Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Geometry.cpp « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 00a4ad47c3f6d7101078aedffca89d9e4432d5f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
#include "libslic3r.h"
#include "Geometry.hpp"
#include "ClipperUtils.hpp"
#include "ExPolygon.hpp"
#include "Line.hpp"
#include "clipper.hpp"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <list>
#include <map>
#include <numeric>
#include <set>
#include <utility>
#include <stack>
#include <vector>

#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/log/trivial.hpp>

#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif

#ifdef SLIC3R_DEBUG
namespace boost { namespace polygon {

// The following code for the visualization of the boost Voronoi diagram is based on:
//
// Boost.Polygon library voronoi_graphic_utils.hpp header file
//          Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
template <typename CT>
class voronoi_visual_utils {
 public:
  // Discretize parabolic Voronoi edge.
  // Parabolic Voronoi edges are always formed by one point and one segment
  // from the initial input set.
  //
  // Args:
  //   point: input point.
  //   segment: input segment.
  //   max_dist: maximum discretization distance.
  //   discretization: point discretization of the given Voronoi edge.
  //
  // Template arguments:
  //   InCT: coordinate type of the input geometries (usually integer).
  //   Point: point type, should model point concept.
  //   Segment: segment type, should model segment concept.
  //
  // Important:
  //   discretization should contain both edge endpoints initially.
  template <class InCT1, class InCT2,
            template<class> class Point,
            template<class> class Segment>
  static
  typename enable_if<
    typename gtl_and<
      typename gtl_if<
        typename is_point_concept<
          typename geometry_concept< Point<InCT1> >::type
        >::type
      >::type,
      typename gtl_if<
        typename is_segment_concept<
          typename geometry_concept< Segment<InCT2> >::type
        >::type
      >::type
    >::type,
    void
  >::type discretize(
      const Point<InCT1>& point,
      const Segment<InCT2>& segment,
      const CT max_dist,
      std::vector< Point<CT> >* discretization) {
    // Apply the linear transformation to move start point of the segment to
    // the point with coordinates (0, 0) and the direction of the segment to
    // coincide the positive direction of the x-axis.
    CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
    CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
    CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;

    // Compute x-coordinates of the endpoints of the edge
    // in the transformed space.
    CT projection_start = sqr_segment_length *
        get_point_projection((*discretization)[0], segment);
    CT projection_end = sqr_segment_length *
        get_point_projection((*discretization)[1], segment);

    // Compute parabola parameters in the transformed space.
    // Parabola has next representation:
    // f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
    CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
    CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
    CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
    CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;

    // Save the last point.
    Point<CT> last_point = (*discretization)[1];
    discretization->pop_back();

    // Use stack to avoid recursion.
    std::stack<CT> point_stack;
    point_stack.push(projection_end);
    CT cur_x = projection_start;
    CT cur_y = parabola_y(cur_x, rot_x, rot_y);

    // Adjust max_dist parameter in the transformed space.
    const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
    while (!point_stack.empty()) {
      CT new_x = point_stack.top();
      CT new_y = parabola_y(new_x, rot_x, rot_y);

      // Compute coordinates of the point of the parabola that is
      // furthest from the current line segment.
      CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
      CT mid_y = parabola_y(mid_x, rot_x, rot_y);

      // Compute maximum distance between the given parabolic arc
      // and line segment that discretize it.
      CT dist = (new_y - cur_y) * (mid_x - cur_x) -
          (new_x - cur_x) * (mid_y - cur_y);
      dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
          (new_x - cur_x) * (new_x - cur_x));
      if (dist <= max_dist_transformed) {
        // Distance between parabola and line segment is less than max_dist.
        point_stack.pop();
        CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
            sqr_segment_length + cast(x(low(segment)));
        CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
            sqr_segment_length + cast(y(low(segment)));
        discretization->push_back(Point<CT>(inter_x, inter_y));
        cur_x = new_x;
        cur_y = new_y;
      } else {
        point_stack.push(mid_x);
      }
    }

