplified_path.reserve(travel.size());
    simplified_path.emplace_back(travel.front());

    // Try to skip some points in the path.
    //FIXME maybe use a binary search to trim the line?
    //FIXME how about searching tangent point at long segments? 
    for (size_t point_idx = 1; point_idx < travel.size(); ++point_idx) {
        const Point &current_point = travel[point_idx - 1].point;
        TravelPoint  next          = travel[point_idx];

        visitor.pt_current = &current_point;

        for (size_t point_idx_2 = point_idx + 1; point_idx_2 < travel.size(); ++point_idx_2) {
            if (travel[point_idx_2].point == current_point) {
                next      = travel[point_idx_2];
                point_idx = point_idx_2;
                continue;
            }

            visitor.pt_next = &travel[point_idx_2].point;
            boundary.grid.visit_cells_intersecting_line(*visitor.pt_current, *visitor.pt_next, visitor);
            // Check if deleting point causes crossing a boundary
            if (!visitor.intersect) {
                next      = travel[point_idx_2];
                point_idx = point_idx_2;
            }
        }

        simplified_path.emplace_back(next);
    }

    return simplified_path;
}

bool is_in_internal_boundary(const AvoidCrossingPerimeters::Boundary& boundary, const Point& pt) {
    for (const std::pair<ExPolygon, ExPolygons>& bound : boundary.boundary_growth)
        for (const ExPolygon& poly : bound.second)
            if (poly.contains(pt))
                return true;
    return false;
}

bool find_point_on_boundary(Point& pt_to_move, const AvoidCrossingPerimeters::Boundary& boundary, coord_t max_dist) {

    if (!is_in_internal_boundary(boundary, pt_to_move)) {
        //get nearest point
        EdgeGrid::Grid::ClosestPointResult pt_closest = boundary.grid.closest_point(pt_to_move, max_dist);
        Point contour_pt;
        if (pt_closest.contour_idx == size_t(-1)) {
            //manual search on edges
            bool found = false;
            for (const std::pair<ExPolygon, ExPolygons>& bound : boundary.boundary_growth)
                if (bound.first.contains(pt_to_move)) {
                    coordf_t dist2 = std::numeric_limits<coordf_t>::max();
                    for (const Polygon& poly : to_polygons(bound.second)) {
                        Point test_point = *poly.closest_point(pt_to_move);
                        coordf_t dist2_test = test_point.distance_to_square(pt_to_move);
                        if (dist2_test < dist2) {
                            dist2 = dist2_test;
                            contour_pt = test_point;
                            found = true;
                        }
                    }
                    if(std::sqrt(dist2) > max_dist)
                        for (const Polygon& poly : to_polygons(bound.second)) {
                            Point test_point = pt_to_move.projection_onto(poly);
                            coordf_t dist2_test = test_point.distance_to_square(pt_to_move);
                            if (dist2_test < dist2) {
                                dist2 = dist2_test;
                                contour_pt = test_point;
                                found = true;
                            }
                        }
                    break;
                }
            if (!found) {
                return false;
            }
        } else {
            const Slic3r::Points& pts = *boundary.grid.contours()[pt_closest.contour_idx];
            contour_pt = pts[pt_closest.start_point_idx].interpolate(pt_closest.t, pts[(pt_closest.start_point_idx + 1 == pts.size()) ? 0 : pt_closest.start_point_idx + 1]);
        }
        //push it a bit to be sure it's inside
        Line l{ pt_to_move, contour_pt };
        l.extend_end(SCALED_EPSILON);
        pt_to_move = l.b;
    }
    return true;
}

// Called by avoid_perimeters() and by simplify_travel_heuristics().
static size_t avoid_perimeters_inner(const AvoidCrossingPerimeters::Boundary &boundary,
                                     const Point                             &real_start,
                                     const Point                             &real_end,
                                           coord_t                            extrusion_spacing,
                                     std::vector<TravelPoint>                &result_out)
{
    const Polygons           &boundaries = boundary.boundaries;
    const EdgeGrid::Grid     &edge_grid  = boundary.grid;

    Point start = real_start;
    Point end = real_end;

    //ensure that start & end are inside
    if(extrusion_spacing > 0)
        if (!find_point_on_boundary(start, boundary, (extrusion_spacing * 3)/2) || !find_point_on_boundary(end, boundary, (extrusion_spacing * 3) / 2)) {
            BOOST_LOG_TRIVIAL(info) << "Fail to find a point in the contour for avoid_perimeter.";
            //{
            //    static int isazfn = 0;
            //    std::stringstream stri;
            //    stri << "avoid_peri_initbad_" << isazfn++ << ".svg";
            //    SVG svg(stri.str());
            //    for (auto elt : boundary.boundary_growth)
            //        svg.draw((elt.first), "grey");
            //    for (auto elt : boundary.boundary_growth)
            //        svg.draw((elt.second), "pink");
            //    //svg.draw((boundary.boundaries), "pink");
            //    svg.draw((Line{ start,end }), "red");
            //    svg.draw((Line{ real_start,real_end }), "green");
            //    svg.Close();
            //}
            result_out = { {start,-1}, {end,-1} };
            return 0;
        }

    // Find all intersections between boundaries and the line segment, sort them along the line segment.
    std::vector<Intersection> intersections;
    {
        intersections.reserve(boundaries.size());
        AllIntersectionsVisitor visitor(edge_grid, intersections, Line(start, end));
        edge_grid.visit_cells_intersecting_line(start, end, visitor);
        Vec2d dir = (end - start).cast<double>();
        for (Intersection &intersection : intersections)
            intersection.distance = boundary.boundaries_params[intersection.border_idx][intersection.line_idx];
        std::sort(intersections.begin(), intersections.end(), [dir](const auto &l, const auto &r) { return (r.point - l.point).template cast<double>().dot(dir) > 0.; });
    }

    std::vector<TravelPoint> result;
    result.push_back({start, -1});

    auto crossing_boundary_from_inside = [&boundary](const Point &start, const Intersection &intersection) {
        const Polygon &poly             = boundary.boundaries[intersection.border_idx];
        Vec2d          poly_line        = Line(poly[intersection.line_idx], poly[(intersection.line_idx + 1) % poly.size()]).normal().cast<double>();
        Vec2d          intersection_vec = (intersection.point - start).cast<double>();
        return poly_line.normalized().dot(intersection_vec.normalized()) >= 0;
    };

    for (auto it_first = intersections.begin(); it_first != intersections.end(); ++it_first) {
        // The entry point to the boundary polygon
        const Intersection &intersection_first = *it_first;
        if(!crossing_boundary_from_inside(start, intersection_first))
            continue;
        // Skip the it_first from the search for the farthest exit point from the boundary polygon
        auto it_last_item = std::make_reverse_iterator(it_first) - 1;
        // Search for the farthest intersection different from it_first but with the same border_idx
        auto it_second_r  = std::find_if(intersections.rbegin(), it_last_item, [&intersection_first](const Intersection &intersection) {
            return intersection_first.border_idx == intersection.border_idx;
        });

        // Append the first intersection into the path
        size_t left_idx  = intersection_first.line_idx;
        size_t right_idx = intersection_first.line_idx + 1 == boundaries[intersection_first.border_idx].points.size() ? 0 : intersection_first.line_idx + 1;
        // Offset of the polygon's point using get_middle_point_offset is used to simplify the calculation of intersection between the
        // boundary and the travel. The appended point is translated in the direction of inward normal. This translation ensures that the
        // appended point will be inside the polygon and not on the polygon border.
        result.push_back({get_middle_point_offset(boundaries[intersection_first.border_idx], left_idx, right_idx, intersection_first.point, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});