    // Update last point.
    discretization->back() = last_point;
  }

 private:
  // Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
  static CT parabola_y(CT x, CT a, CT b) {
    return ((x - a) * (x - a) + b * b) / (b + b);
  }

  // Get normalized length of the distance between:
  //   1) point projection onto the segment
  //   2) start point of the segment
  // Return this length divided by the segment length. This is made to avoid
  // sqrt computation during transformation from the initial space to the
  // transformed one and vice versa. The assumption is made that projection of
  // the point lies between the start-point and endpoint of the segment.
  template <class InCT,
            template<class> class Point,
            template<class> class Segment>
  static
  typename enable_if<
    typename gtl_and<
      typename gtl_if<
        typename is_point_concept<
          typename geometry_concept< Point<int> >::type
        >::type
      >::type,
      typename gtl_if<
        typename is_segment_concept<
          typename geometry_concept< Segment<long> >::type
        >::type
      >::type
    >::type,
    CT
  >::type get_point_projection(
      const Point<CT>& point, const Segment<InCT>& segment) {
    CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
    CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
    CT point_vec_x = x(point) - cast(x(low(segment)));
    CT point_vec_y = y(point) - cast(y(low(segment)));
    CT sqr_segment_length =
        segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
    CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
    return vec_dot / sqr_segment_length;
  }

  template <typename InCT>
  static CT cast(const InCT& value) {
    return static_cast<CT>(value);
  }
};

} } // namespace boost::polygon
#endif

using namespace boost::polygon;  // provides also high() and low()

namespace Slic3r { namespace Geometry {

static bool sort_points(const Point& a, const Point& b)
{
    return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1));
}

static bool sort_pointfs(const Vec3d& a, const Vec3d& b)
{
    return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1));
}

// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
Polygon convex_hull(Points points)
{
    assert(points.size() >= 3);
    // sort input points
    std::sort(points.begin(), points.end(), sort_points);

    int n = points.size(), k = 0;
    Polygon hull;

    if (n >= 3) {
        hull.points.resize(2 * n);

        // Build lower hull
        for (int i = 0; i < n; i++) {
            while (k >= 2 && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
            hull[k++] = points[i];
        }

        // Build upper hull
        for (int i = n-2, t = k+1; i >= 0; i--) {
            while (k >= t && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
            hull[k++] = points[i];
        }

        hull.points.resize(k);

        assert(hull.points.front() == hull.points.back());
        hull.points.pop_back();
    }
    
    return hull;
}

Pointf3s
convex_hull(Pointf3s points)
{
    assert(points.size() >= 3);
    // sort input points
    std::sort(points.begin(), points.end(), sort_pointfs);

    int n = points.size(), k = 0;
    Pointf3s hull;

    if (n >= 3)
    {
        hull.resize(2 * n);

        // Build lower hull
        for (int i = 0; i < n; ++i)
        {
            Point p = Point::new_scale(points[i](0), points[i](1));
            while (k >= 2)
            {
                Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
                Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));

                if (p.ccw(k2, k1) <= 0)
                    --k;
                else
                    break;
            }

            hull[k++] = points[i];
        }

        // Build upper hull
        for (int i = n - 2, t = k + 1; i >= 0; --i)
        {
            Point p = Point::new_scale(points[i](0), points[i](1));
            while (k >= t)
            {
                Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
                Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));

                if (p.ccw(k2, k1) <= 0)
                    --k;
                else
                    break;
            }

            hull[k++] = points[i];
        }

        hull.resize(k);

        assert(hull.front() == hull.back());
        hull.pop_back();
    }

    return hull;
}

Polygon
convex_hull(const Polygons &polygons)
{
    Points pp;
    for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
        pp.insert(pp.end(), p->points.begin(), p->points.end());
    }
    return convex_hull(std::move(pp));
}

bool directions_parallel(double angle1, double angle2, double max_diff)
{
    double diff = fabs(angle1 - angle2);
    max_diff += EPSILON;
    return diff < max_diff || fabs(diff - PI) < max_diff;
}

template<class T>
bool contains(const std::vector<T> &vector, const Point &point)
{
    for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
        if (it->contains(point)) return true;
    }
    return false;
}
template bool contains(const ExPolygons &vector, const Point &point);

double rad2deg_dir(double angle)
{
    angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0);
    if (angle < 0) angle += PI;
    return rad2deg(angle);
}