        // Check if intersection line also exit the boundary polygon
        if (it_second_r != it_last_item) {
            // Transform reverse iterator to forward
            auto it_second = it_second_r.base() - 1;
            // The exit point from the boundary polygon
            const Intersection &intersection_second = *it_second;
            Direction           shortest_direction  = get_shortest_direction(boundary, intersection_first, intersection_second,
                                                                             boundary.boundaries_params[intersection_first.border_idx].back());
            // Append the path around the border into the path
            if (shortest_direction == Direction::Forward)
                for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx);
                    line_idx      = line_idx + 1 < int(boundaries[intersection_first.border_idx].size()) ? line_idx + 1 : 0)
                    result.push_back({get_polygon_vertex_offset(boundaries[intersection_first.border_idx],
                                                                (line_idx + 1 == int(boundaries[intersection_first.border_idx].points.size())) ? 0 : (line_idx + 1), coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});
            else
                for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx);
                    line_idx      = line_idx - 1 >= 0 ? line_idx - 1 : int(boundaries[intersection_first.border_idx].size()) - 1)
                    result.push_back({get_polygon_vertex_offset(boundaries[intersection_second.border_idx], line_idx + 0, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});

            // Append the farthest intersection into the path
            left_idx  = intersection_second.line_idx;
            right_idx = (intersection_second.line_idx >= (boundaries[intersection_second.border_idx].points.size() - 1)) ? 0 : (intersection_second.line_idx + 1);
            result.push_back({get_middle_point_offset(boundaries[intersection_second.border_idx], left_idx, right_idx, intersection_second.point, coord_t(SCALED_EPSILON)), int(intersection_second.border_idx)});
            // Skip intersections in between
            it_first = it_second;
        }
    }

    result.push_back({end, -1});

#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
    {
        static int iRun = 0;
        export_travel_to_svg(boundaries, Line(start, end), result, intersections,
                             debug_out_path("AvoidCrossingPerimetersInner-initial-%d.svg", iRun++));
    }
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */

    if (! intersections.empty())
        result = simplify_travel(boundary, result);

#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
    {
        static int iRun = 0;
        export_travel_to_svg(boundaries, Line(start, end), result, intersections,
                             debug_out_path("AvoidCrossingPerimetersInner-final-%d.svg", iRun++));
    }
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */
    if(start != real_start)
        result_out.push_back({ real_start, -1 });
    append(result_out, std::move(result));
    if (end != real_end)
        result_out.push_back({ real_end, -1 });
    return intersections.size();
}

// Called by AvoidCrossingPerimeters::travel_to()
static size_t avoid_perimeters(const AvoidCrossingPerimeters::Boundary &boundary,
                               const Point                             &start,
                               const Point                             &end,
                                   coord_t                              spacing,
                               Polyline                                &result_out)
{
    // Travel line is completely or partially inside the bounding box.
    std::vector<TravelPoint> path;
    size_t num_intersections = avoid_perimeters_inner(boundary, start, end, spacing, path);
    result_out = to_polyline(path);

#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
    {
        static int iRun = 0;
        export_travel_to_svg(boundary.boundaries, Line(start, end), path, {}, debug_out_path("AvoidCrossingPerimeters-final-%d.svg", iRun ++));
    }
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */

    return num_intersections;
}

// Check if anyone of ExPolygons contains whole travel.
// called by need_wipe() and AvoidCrossingPerimeters::travel_to()
// FIXME Lukas H.: Maybe similar approach could also be used for ExPolygon::contains()
static bool any_expolygon_contains(const ExPolygons               &ex_polygons,
                                   const std::vector<BoundingBox> &ex_polygons_bboxes,
                                   const EdgeGrid::Grid            &grid_lslice,
                                   const Line                      &travel)
{
    assert(ex_polygons.size() == ex_polygons_bboxes.size());
    if(!grid_lslice.bbox().contains(travel.a) || !grid_lslice.bbox().contains(travel.b))
        return false;

    FirstIntersectionVisitor visitor(grid_lslice);
    visitor.pt_current = &travel.a;
    visitor.pt_next    = &travel.b;
    grid_lslice.visit_cells_intersecting_line(*visitor.pt_current, *visitor.pt_next, visitor);
    if (!visitor.intersect) {
        for (const ExPolygon &ex_polygon : ex_polygons) {
            const BoundingBox &bbox = ex_polygons_bboxes[&ex_polygon - &ex_polygons.front()];
            if (bbox.contains(travel.a) && bbox.contains(travel.b) && ex_polygon.contains(travel.a))
                return true;
        }
    }
    return false;
}

// Check if anyone of ExPolygons contains whole travel.
// called by need_wipe()
static bool any_expolygon_contains(const ExPolygons &ex_polygons, const std::vector<BoundingBox> &ex_polygons_bboxes, const EdgeGrid::Grid &grid_lslice, const Polyline &travel)
{
    assert(ex_polygons.size() == ex_polygons_bboxes.size());
    if(std::any_of(travel.points.begin(), travel.points.end(), [&grid_lslice](const Point &point) { return !grid_lslice.bbox().contains(point); }))
        return false;

    FirstIntersectionVisitor visitor(grid_lslice);
    bool any_intersection = false;
    for (size_t line_idx = 1; line_idx < travel.size(); ++line_idx) {
        visitor.pt_current = &travel.points[line_idx - 1];
        visitor.pt_next    = &travel.points[line_idx];
        grid_lslice.visit_cells_intersecting_line(*visitor.pt_current, *visitor.pt_next, visitor);
        any_intersection = visitor.intersect;
        if (any_intersection) break;
    }

    if (!any_intersection) {
        for (const ExPolygon &ex_polygon : ex_polygons) {
            const BoundingBox &bbox = ex_polygons_bboxes[&ex_polygon - &ex_polygons.front()];
            if (std::all_of(travel.points.begin(), travel.points.end(), [&bbox](const Point &point) { return bbox.contains(point); }) &&
                ex_polygon.contains(travel.points.front()))
                return true;
        }
    }
    return false;
}

static bool need_wipe(const GCode          &gcodegen,
                      const EdgeGrid::Grid &grid_lslice,
                      const Line           &original_travel,
                      const Polyline       &result_travel,
                      const size_t          intersection_count)
{
    const ExPolygons               &lslices        = gcodegen.layer()->lslices;
    const std::vector<BoundingBox> &lslices_bboxes = gcodegen.layer()->lslices_bboxes;
    bool z_lift_enabled = gcodegen.config().retract_lift.get_at(gcodegen.writer().tool()->id()) > 0.;
    bool wipe_needed    = false;