Point circle_taubin_newton(const Points::const_iterator& input_begin, const Points::const_iterator& input_end, size_t cycles)
{
    Vec2ds tmp;
    tmp.reserve(std::distance(input_begin, input_end));
    std::transform(input_begin, input_end, std::back_inserter(tmp), [] (const Point& in) { return unscale(in); } );
    Vec2d center = circle_taubin_newton(tmp.cbegin(), tmp.end(), cycles);
	return Point::new_scale(center.x(), center.y());
}

/// Adapted from work in "Circular and Linear Regression: Fitting circles and lines by least squares", pg 126
/// Returns a point corresponding to the center of a circle for which all of the points from input_begin to input_end
/// lie on.
Vec2d circle_taubin_newton(const Vec2ds::const_iterator& input_begin, const Vec2ds::const_iterator& input_end, size_t cycles)
{
    // calculate the centroid of the data set
    const Vec2d sum = std::accumulate(input_begin, input_end, Vec2d(0,0));
    const size_t n = std::distance(input_begin, input_end);
    const double n_flt = static_cast<double>(n);
    const Vec2d centroid { sum / n_flt };

    // Compute the normalized moments of the data set.
    double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0;
    for (auto it = input_begin; it < input_end; ++it) {
        // center/normalize the data.
        double Xi {it->x() - centroid.x()};
        double Yi {it->y() - centroid.y()};
        double Zi {Xi*Xi + Yi*Yi};
        Mxy += (Xi*Yi);
        Mxx += (Xi*Xi);
        Myy += (Yi*Yi);
        Mxz += (Xi*Zi);
        Myz += (Yi*Zi);
        Mzz += (Zi*Zi);
    }

    // divide by number of points to get the moments
    Mxx /= n_flt;
    Myy /= n_flt;
    Mxy /= n_flt;
    Mxz /= n_flt;
    Myz /= n_flt;
    Mzz /= n_flt;

    // Compute the coefficients of the characteristic polynomial for the circle
    // eq 5.60
    const double Mz {Mxx + Myy}; // xx + yy = z
    const double Cov_xy {Mxx*Myy - Mxy*Mxy}; // this shows up a couple times so cache it here.
    const double C3 {4.0*Mz};
    const double C2 {-3.0*(Mz*Mz) - Mzz};
    const double C1 {Mz*(Mzz - (Mz*Mz)) + 4.0*Mz*Cov_xy - (Mxz*Mxz) - (Myz*Myz)};
    const double C0 {(Mxz*Mxz)*Myy + (Myz*Myz)*Mxx - 2.0*Mxz*Myz*Mxy - Cov_xy*(Mzz - (Mz*Mz))};

    const double C22 = {C2 + C2};
    const double C33 = {C3 + C3 + C3};

    // solve the characteristic polynomial with Newton's method.
    double xnew = 0.0;
    double ynew = 1e20;

    for (size_t i = 0; i < cycles; ++i) {
        const double yold {ynew};
        ynew = C0 + xnew * (C1 + xnew*(C2 + xnew * C3));
        if (std::abs(ynew) > std::abs(yold)) {
			BOOST_LOG_TRIVIAL(error) << "Geometry: Fit is going in the wrong direction.\n";
            return Vec2d(std::nan(""), std::nan(""));
        }
        const double Dy {C1 + xnew*(C22 + xnew*C33)};

        const double xold {xnew};
        xnew = xold - (ynew / Dy);

        if (std::abs((xnew-xold) / xnew) < 1e-12) i = cycles; // converged, we're done here

        if (xnew < 0) {
            // reset, we went negative
            xnew = 0.0;
        }
    }
    
    // compute the determinant and the circle's parameters now that we've solved.
    double DET = xnew*xnew - xnew*Mz + Cov_xy;

    Vec2d center(Mxz * (Myy - xnew) - Myz * Mxy, Myz * (Mxx - xnew) - Mxz*Mxy);
    center /= (DET * 2.);
    return center + centroid;
}

void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
{
    Polygons pp;
    for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) {
        Polygon p = *it;
        p.points.push_back(p.points.front());
        p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
        p.points.pop_back();
        pp.push_back(p);
    }
    *retval = Slic3r::simplify_polygons(pp);
}

double linint(double value, double oldmin, double oldmax, double newmin, double newmax)
{
    return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
}

#if 0
// Point with a weight, by which the points are sorted.
// If the points have the same weight, sort them lexicographically by their positions.
struct ArrangeItem {
    ArrangeItem() {}
    Vec2d    pos;
    coordf_t  weight;
    bool operator<(const ArrangeItem &other) const {
        return weight < other.weight ||
            ((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
    }
};

Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
{
    // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
    const Vec2d       cell_size(part_size(0) + gap, part_size(1) + gap);

    const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ? 
        *bed_bounding_box :
        // Bogus bed size, large enough not to trigger the unsufficient bed size error.
        BoundingBoxf(
            Vec2d(0, 0),
            Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));

    // This is how many cells we have available into which to put parts.
    size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
    size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
    if (num_parts > cellw * cellh)
        throw std::invalid_argument("%zu parts won't fit in your print area!\n", num_parts);
    
    // Get a bounding box of cellw x cellh cells, centered at the center of the bed.
    Vec2d       cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
    Vec2d       cells_offset(bed_bbox.center() - 0.5 * cells_size);
    BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
    
    // List of cells, sorted by distance from center.
    std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
    for (size_t j = 0; j < cellh; ++ j) {
        // Center of the jth row on the bed.
        coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
        // Offset from the bed center.
        coordf_t yd = cells_bb.center()(1) - cy;
        for (size_t i = 0; i < cellw; ++ i) {
            // Center of the ith column on the bed.
            coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
            // Offset from the bed center.
            coordf_t xd = cells_bb.center()(0) - cx;
            // Cell with a distance from the bed center.
            ArrangeItem &ci = cellsorder[j * cellw + i];
            // Cell center
            ci.pos(0) = cx;
            ci.pos(1) = cy;
            // Square distance of the cell center to the bed center.
            ci.weight = xd * xd + yd * yd;
        }
    }
    // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top.
    std::sort(cellsorder.begin(), cellsorder.end());
    cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end());

    // Return the (left,top) corners of the cells.
    Pointfs positions;
    positions.reserve(num_parts);
    for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
        positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
    return positions;
}
#else
class ArrangeItem {
public:
    Vec2d pos = Vec2d::Zero();
    size_t index_x, index_y;
    coordf_t dist;
};
class ArrangeItemIndex {
public:
    coordf_t index;
    ArrangeItem item;
    ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
};

bool
arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
{
    positions.clear();

    Vec2d part = part_size;

    // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
    part(0) += dist;
    part(1) += dist;
    
    Vec2d area(Vec2d::Zero());
    if (bb != NULL && bb->defined) {
        area = bb->size();
    } else {
        // bogus area size, large enough not to trigger the error below
        area(0) = part(0) * total_parts;
        area(1) = part(1) * total_parts;
    }
    
    // this is how many cells we have available into which to put parts
    size_t cellw = floor((area(0) + dist) / part(0));
    size_t cellh = floor((area(1) + dist) / part(1));
    if (total_parts > (cellw * cellh))
        return false;
    
    // total space used by cells
    Vec2d cells(cellw * part(0), cellh * part(1));
    
    // bounding box of total space used by cells
    BoundingBoxf cells_bb;
    cells_bb.merge(Vec2d(0,0)); // min
    cells_bb.merge(cells);  // max
    
    // center bounding box to area
    cells_bb.translate(
        (area(0) - cells(0)) / 2,
        (area(1) - cells(1)) / 2
    );
    
    // list of cells, sorted by distance from center
    std::vector<ArrangeItemIndex> cellsorder;
    