    // If the original unmodified path doesn't have any intersection with boundary, then it is entirely inside the object otherwise is entirely
    // outside the object.
    if (intersection_count > 0) {
        // The original layer is intersected with defined boundaries. Then it is necessary to make a detailed test.
        // If the z-lift is enabled, then a wipe is needed when the original travel leads above the holes.
        if (z_lift_enabled) {
            if (any_expolygon_contains(lslices, lslices_bboxes, grid_lslice, original_travel)) {
                // Check if original_travel and result_travel are not same.
                // If both are the same, then it is possible to skip testing of result_travel
                wipe_needed = !(result_travel.size() > 2 && result_travel.first_point() == original_travel.a && result_travel.last_point() == original_travel.b) &&
                              !any_expolygon_contains(lslices, lslices_bboxes, grid_lslice, result_travel);
            } else {
                wipe_needed = true;
            }
        } else {
            wipe_needed = !any_expolygon_contains(lslices, lslices_bboxes, grid_lslice, result_travel);
        }
    }

    return wipe_needed;
}

// called by get_perimeter_spacing() / get_perimeter_spacing_external()
static inline float get_default_perimeter_spacing(const PrintObject &print_object)
{
    std::set<uint16_t> printing_extruders = print_object.object_extruders();
    assert(!printing_extruders.empty());
    float avg_extruder = 0;
    for(uint16_t extruder_id : printing_extruders)
        avg_extruder += float(scale_(print_object.print()->config().nozzle_diameter.get_at(extruder_id)));
    avg_extruder /= printing_extruders.size();
    return avg_extruder;
}

// called by get_boundary()
static float get_perimeter_spacing(const Layer &layer)
{
    size_t regions_count     = 0;
    float  perimeter_spacing = 0.f;
    for (const LayerRegion *layer_region : layer.regions())
        if (layer_region != nullptr && !layer_region->slices().empty()) {
            perimeter_spacing += layer_region->flow(frPerimeter).scaled_spacing();
            ++regions_count;
        }

    assert(perimeter_spacing >= 0.f);
    if (regions_count != 0)
        perimeter_spacing /= float(regions_count);
    else
        perimeter_spacing = get_default_perimeter_spacing(*layer.object());
    return perimeter_spacing;
}

// called by get_boundary_external()
static float get_perimeter_spacing_external(const Layer &layer)
{
    size_t regions_count     = 0;
    float  perimeter_spacing = 0.f;
    for (const PrintObject *object : layer.object()->print()->objects())
        if (const Layer *l = object->get_layer_at_printz(layer.print_z, EPSILON); l)
            for (const LayerRegion *layer_region : l->regions())
                if (layer_region != nullptr && !layer_region->slices().empty()) {
                    perimeter_spacing += layer_region->flow(frPerimeter).scaled_spacing();
                    ++ regions_count;
                }

    assert(perimeter_spacing >= 0.f);
    if (regions_count != 0)
        perimeter_spacing /= float(regions_count);
    else
        perimeter_spacing = get_default_perimeter_spacing(*layer.object());
    return perimeter_spacing;
}

// Adds points around all vertices so that the offset affects only small sections around these vertices.
static void resample_polygon(Polygon &polygon, double dist_from_vertex)
{
    Points resampled_poly;
    resampled_poly.reserve(3 * polygon.size());
    resampled_poly.emplace_back(polygon.first_point());
    for (size_t pt_idx = 1; pt_idx < polygon.size(); ++pt_idx) {
        const Point &p1          = polygon[pt_idx - 1];
        const Point &p2          = polygon[pt_idx];
        double       line_length = (p2 - p1).cast<double>().norm();
        Vector       line_vec    = ((p2 - p1).cast<double>().normalized() * dist_from_vertex).cast<coord_t>();
        if (line_length > 2 * dist_from_vertex) {
            resampled_poly.emplace_back(p1 + line_vec);
            resampled_poly.emplace_back(p2 - line_vec);
        }
        resampled_poly.emplace_back(polygon[pt_idx]);
    }
    polygon.points = std::move(resampled_poly);
}

static void resample_expolygon(ExPolygon &ex_polygon, double dist_from_vertex)
{
    resample_polygon(ex_polygon.contour, dist_from_vertex);
    for (Polygon &polygon : ex_polygon.holes) resample_polygon(polygon, dist_from_vertex);
}

static void resample_expolygons(ExPolygons &ex_polygons, double dist_from_vertex)
{
    for (ExPolygon &ex_poly : ex_polygons) resample_expolygon(ex_poly, dist_from_vertex);
}

static void precompute_polygon_distances(const Polygon &polygon, std::vector<float> &polygon_distances_out)
{
    polygon_distances_out.assign(polygon.size() + 1, 0.f);
    for (size_t point_idx = 1; point_idx < polygon.size(); ++point_idx)
        polygon_distances_out[point_idx] = polygon_distances_out[point_idx - 1] + (polygon[point_idx].cast<float>() - polygon[point_idx - 1].cast<float>()).norm();
    polygon_distances_out.back() = polygon_distances_out[polygon.size() - 1] + (polygon.last_point().cast<float>() - polygon.first_point().cast<float>()).norm();
}

static void precompute_expolygon_distances(const ExPolygon &ex_polygon, std::vector<std::vector<float>> &expolygon_distances_out)
{
    expolygon_distances_out.assign(ex_polygon.holes.size() + 1, std::vector<float>());
    precompute_polygon_distances(ex_polygon.contour, expolygon_distances_out.front());
    for (size_t hole_idx = 0; hole_idx < ex_polygon.holes.size(); ++hole_idx)
        precompute_polygon_distances(ex_polygon.holes[hole_idx], expolygon_distances_out[hole_idx + 1]);
}

// It is highly based on the function contour_distance2 from the ElephantFootCompensation.cpp
static std::vector<float> contour_distance(const EdgeGrid::Grid     &grid,
                                    const std::vector<float> &poly_distances,
                                    const size_t              contour_idx,
                                    const Polygon            &polygon,
                                    double                    compensation,
                                    double                    search_radius)
{
    assert(! polygon.empty());
    assert(polygon.size() >= 2);

    std::vector<float> out;

    if (polygon.size() > 2)
    {
        struct Visitor {
            Visitor(const EdgeGrid::Grid &grid, const size_t contour_idx, const std::vector<float> &polygon_distances, double dist_same_contour_accept, double dist_same_contour_reject) :
                grid(grid), idx_contour(contour_idx), contour(*grid.contours()[contour_idx]), boundary_parameters(polygon_distances), dist_same_contour_accept(dist_same_contour_accept), dist_same_contour_reject(dist_same_contour_reject) {}

            void init(const Points &contour, const Point &apoint)
            {
                this->idx_point  = &apoint - contour.data();
                this->point      = apoint;
                this->found      = false;
                this->dir_inside = this->dir_inside_at_point(contour, this->idx_point);
                this->distance   = std::numeric_limits<double>::max();
            }

            bool operator()(coord_t iy, coord_t ix)
            {
                // Called with a row and colum of the grid cell, which is intersected by a line.
                auto cell_data_range = this->grid.cell_data_range(iy, ix);
                for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second;
                     ++it_contour_and_segment) {
                    // End points of the line segment and their vector.
                    std::pair<const Point &, const Point &> segment = this->grid.segment(*it_contour_and_segment);
                    const Vec2d  v        = (segment.second - segment.first).cast<double>();
                    const Vec2d  va       = (this->point - segment.first).cast<double>();
                    const double l2       = v.squaredNorm(); // avoid a sqrt
                    const double t        = (l2 == 0.0) ? 0. : clamp(0., 1., va.dot(v) / l2);
                    // Closest point from this->point to the segment.
                    const Vec2d  foot     = segment.first.cast<double>() + t * v;
                    const Vec2d  bisector = foot - this->point.cast<double>();
                    const double dist     = bisector.norm();