    // work out distance for all cells, sort into list
    for (size_t i = 0; i <= cellw-1; ++i) {
        for (size_t j = 0; j <= cellh-1; ++j) {
            coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
            coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
            
            coordf_t xd = fabs((area(0) / 2) - cx);
            coordf_t yd = fabs((area(1) / 2) - cy);
            
            ArrangeItem c;
            c.pos(0) = cx;
            c.pos(1) = cy;
            c.index_x = i;
            c.index_y = j;
            c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
            
            // binary insertion sort
            {
                coordf_t index = c.dist;
                size_t low = 0;
                size_t high = cellsorder.size();
                while (low < high) {
                    size_t mid = (low + ((high - low) / 2)) | 0;
                    coordf_t midval = cellsorder[mid].index;
                    
                    if (midval < index) {
                        low = mid + 1;
                    } else if (midval > index) {
                        high = mid;
                    } else {
                        cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
                        goto ENDSORT;
                    }
                }
                cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
            }
            ENDSORT: ;
        }
    }
    
    // the extents of cells actually used by objects
    coordf_t lx = 0;
    coordf_t ty = 0;
    coordf_t rx = 0;
    coordf_t by = 0;

    // now find cells actually used by objects, map out the extents so we can position correctly
    for (size_t i = 1; i <= total_parts; ++i) {
        ArrangeItemIndex c = cellsorder[i - 1];
        coordf_t cx = c.item.index_x;
        coordf_t cy = c.item.index_y;
        if (i == 1) {
            lx = rx = cx;
            ty = by = cy;
        } else {
            if (cx > rx) rx = cx;
            if (cx < lx) lx = cx;
            if (cy > by) by = cy;
            if (cy < ty) ty = cy;
        }
    }
    // now we actually place objects into cells, positioned such that the left and bottom borders are at 0
    for (size_t i = 1; i <= total_parts; ++i) {
        ArrangeItemIndex c = cellsorder.front();
        cellsorder.erase(cellsorder.begin());
        coordf_t cx = c.item.index_x - lx;
        coordf_t cy = c.item.index_y - ty;
        
        positions.push_back(Vec2d(cx * part(0), cy * part(1)));
    }
    
    if (bb != NULL && bb->defined) {
        for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
            p->x() += bb->min(0);
            p->y() += bb->min(1);
        }
    }
    
    return true;
}
#endif

#ifdef SLIC3R_DEBUG
// The following code for the visualization of the boost Voronoi diagram is based on:
//
// Boost.Polygon library voronoi_visualizer.cpp file
//          Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
namespace Voronoi { namespace Internal {

    typedef double coordinate_type;
    typedef boost::polygon::point_data<coordinate_type> point_type;
    typedef boost::polygon::segment_data<coordinate_type> segment_type;
    typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
    typedef boost::polygon::voronoi_diagram<coordinate_type> VD;
    typedef VD::cell_type cell_type;
    typedef VD::cell_type::source_index_type source_index_type;
    typedef VD::cell_type::source_category_type source_category_type;
    typedef VD::edge_type edge_type;
    typedef VD::cell_container_type cell_container_type;
    typedef VD::cell_container_type vertex_container_type;
    typedef VD::edge_container_type edge_container_type;
    typedef VD::const_cell_iterator const_cell_iterator;
    typedef VD::const_vertex_iterator const_vertex_iterator;
    typedef VD::const_edge_iterator const_edge_iterator;

    static const std::size_t EXTERNAL_COLOR = 1;

    inline void color_exterior(const VD::edge_type* edge) 
    {
        if (edge->color() == EXTERNAL_COLOR)
            return;
        edge->color(EXTERNAL_COLOR);
        edge->twin()->color(EXTERNAL_COLOR);
        const VD::vertex_type* v = edge->vertex1();
        if (v == NULL || !edge->is_primary())
            return;
        v->color(EXTERNAL_COLOR);
        const VD::edge_type* e = v->incident_edge();
        do {
            color_exterior(e);
            e = e->rot_next();
        } while (e != v->incident_edge());
    }

    inline point_type retrieve_point(const std::vector<segment_type> &segments, const cell_type& cell) 
    {
        assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
        return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
    }

    inline void clip_infinite_edge(const std::vector<segment_type> &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector<point_type>* clipped_edge) 
    {
        const cell_type& cell1 = *edge.cell();
        const cell_type& cell2 = *edge.twin()->cell();
        point_type origin, direction;
        // Infinite edges could not be created by two segment sites.
        if (cell1.contains_point() && cell2.contains_point()) {
            point_type p1 = retrieve_point(segments, cell1);
            point_type p2 = retrieve_point(segments, cell2);
            origin.x((p1.x() + p2.x()) * 0.5);
            origin.y((p1.y() + p2.y()) * 0.5);
            direction.x(p1.y() - p2.y());
            direction.y(p2.x() - p1.x());
        } else {
            origin = cell1.contains_segment() ? retrieve_point(segments, cell2) : retrieve_point(segments, cell1);
            segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()];
            coordinate_type dx = high(segment).x() - low(segment).x();
            coordinate_type dy = high(segment).y() - low(segment).y();
            if ((low(segment) == origin) ^ cell1.contains_point()) {
                direction.x(dy);
                direction.y(-dx);
            } else {
                direction.x(-dy);
                direction.y(dx);
            }
        }
        coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y()));
        if (edge.vertex0() == NULL) {
            clipped_edge->push_back(point_type(
                origin.x() - direction.x() * koef,
                origin.y() - direction.y() * koef));
        } else {
            clipped_edge->push_back(
                point_type(edge.vertex0()->x(), edge.vertex0()->y()));
        }
        if (edge.vertex1() == NULL) {
            clipped_edge->push_back(point_type(
                origin.x() + direction.x() * koef,
                origin.y() + direction.y() * koef));
        } else {
            clipped_edge->push_back(
                point_type(edge.vertex1()->x(), edge.vertex1()->y()));
        }
    }

    inline void sample_curved_edge(const std::vector<segment_type> &segments, const edge_type& edge, std::vector<point_type> &sampled_edge, coordinate_type max_dist) 
    {
        point_type point = edge.cell()->contains_point() ?
            retrieve_point(segments, *edge.cell()) :
            retrieve_point(segments, *edge.twin()->cell());
        segment_type segment = edge.cell()->contains_point() ?
            segments[edge.twin()->cell()->source_index()] :
            segments[edge.cell()->source_index()];
        ::boost::polygon::voronoi_visual_utils<coordinate_type>::discretize(point, segment, max_dist, &sampled_edge);
    }

} /* namespace Internal */ } // namespace Voronoi

static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ boost::polygon::voronoi_diagram<double> &vd, const ThickPolylines *polylines, const char *path)
{
    const double        scale                       = 0.2;
    const std::string   inputSegmentPointColor      = "lightseagreen";
    const coord_t       inputSegmentPointRadius     = coord_t(0.09 * scale / SCALING_FACTOR); 
    const std::string   inputSegmentColor           = "lightseagreen";
    const coord_t       inputSegmentLineWidth       = coord_t(0.03 * scale / SCALING_FACTOR);

    const std::string   voronoiPointColor           = "black";
    const coord_t       voronoiPointRadius          = coord_t(0.06 * scale / SCALING_FACTOR);
    const std::string   voronoiLineColorPrimary     = "black";
    const std::string   voronoiLineColorSecondary   = "green";
    const std::string   voronoiArcColor             = "red";
    const coord_t       voronoiLineWidth            = coord_t(0.02 * scale / SCALING_FACTOR);

    const bool          internalEdgesOnly           = false;
    const bool          primaryEdgesOnly            = false;

    BoundingBox bbox = BoundingBox(lines);
    bbox.min(0) -= coord_t(1. / SCALING_FACTOR);
    bbox.min(1) -= coord_t(1. / SCALING_FACTOR);
    bbox.max(0) += coord_t(1. / SCALING_FACTOR);
    bbox.max(1) += coord_t(1. / SCALING_FACTOR);