                    if ((!this->found || dist < this->distance) && this->dir_inside.dot(bisector) > 0) {
                        bool accept = true;
                        if (it_contour_and_segment->first == idx_contour) {
                            // Complex case: The closest segment originates from the same contour as the starting point.
                            // Reject the closest point if its distance along the contour is reasonable compared to the current contour bisector
                            // (this->pt, foot).
                            const Slic3r::Points &ipts      = *grid.contours()[it_contour_and_segment->first];
                            double                param_lo  = boundary_parameters[this->idx_point];
                            double                param_hi  = t * sqrt(l2);
                            double                param_end = boundary_parameters.back();
                            const size_t ipt = it_contour_and_segment->second;
                            if (ipt + 1 < ipts.size())
                                param_hi += boundary_parameters[ipt > 0 ? ipt - 1 : 0];
                            if (param_lo > param_hi)
                                std::swap(param_lo, param_hi);
                            assert(param_lo > -SCALED_EPSILON && param_lo <= param_end + SCALED_EPSILON);
                            assert(param_hi > -SCALED_EPSILON && param_hi <= param_end + SCALED_EPSILON);
                            double dist_along_contour = std::min(param_hi - param_lo, param_lo + param_end - param_hi);
                            if (dist_along_contour < dist_same_contour_accept)
                                accept = false;
                            else if (dist < dist_same_contour_reject + SCALED_EPSILON) {
                                // this->point is close to foot. This point will only be accepted if the path along the contour is significantly
                                // longer than the bisector. That is, the path shall not bulge away from the bisector too much.
                                // Bulge is estimated by 0.6 of the circle circumference drawn around the bisector.
                                // Test whether the contour is convex or concave.
                                bool inside = (t == 0.) ? this->inside_corner(ipts, ipt, this->point) :
                                              (t == 1.) ? this->inside_corner(ipts, ipt + 1 == ipts.size() ? 0 : ipt + 1, this->point) :
                                                          this->left_of_segment(ipts, ipt, this->point);
                                accept      = inside && dist_along_contour > 0.6 * M_PI * dist;
                            }
                        }
                        if (accept && (!this->found || dist < this->distance)) {
                            // Simple case: Just measure the shortest distance.
                            this->distance = dist;
                            this->found    = true;
                        }
                    }
                }
                // Continue traversing the grid.
                return true;
            }

            const EdgeGrid::Grid 			   &grid;
            const size_t 		  				idx_contour;
            const Points					   &contour;

            const std::vector<float>           &boundary_parameters;
            const double                        dist_same_contour_accept;
            const double 						dist_same_contour_reject;

            size_t 								idx_point;
            Point			      				point;
            // Direction inside the contour from idx_point, not normalized.
            Vec2d								dir_inside;
            bool 								found;
            double 								distance;

        private:
            static Vec2d dir_inside_at_point(const Points &contour, size_t i)
            {
                size_t iprev = prev_idx_modulo(i, contour);
                size_t inext = next_idx_modulo(i, contour);
                Vec2d  v1    = (contour[i] - contour[iprev]).cast<double>();
                Vec2d  v2    = (contour[inext] - contour[i]).cast<double>();
                return Vec2d(-v1.y() - v2.y(), v1.x() + v2.x());
            }

            static bool inside_corner(const Slic3r::Points &contour, size_t i, const Point &pt_oposite)
            {
                const Vec2d pt         = pt_oposite.cast<double>();
                size_t      iprev      = prev_idx_modulo(i, contour);
                size_t      inext      = next_idx_modulo(i, contour);
                Vec2d       v1         = (contour[i] - contour[iprev]).cast<double>();
                Vec2d       v2         = (contour[inext] - contour[i]).cast<double>();
                bool        left_of_v1 = cross2(v1, pt - contour[iprev].cast<double>()) > 0.;
                bool        left_of_v2 = cross2(v2, pt - contour[i].cast<double>()) > 0.;
                return cross2(v1, v2) > 0 ? left_of_v1 && left_of_v2 : // convex corner
                                            left_of_v1 || left_of_v2;                   // concave corner
            }

            static bool left_of_segment(const Slic3r::Points &contour, size_t i, const Point &pt_oposite)
            {
                const Vec2d pt    = pt_oposite.cast<double>();
                size_t      inext = next_idx_modulo(i, contour);
                Vec2d       v     = (contour[inext] - contour[i]).cast<double>();
                return cross2(v, pt - contour[i].cast<double>()) > 0.;
            }
        } visitor(grid, contour_idx, poly_distances, 0.5 * compensation * M_PI, search_radius);

        out.reserve(polygon.size());
        Point radius_vector(search_radius, search_radius);
        for (const Point &pt : polygon.points) {
            visitor.init(polygon.points, pt);
            grid.visit_cells_intersecting_box(BoundingBox(pt - radius_vector, pt + radius_vector), visitor);
            out.emplace_back(float(visitor.found ? std::min(visitor.distance, search_radius) : search_radius));
        }
    }

    return out;
}

// Polygon offset which ensures that if a polygon breaks up into several separate parts, the original polygon will be used in these places.
// ExPolygons are handled one by one so returned ExPolygons could intersect.
static ExPolygons inner_offset(const ExPolygons &ex_polygons, double offset, double min_contour_width = scale_(0.001))
{
    double     search_radius  = 2. * (offset + min_contour_width);
    ExPolygons ex_poly_result = ex_polygons;
    resample_expolygons(ex_poly_result, offset / 2);

    for (ExPolygon &ex_poly : ex_poly_result) {
        BoundingBox bbox(get_extents(ex_poly));
        bbox.offset(SCALED_EPSILON);
        EdgeGrid::Grid grid;
        grid.set_bbox(bbox);
        grid.create(ex_poly, coord_t(0.7 * search_radius));

        std::vector<std::vector<float>> ex_poly_distances;
        precompute_expolygon_distances(ex_poly, ex_poly_distances);

        std::vector<std::vector<float>> offsets;
        offsets.reserve(ex_poly.holes.size() + 1);
        for (size_t idx_contour = 0; idx_contour <= ex_poly.holes.size(); ++idx_contour) {
            const Polygon &poly = (idx_contour == 0) ? ex_poly.contour : ex_poly.holes[idx_contour - 1];
            assert(poly.is_counter_clockwise() == (idx_contour == 0));
            std::vector<float> distances = contour_distance(grid, ex_poly_distances[idx_contour], idx_contour, poly, offset, search_radius);
            for (float &distance : distances) {
                if (distance < min_contour_width)
                    distance = 0.f;
                else if (distance > min_contour_width + 2. * offset)
                    distance = - float(offset);
                else
                    distance = - (distance - float(min_contour_width)) / 2.f;
            }
            offsets.emplace_back(distances);
        }

        ExPolygons offset_ex_poly = variable_offset_inner_ex(ex_poly, offsets);
        // If variable_offset_inner_ex produces empty result, then original ex_polygon is used
        if (offset_ex_poly.size() == 1) {
            ex_poly = std::move(offset_ex_poly.front());
        } else if (offset_ex_poly.size() > 1) {
            // fix_after_inner_offset called inside variable_offset_inner_ex sometimes produces
            // tiny artefacts polygons, so these artefacts are removed.
            double max_area     = offset_ex_poly.front().area();
            size_t max_area_idx = 0;
            for (size_t poly_idx = 1; poly_idx < offset_ex_poly.size(); ++poly_idx) {
                double area = offset_ex_poly[poly_idx].area();
                if (max_area < area) {
                    max_area     = area;
                    max_area_idx = poly_idx;
                }
            }
            ex_poly = std::move(offset_ex_poly[max_area_idx]);
        }
    }
    return ex_poly_result;
}

//#define INCLUDE_SUPPORTS_IN_BOUNDARY

// called by AvoidCrossingPerimeters::travel_to()
static ExPolygons get_boundary(const Layer &layer)
{
    const float perimeter_spacing = get_perimeter_spacing(layer);
    const float perimeter_offset  = perimeter_spacing / 2.f;
    auto const *support_layer     = dynamic_cast<const SupportLayer *>(&layer);
    ExPolygons  boundary          = union_ex(inner_offset(layer.lslices, perimeter_offset));
    if(support_layer) {
#ifdef INCLUDE_SUPPORTS_IN_BOUNDARY
        append(boundary, inner_offset(support_layer->support_islands.expolygons, perimeter_offset));
#endif
        auto *layer_below = layer.object()->get_first_layer_bellow_printz(layer.print_z, EPSILON);
        if (layer_below) //why?
            append(boundary, inner_offset(layer_below->lslices, perimeter_offset));
        // After calling inner_offset it is necessary to call union_ex because of the possibility of intersection ExPolygons
        boundary = union_ex(boundary);
    }
    // Collect all top layers that will not be crossed.
    size_t      polygons_count    = 0;
    for (const LayerRegion *layer_region : layer.regions())
        for (const Surface &surface : layer_region->fill_surfaces.surfaces)
            if (surface.has_pos_top()) ++polygons_count;

    if (polygons_count > 0) {
        ExPolygons top_layer_polygons;
        top_layer_polygons.reserve(polygons_count);
        for (const LayerRegion *layer_region : layer.regions())
            for (const Surface &surface : layer_region->fill_surfaces.surfaces)
                if (surface.has_pos_top()) top_layer_polygons.emplace_back(surface.expolygon);

        top_layer_polygons = union_ex(top_layer_polygons);
        return diff_ex(boundary, offset_ex(top_layer_polygons, -perimeter_offset));
    }

    return boundary;
}

// called by AvoidCrossingPerimeters::travel_to()
static Polygons get_boundary_external(const Layer &layer)
{
    const float perimeter_spacing = get_perimeter_spacing_external(layer);
    const float perimeter_offset  = perimeter_spacing / 2.f;
    auto const *support_layer     = dynamic_cast<const SupportLayer *>(&layer);
    Polygons    boundary;
#ifdef INCLUDE_SUPPORTS_IN_BOUNDARY
    ExPolygons  supports_boundary;
#endif
    // Collect all holes for all printed objects and their instances, which will be printed at the same time as passed "layer".
    for (const PrintObject *object : layer.object()->print()->objects()) {
        Polygons   polygons_per_obj;
#ifdef INCLUDE_SUPPORTS_IN_BOUNDARY
        ExPolygons supports_per_obj;
#endif
        if (const Layer *l = object->get_layer_at_printz(layer.print_z, EPSILON); l)
            for (const ExPolygon &island : l->lslices) append(polygons_per_obj, island.holes);
        if (support_layer) {
            auto *layer_below = object->get_first_layer_bellow_printz(layer.print_z, EPSILON);
            if (layer_below)
                for (const ExPolygon &island : layer_below->lslices) append(polygons_per_obj, island.holes);
#ifdef INCLUDE_SUPPORTS_IN_BOUNDARY
            append(supports_per_obj, support_layer->support_islands.expolygons);
#endif
        }

        for (const PrintInstance &instance : object->instances()) {
            size_t boundary_idx = boundary.size();
            append(boundary, polygons_per_obj);
            for (; boundary_idx < boundary.size(); ++boundary_idx)
                boundary[boundary_idx].translate(instance.shift);
#ifdef INCLUDE_SUPPORTS_IN_BOUNDARY
            size_t support_idx = supports_boundary.size();
            append(supports_boundary, supports_per_obj);
            for (; support_idx < supports_boundary.size(); ++support_idx)
                supports_boundary[support_idx].translate(instance.shift);
#endif
        }
    }

    // Used offset_ex for cases when another object will be in the hole of another polygon
    boundary = to_polygons(offset_ex(boundary, perimeter_offset));
    // Reverse all polygons for making normals point from the polygon out.
    for (Polygon &poly : boundary)
        poly.reverse();
#ifdef INCLUDE_SUPPORTS_IN_BOUNDARY
    append(boundary, to_polygons(inner_offset(supports_boundary, perimeter_offset)));
#endif
    return boundary;
}

static void init_boundary_distances(AvoidCrossingPerimeters::Boundary *boundary)
{
    boundary->boundaries_params.assign(boundary->boundaries.size(), std::vector<float>());
    for (size_t poly_idx = 0; poly_idx < boundary->boundaries.size(); ++poly_idx)
        precompute_polygon_distances(boundary->boundaries[poly_idx], boundary->boundaries_params[poly_idx]);
}

static void init_boundary(AvoidCrossingPerimeters::Boundary *boundary, Polygons &&boundary_polygons)
{
    boundary->clear();
    boundary->boundaries = std::move(boundary_polygons);

    BoundingBox bbox(get_extents(boundary->boundaries));
    bbox.offset(SCALED_EPSILON);
    boundary->bbox = BoundingBoxf(bbox.min.cast<double>(), bbox.max.cast<double>());
    boundary->grid.set_bbox(bbox);
    // FIXME 1mm grid?
    boundary->grid.create(boundary->boundaries, coord_t(scale_(1.)));
    init_boundary_distances(boundary);
}

// Plan travel, which avoids perimeter crossings by following the boundaries of the layer.
Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled)
{
    // If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
    // Otherwise perform the path planning in the coordinate system of the active object.
    bool        use_external  = m_use_external_mp || m_use_external_mp_once;
    Point       scaled_origin = use_external ? Point::new_scale(gcodegen.origin()(0), gcodegen.origin()(1)) : Point(0, 0);
    const Point start         = gcodegen.last_pos() + scaled_origin;
    const Point end           = point + scaled_origin;
    const Line  travel(start, end);

    Polyline result_pl;
    size_t   travel_intersection_count = 0;
    Vec2d startf = start.cast<double>();
    Vec2d endf   = end  .cast<double>();

    const ExPolygons               &lslices          = gcodegen.layer()->lslices;
    const std::vector<BoundingBox> &lslices_bboxes   = gcodegen.layer()->lslices_bboxes;
    bool                            is_support_layer = dynamic_cast<const SupportLayer *>(gcodegen.layer()) != nullptr;
    const float perimeter_spacing = get_perimeter_spacing(*gcodegen.layer());
    if (!use_external && (is_support_layer || !lslices.empty()
        /*|| (!lslices.empty() && !any_expolygon_contains(lslices, lslices_bboxes, m_grid_lslice, travel)) already done by the caller */
        )) {
        // Initialize m_internal only when it is necessary.
        if (m_internal.boundaries.empty()) {
            std::vector<std::pair<ExPolygon, ExPolygons>> boundary_growth;
            //create better slice (on second perimeter instead of the first)
            ExPolygons expoly_boundary;
            //as we are going to reduce, do it expoli per expoli
            for (const ExPolygon& origin : lslices) {
                ExPolygons second_peri = offset_ex(origin, -perimeter_spacing * 1.5f);
                //there is a collapse! try to add missing parts
                if (second_peri.size() > 1) {
                    // get the bits that are collapsed
                    ExPolygons missing_parts = diff_ex({ origin }, offset_ex(second_peri, perimeter_spacing * 1.51f), true);
                    //have to grow a bit to be able to fit inside the reduced thing
                    // then intersect to be sure it don't stick out of the initial poly
                    missing_parts = intersection_ex({ origin }, offset_ex(missing_parts, perimeter_spacing * 1.1f));
                    // offset to second peri (-first) where possible, then union and reduce to the first.
                    second_peri = offset_ex(union_ex(missing_parts, offset_ex(origin, -perimeter_spacing * 0.9f)), -perimeter_spacing * .6f);
                } else if (second_peri.size() == 0) {
                    // try again with the first perimeter (should be 0.5, but even with overlapping peri, it's almost never a 50% overlap, so it's better that way)
                    second_peri = offset_ex(origin, -perimeter_spacing * .6f);
                }
                append(expoly_boundary, second_peri);
                boundary_growth.push_back({ origin, second_peri });
            }
            init_boundary(&m_internal, to_polygons(expoly_boundary));
            m_internal.boundary_growth = boundary_growth;
        }