    ::Slic3r::SVG svg(path, bbox);

    if (polylines != NULL)
        svg.draw(*polylines, "lime", "lime", voronoiLineWidth);

//    bbox.scale(1.2);
    // For clipping of half-lines to some reasonable value.
    // The line will then be clipped by the SVG viewer anyway.
    const double bbox_dim_max = double(bbox.max(0) - bbox.min(0)) + double(bbox.max(1) - bbox.min(1));
    // For the discretization of the Voronoi parabolic segments.
    const double discretization_step = 0.0005 * bbox_dim_max;

    // Make a copy of the input segments with the double type.
    std::vector<Voronoi::Internal::segment_type> segments;
    for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
        segments.push_back(Voronoi::Internal::segment_type(
            Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))), 
            Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1)))));
    
    // Color exterior edges.
    for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
        if (!it->is_finite())
            Voronoi::Internal::color_exterior(&(*it));

    // Draw the end points of the input polygon.
    for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
        svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius);
        svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius);
    }
    // Draw the input polygon.
    for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
        svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth);

#if 1
    // Draw voronoi vertices.
    for (boost::polygon::voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
        if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR)
            svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius);

    for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
        if (primaryEdgesOnly && !it->is_primary())
            continue;
        if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR))
            continue;
        std::vector<Voronoi::Internal::point_type> samples;
        std::string color = voronoiLineColorPrimary;
        if (!it->is_finite()) {
            Voronoi::Internal::clip_infinite_edge(segments, *it, bbox_dim_max, &samples);
            if (! it->is_primary())
                color = voronoiLineColorSecondary;
        } else {
            // Store both points of the segment into samples. sample_curved_edge will split the initial line
            // until the discretization_step is reached.
            samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y()));
            samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y()));
            if (it->is_curved()) {
                Voronoi::Internal::sample_curved_edge(segments, *it, samples, discretization_step);
                color = voronoiArcColor;
            } else if (! it->is_primary())
                color = voronoiLineColorSecondary;
        }
        for (std::size_t i = 0; i + 1 < samples.size(); ++i)
            svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth);
    }
#endif

    if (polylines != NULL)
        svg.draw(*polylines, "blue", voronoiLineWidth);

    svg.Close();
}
#endif /* SLIC3R_DEBUG */

// Euclidian distance of two boost::polygon points.
template<typename T>
T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
{
	T dx = p2(0) - p1(0);
	T dy = p2(1) - p1(1);
	return sqrt(dx*dx+dy*dy);
}

// Find a foot point of "px" on a segment "seg".
template<typename segment_type, typename point_type>
inline point_type project_point_to_segment(segment_type &seg, point_type &px)
{
    typedef typename point_type::coordinate_type T;
    const point_type &p0 = low(seg);
    const point_type &p1 = high(seg);
    const point_type  dir(p1(0)-p0(0), p1(1)-p0(1));
    const point_type  dproj(px(0)-p0(0), px(1)-p0(1));
    const T           t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
    assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
    return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
}

template<typename VD, typename SEGMENTS>
inline const typename VD::point_type retrieve_cell_point(const typename VD::cell_type& cell, const SEGMENTS &segments)
{
    assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
    return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
}