        // Trim the travel line by the bounding box.
        if (!m_internal.boundaries.empty() && Geometry::liang_barsky_line_clipping(startf, endf, m_internal.bbox)) {
            travel_intersection_count = avoid_perimeters(m_internal, startf.cast<coord_t>(), endf.cast<coord_t>(), perimeter_spacing, result_pl);
            result_pl.points.front()  = start;
            result_pl.points.back()   = end;
        }
    } else if(use_external) {
        // Initialize m_external only when exist any external travel for the current layer.
        if (m_external.boundaries.empty())
            init_boundary(&m_external, get_boundary_external(*gcodegen.layer()));

        // Trim the travel line by the bounding box.
        if (!m_external.boundaries.empty() && Geometry::liang_barsky_line_clipping(startf, endf, m_external.bbox)) {
            travel_intersection_count = avoid_perimeters(m_external, startf.cast<coord_t>(), endf.cast<coord_t>(), 0, result_pl);
            result_pl.points.front()  = start;
            result_pl.points.back()   = end;
        }
    }

    if(result_pl.empty()) {
        // Travel line is completely outside the bounding box.
        result_pl                 = {start, end};
        travel_intersection_count = 0;
    }

    const ConfigOptionFloatOrPercent &opt_max_detour             = gcodegen.config().avoid_crossing_perimeters_max_detour;
    bool                              max_detour_length_exceeded = false;
    if (opt_max_detour.value > 0) {
        double direct_length     = travel.length();
        double detour            = result_pl.length() - direct_length;
        double max_detour_length = opt_max_detour.percent ?
            direct_length * 0.01 * opt_max_detour.value :
            scale_(opt_max_detour.value);
        if (detour > max_detour_length) {
            result_pl = {start, end};
            max_detour_length_exceeded = true;
        }
    }

    if (use_external) {
        result_pl.translate(-scaled_origin);
        *could_be_wipe_disabled = false;
    } else if (max_detour_length_exceeded) {
        *could_be_wipe_disabled = false;
    } else
        *could_be_wipe_disabled = !need_wipe(gcodegen, m_grid_lslice, travel, result_pl, travel_intersection_count);

    return result_pl;
}

// ************************************* AvoidCrossingPerimeters::init_layer() *****************************************

void AvoidCrossingPerimeters::init_layer(const Layer &layer)
{
    m_internal.clear();
    m_external.clear();

    BoundingBox bbox_slice(get_extents(layer.lslices));
    bbox_slice.offset(SCALED_EPSILON);

    m_grid_lslice.set_bbox(bbox_slice);
    //FIXME 1mm grid?
    m_grid_lslice.create(layer.lslices, coord_t(scale_(1.)));
    m_init = true;
}

#if 0
static double travel_length(const std::vector<TravelPoint> &travel) {
    double total_length = 0;
    for (size_t idx = 1; idx < travel.size(); ++idx)
        total_length += (travel[idx].point - travel[idx - 1].point).cast<double>().norm();

    return total_length;
}

// Called by avoid_perimeters() and by simplify_travel_heuristics().
static size_t avoid_perimeters_inner(const AvoidCrossingPerimeters::Boundary &boundary,
                                     const Point              &start,
                                     const Point              &end,
                                     std::vector<TravelPoint> &result_out)
{
    const Polygons           &boundaries = boundary.boundaries;
    const EdgeGrid::Grid     &edge_grid = boundary.grid;
    // Find all intersections between boundaries and the line segment, sort them along the line segment.
    std::vector<Intersection> intersections;
    {
        intersections.reserve(boundaries.size());
        AllIntersectionsVisitor visitor(edge_grid, intersections, Line(start, end));
        edge_grid.visit_cells_intersecting_line(start, end, visitor);
        Vec2d dir = (end - start).cast<double>();
        for (Intersection &intersection : intersections)
            intersection.distance = boundary.boundaries_params[intersection.border_idx][intersection.line_idx];
        std::sort(intersections.begin(), intersections.end(), [dir](const auto &l, const auto &r) { return (r.point - l.point).template cast<double>().dot(dir) > 0.; });
    }

    std::vector<TravelPoint> result;
    result.push_back({start, -1});
    for (auto it_first = intersections.begin(); it_first != intersections.end(); ++it_first) {
        // The entry point to the boundary polygon
        const Intersection &intersection_first = *it_first;
        // Skip the it_first from the search for the farthest exit point from the boundary polygon
        auto it_last_item = std::make_reverse_iterator(it_first) - 1;
        // Search for the farthest intersection different from it_first but with the same border_idx
        auto it_second_r  = std::find_if(intersections.rbegin(), it_last_item, [&intersection_first](const Intersection &intersection) {
            return intersection_first.border_idx == intersection.border_idx;
        });

        // Append the first intersection into the path
        size_t left_idx  = intersection_first.line_idx;
        size_t right_idx = intersection_first.line_idx + 1 == boundaries[intersection_first.border_idx].points.size() ? 0 : intersection_first.line_idx + 1;
        // Offset of the polygon's point using get_middle_point_offset is used to simplify the calculation of intersection between the
        // boundary and the travel. The appended point is translated in the direction of inward normal. This translation ensures that the
        // appended point will be inside the polygon and not on the polygon border.
        result.push_back({get_middle_point_offset(boundaries[intersection_first.border_idx], left_idx, right_idx, intersection_first.point, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});

        // Check if intersection line also exit the boundary polygon
        if (it_second_r != it_last_item) {
            // Transform reverse iterator to forward
            auto it_second = it_second_r.base() - 1;
            // The exit point from the boundary polygon
            const Intersection &intersection_second = *it_second;
            Direction           shortest_direction  = get_shortest_direction(boundary, intersection_first, intersection_second,
                                                                  boundary.boundaries_params[intersection_first.border_idx].back());
            // Append the path around the border into the path
            if (shortest_direction == Direction::Forward)
                for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx);
                    line_idx      = line_idx + 1 < int(boundaries[intersection_first.border_idx].size()) ? line_idx + 1 : 0)
                    result.push_back({get_polygon_vertex_offset(boundaries[intersection_first.border_idx],
                                                                (line_idx + 1 == int(boundaries[intersection_first.border_idx].points.size())) ? 0 : (line_idx + 1), coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});
            else
                for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx);
                    line_idx      = line_idx - 1 >= 0 ? line_idx - 1 : int(boundaries[intersection_first.border_idx].size()) - 1)
                    result.push_back({get_polygon_vertex_offset(boundaries[intersection_second.border_idx], line_idx + 0, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});

            // Append the farthest intersection into the path
            left_idx  = intersection_second.line_idx;
            right_idx = (intersection_second.line_idx >= (boundaries[intersection_second.border_idx].points.size() - 1)) ? 0 : (intersection_second.line_idx + 1);
            result.push_back({get_middle_point_offset(boundaries[intersection_second.border_idx], left_idx, right_idx, intersection_second.point, coord_t(SCALED_EPSILON)), int(intersection_second.border_idx)});
            // Skip intersections in between
            it_first = it_second;
        }
    }

    result.push_back({end, -1});

#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
    {
        static int iRun = 0;
        export_travel_to_svg(boundaries, Line(start, end), result, intersections,
                             debug_out_path("AvoidCrossingPerimetersInner-initial-%d.svg", iRun++));
    }
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */

    if (! intersections.empty())
        result = simplify_travel(boundary, result);

#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
    {
        static int iRun = 0;
        export_travel_to_svg(boundaries, Line(start, end), result, intersections,
                             debug_out_path("AvoidCrossingPerimetersInner-final-%d.svg", iRun++));
    }
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */

    append(result_out, std::move(result));
    return intersections.size();
}

static std::vector<TravelPoint> simplify_travel_heuristics(const AvoidCrossingPerimeters::Boundary &boundary,
                                                           const std::vector<TravelPoint> &travel)
{
    std::vector<TravelPoint>  simplified_path;
    std::vector<Intersection> intersections;
    AllIntersectionsVisitor   visitor(boundary.grid, intersections);
    simplified_path.reserve(travel.size());
    simplified_path.emplace_back(travel.front());
    for (size_t point_idx = 1; point_idx < travel.size(); ++point_idx) {
        // Skip all indexes on the same polygon
        while (point_idx < travel.size() && travel[point_idx - 1].border_idx == travel[point_idx].border_idx) {
            simplified_path.emplace_back(travel[point_idx]);
            point_idx++;
        }

        if (point_idx < travel.size()) {
            const TravelPoint       &current                 = travel[point_idx - 1];
            const TravelPoint       &next                    = travel[point_idx];
            TravelPoint              new_next                = next;
            size_t                   new_point_idx           = point_idx;
            double                   path_length             = (next.point - current.point).cast<double>().norm();
            double                   new_path_shorter_by     = 0.;
            size_t                   border_idx_change_count = 0;
            std::vector<TravelPoint> shortcut;
            for (size_t point_idx_2 = point_idx + 1; point_idx_2 < travel.size(); ++point_idx_2) {
                const TravelPoint &possible_new_next = travel[point_idx_2];
                if (travel[point_idx_2 - 1].border_idx != travel[point_idx_2].border_idx)
                    border_idx_change_count++;

                if (border_idx_change_count >= 2)
                    break;

                path_length += (possible_new_next.point - travel[point_idx_2 - 1].point).cast<double>().norm();
                double shortcut_length = (possible_new_next.point - current.point).cast<double>().norm();
                if ((path_length - shortcut_length) <= scale_(10.0))
                    continue;

                intersections.clear();
                visitor.reset();
                visitor.travel_line.a       = current.point;
                visitor.travel_line.b       = possible_new_next.point;
                boundary.grid.visit_cells_intersecting_line(visitor.travel_line.a, visitor.travel_line.b, visitor);
                if (!intersections.empty()) {
                    Vec2d dir = (visitor.travel_line.b - visitor.travel_line.a).cast<double>();
                    std::sort(intersections.begin(), intersections.end(), [dir](const auto &l, const auto &r) { return (r.point - l.point).template cast<double>().dot(dir) > 0.; });
                    size_t last_border_idx_count = 0;
                    for (const Intersection &intersection : intersections)
                        if (int(intersection.border_idx) == possible_new_next.border_idx)
                            ++last_border_idx_count;

                    if (last_border_idx_count > 0)
                        continue;

                    std::vector<TravelPoint> possible_shortcut;
                    avoid_perimeters_inner(boundary, current.point, possible_new_next.point, possible_shortcut);
                    double shortcut_travel = travel_length(possible_shortcut);
                    if (path_length > shortcut_travel && path_length - shortcut_travel > new_path_shorter_by) {
                        new_path_shorter_by = path_length - shortcut_travel;
                        shortcut            = possible_shortcut;
                        new_next            = possible_new_next;
                        new_point_idx       = point_idx_2;
                    }
                }
            }

            if (!shortcut.empty()) {
                assert(shortcut.size() >= 2);
                simplified_path.insert(simplified_path.end(), shortcut.begin() + 1, shortcut.end() - 1);
                point_idx = new_point_idx;
            }

            simplified_path.emplace_back(new_next);
        }
    }

    return simplified_path;
}

// Called by AvoidCrossingPerimeters::travel_to()
static size_t avoid_perimeters(const AvoidCrossingPerimeters::Boundary &boundary,
                               const Point              &start,
                               const Point              &end,
                               Polyline                 &result_out)
{
    // Travel line is completely or partially inside the bounding box.
    std::vector<TravelPoint> path;
    size_t num_intersections = avoid_perimeters_inner(boundary, start, end, path);
    if (num_intersections) {
        path = simplify_travel_heuristics(boundary, path);
        std::reverse(path.begin(), path.end());
        path = simplify_travel_heuristics(boundary, path);
        std::reverse(path.begin(), path.end());
    }

    result_out = to_polyline(path);

#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
    {
        static int iRun = 0;
        export_travel_to_svg(boundaries, Line(start, end), path, {}, debug_out_path("AvoidCrossingPerimeters-final-%d.svg", iRun ++));
    }
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */

    return num_intersections;
}

// Plan travel, which avoids perimeter crossings by following the boundaries of the layer.
Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled)
{
    // If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
    // Otherwise perform the path planning in the coordinate system of the active object.
    bool     use_external  = m_use_external_mp || m_use_external_mp_once;
    Point    scaled_origin = use_external ? Point::new_scale(gcodegen.origin()(0), gcodegen.origin()(1)) : Point(0, 0);
    Point    start         = gcodegen.last_pos() + scaled_origin;
    Point    end           = point + scaled_origin;
    Polyline result_pl;
    size_t   travel_intersection_count = 0;
    Vec2d startf = start.cast<double>();
    Vec2d endf   = end  .cast<double>();
    // Trim the travel line by the bounding box.
    if (Geometry::liang_barsky_line_clipping(startf, endf, (use_external ? m_external : m_internal).bbox)) {
        // Travel line is completely or partially inside the bounding box.
        //FIXME initialize m_boundaries / m_boundaries_external on demand?
        travel_intersection_count = avoid_perimeters((use_external ? m_external : m_internal), startf.cast<coord_t>(), endf.cast<coord_t>(),
                                                     result_pl);
        result_pl.points.front()  = start;
        result_pl.points.back()   = end;
    } else {
        // Travel line is completely outside the bounding box.
        result_pl                 = {start, end};
        travel_intersection_count = 0;
    }

    Line travel(start, end);
    double max_detour_length scale_(gcodegen.config().avoid_crossing_perimeters_max_detour);
    if (max_detour_length > 0 && (result_pl.length() - travel.length()) > max_detour_length)
        result_pl = {start, end};

    if (use_external) {
        result_pl.translate(-scaled_origin);
        *could_be_wipe_disabled = false;
    } else
        *could_be_wipe_disabled = !need_wipe(gcodegen, m_grid_lslice, travel, result_pl, travel_intersection_count);

    return result_pl;
}

// called by AvoidCrossingPerimeters::init_layer()->get_boundary()/get_boundary_external()
static std::pair<Polygons, Polygons> split_expolygon(const ExPolygons &ex_polygons)
{
    Polygons contours, holes;
    contours.reserve(ex_polygons.size());
    holes.reserve(std::accumulate(ex_polygons.begin(), ex_polygons.end(), size_t(0),
                                  [](size_t sum, const ExPolygon &ex_poly) { return sum + ex_poly.holes.size(); }));
    for (const ExPolygon &ex_poly : ex_polygons) {
        contours.emplace_back(ex_poly.contour);
        append(holes, ex_poly.holes);
    }
    return std::make_pair(std::move(contours), std::move(holes));
}

// called by AvoidCrossingPerimeters::init_layer()
static ExPolygons get_boundary(const Layer &layer)
{
    const float perimeter_spacing = get_perimeter_spacing(layer);
    const float perimeter_offset  = perimeter_spacing / 2.f;
    size_t      polygons_count    = 0;
    for (const LayerRegion *layer_region : layer.regions())
        polygons_count += layer_region->slices.surfaces.size();

    ExPolygons boundary;
    boundary.reserve(polygons_count);
    for (const LayerRegion *layer_region : layer.regions())
        for (const Surface &surface : layer_region->slices.surfaces)
            boundary.emplace_back(surface.expolygon);

    boundary                      = union_ex(boundary);
    ExPolygons perimeter_boundary = offset_ex(boundary, -perimeter_offset);
    ExPolygons result_boundary;
    if (perimeter_boundary.size() != boundary.size()) {
        //FIXME ???
        // If any part of the polygon is missing after shrinking, then for misisng parts are is used the boundary of the slice.
        ExPolygons missing_perimeter_boundary = offset_ex(diff_ex(boundary,
                                                                  offset_ex(perimeter_boundary, perimeter_offset + float(SCALED_EPSILON) / 2.f)),
                                                          perimeter_offset + float(SCALED_EPSILON));
        perimeter_boundary                    = offset_ex(perimeter_boundary, perimeter_offset);
        append(perimeter_boundary, std::move(missing_perimeter_boundary));
        // By calling intersection_ex some artifacts arose by previous operations are removed.
        result_boundary = intersection_ex(offset_ex(perimeter_boundary, -perimeter_offset), boundary);
    } else {
        result_boundary = std::move(perimeter_boundary);
    }

    auto [contours, holes] = split_expolygon(boundary);
    // Add an outer boundary to avoid crossing perimeters from supports
    ExPolygons outer_boundary = union_ex(
        diff(offset(Geometry::convex_hull(contours), 2.f * perimeter_spacing), offset(contours, perimeter_spacing + perimeter_offset)));
    result_boundary.insert(result_boundary.end(), outer_boundary.begin(), outer_boundary.end());
    ExPolygons holes_boundary = offset_ex(holes, -perimeter_spacing);
    result_boundary.insert(result_boundary.end(), holes_boundary.begin(), holes_boundary.end());
    result_boundary = union_ex(result_boundary);

    // Collect all top layers that will not be crossed.
    polygons_count = 0;
    for (const LayerRegion *layer_region : layer.regions())
        for (const Surface &surface : layer_region->fill_surfaces.surfaces)
            if (surface.is_top()) ++polygons_count;

    if (polygons_count > 0) {
        ExPolygons top_layer_polygons;
        top_layer_polygons.reserve(polygons_count);
        for (const LayerRegion *layer_region : layer.regions())
            for (const Surface &surface : layer_region->fill_surfaces.surfaces)
                if (surface.is_top()) top_layer_polygons.emplace_back(surface.expolygon);

        top_layer_polygons = union_ex(top_layer_polygons);
        return diff_ex(result_boundary, offset_ex(top_layer_polygons, -perimeter_offset));
    }

    return result_boundary;
}

// called by AvoidCrossingPerimeters::init_layer()
static ExPolygons get_boundary_external(const Layer &layer)
{
    const float perimeter_spacing = get_perimeter_spacing_external(layer);
    const float perimeter_offset  = perimeter_spacing / 2.f;
    ExPolygons  boundary;
    // Collect all polygons for all printed objects and their instances, which will be printed at the same time as passed "layer".
    for (const PrintObject *object : layer.object()->print()->objects()) {
        ExPolygons polygons_per_obj;
        //FIXME with different layering, layers on other objects will not be found at this object's print_z.
        // Search an overlap of layers?
        if (const Layer* l = object->get_layer_at_printz(layer.print_z, EPSILON); l)
            for (const LayerRegion *layer_region : l->regions())
                for (const Surface &surface : layer_region->slices.surfaces)
                    polygons_per_obj.emplace_back(surface.expolygon);

        for (const PrintInstance &instance : object->instances()) {
            size_t boundary_idx = boundary.size();
            boundary.insert(boundary.end(), polygons_per_obj.begin(), polygons_per_obj.end());
            for (; boundary_idx < boundary.size(); ++boundary_idx)
                boundary[boundary_idx].translate(instance.shift);
        }
    }
    boundary               = union_ex(boundary);
    auto [contours, holes] = split_expolygon(boundary);
    // Polygons in which is possible traveling without crossing perimeters of another object.
    // A convex hull allows removing unnecessary detour caused by following the boundary of the object.
    ExPolygons result_boundary =
        diff_ex(offset(Geometry::convex_hull(contours), 2.f * perimeter_spacing),offset(contours,  perimeter_spacing + perimeter_offset));
    // All holes are extended for forcing travel around the outer perimeter of a hole when a hole is crossed.
    append(result_boundary, diff_ex(offset(holes, perimeter_spacing), offset(holes, perimeter_offset)));
    return union_ex(result_boundary);
}

void AvoidCrossingPerimeters::init_layer(const Layer &layer)
{
    m_internal.boundaries.clear();
    m_external.boundaries.clear();

    m_internal.boundaries = to_polygons(get_boundary(layer));
    m_external.boundaries = to_polygons(get_boundary_external(layer));

    BoundingBox bbox(get_extents(m_internal.boundaries));
    bbox.offset(SCALED_EPSILON);
    BoundingBox bbox_external = get_extents(m_external.boundaries);
    bbox_external.offset(SCALED_EPSILON);
    BoundingBox bbox_slice(get_extents(layer.lslices));
    bbox_slice.offset(SCALED_EPSILON);

    m_internal.bbox = BoundingBoxf(bbox.min.cast<double>(), bbox.max.cast<double>());
    m_external.bbox = BoundingBoxf(bbox_external.min.cast<double>(), bbox_external.max.cast<double>());

    m_internal.grid.set_bbox(bbox);
    //FIX1ME 1mm grid?
    m_internal.grid.create(m_internal.boundaries, coord_t(scale_(1.)));
    m_external.grid.set_bbox(bbox_external);
    //FIX1ME 1mm grid?
    m_external.grid.create(m_external.boundaries, coord_t(scale_(1.)));
    m_grid_lslice.set_bbox(bbox_slice);
    //FIX1ME 1mm grid?
    m_grid_lslice.create(layer.lslices, coord_t(scale_(1.)));

    init_boundary_distances(&m_internal);
    init_boundary_distances(&m_external);
}
#endif

} // namespace Slic3r