template<typename VD, typename SEGMENTS>
inline std::pair<typename VD::coord_type, typename VD::coord_type>
measure_edge_thickness(const VD &vd, const typename VD::edge_type& edge, const SEGMENTS &segments)
{
	typedef typename VD::coord_type T;
    const typename VD::point_type  pa(edge.vertex0()->x(), edge.vertex0()->y());
    const typename VD::point_type  pb(edge.vertex1()->x(), edge.vertex1()->y());
    const typename VD::cell_type  &cell1 = *edge.cell();
    const typename VD::cell_type  &cell2 = *edge.twin()->cell();
    if (cell1.contains_segment()) {
        if (cell2.contains_segment()) {
            // Both cells contain a linear segment, the left / right cells are symmetric.
            // Project pa, pb to the left segment.
            const typename VD::segment_type segment1 = segments[cell1.source_index()];
            const typename VD::point_type p1a = project_point_to_segment(segment1, pa);
            const typename VD::point_type p1b = project_point_to_segment(segment1, pb);
            return std::pair<T, T>(T(2.)*dist(pa, p1a), T(2.)*dist(pb, p1b));
        } else {
            // 1st cell contains a linear segment, 2nd cell contains a point.
            // The medial axis between the cells is a parabolic arc.
            // Project pa, pb to the left segment.
            const typename  VD::point_type p2 = retrieve_cell_point<VD>(cell2, segments);
            return std::pair<T, T>(T(2.)*dist(pa, p2), T(2.)*dist(pb, p2));
        }
    } else if (cell2.contains_segment()) {
        // 1st cell contains a point, 2nd cell contains a linear segment.
        // The medial axis between the cells is a parabolic arc.
        const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
        return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
    } else {
        // Both cells contain a point. The left / right regions are triangular and symmetric.
        const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
        return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
    }
}

// Converts the Line instances of Lines vector to VD::segment_type.
template<typename VD>
class Lines2VDSegments
{
public:
    Lines2VDSegments(const Lines &alines) : lines(alines) {}
    typename VD::segment_type operator[](size_t idx) const {
        return typename VD::segment_type(
            typename VD::point_type(typename VD::coord_type(lines[idx].a(0)), typename VD::coord_type(lines[idx].a(1))),
            typename VD::point_type(typename VD::coord_type(lines[idx].b(0)), typename VD::coord_type(lines[idx].b(1))));
    }
private:
    const Lines &lines;
};

void
MedialAxis::build(ThickPolylines* polylines)
{
    construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
    
    /*
    // DEBUG: dump all Voronoi edges
    {
        for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
            if (edge->is_infinite()) continue;
            
            ThickPolyline polyline;
            polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
            polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
            polylines->push_back(polyline);
        }
        return;
    }
    */
    
    //typedef const VD::vertex_type vert_t;
    typedef const VD::edge_type   edge_t;
    
    // collect valid edges (i.e. prune those not belonging to MAT)
    // note: this keeps twins, so it inserts twice the number of the valid edges
    this->valid_edges.clear();
    {
        std::set<const VD::edge_type*> seen_edges;
        for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
            // if we only process segments representing closed loops, none if the
            // infinite edges (if any) would be part of our MAT anyway
            if (edge->is_secondary() || edge->is_infinite()) continue;
        
            // don't re-validate twins
            if (seen_edges.find(&*edge) != seen_edges.end()) continue;  // TODO: is this needed?
            seen_edges.insert(&*edge);
            seen_edges.insert(edge->twin());
            
            if (!this->validate_edge(&*edge)) continue;
            this->valid_edges.insert(&*edge);
            this->valid_edges.insert(edge->twin());
        }
    }
    this->edges = this->valid_edges;
    
    // iterate through the valid edges to build polylines
    while (!this->edges.empty()) {
        const edge_t* edge = *this->edges.begin();
        
        // start a polyline
        ThickPolyline polyline;
        polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
        polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
        polyline.width.push_back(this->thickness[edge].first);
        polyline.width.push_back(this->thickness[edge].second);
        
        // remove this edge and its twin from the available edges
        (void)this->edges.erase(edge);
        (void)this->edges.erase(edge->twin());
        
        // get next points
        this->process_edge_neighbors(edge, &polyline);
        
        // get previous points
        {
            ThickPolyline rpolyline;
            this->process_edge_neighbors(edge->twin(), &rpolyline);
            polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
            polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
            polyline.endpoints.first = rpolyline.endpoints.second;
        }
        
        assert(polyline.width.size() == polyline.points.size()*2 - 2);
        
        // prevent loop endpoints from being extended
        if (polyline.first_point() == polyline.last_point()) {
            polyline.endpoints.first = false;
            polyline.endpoints.second = false;
        }
        
        // append polyline to result
        polylines->push_back(polyline);
    }

    #ifdef SLIC3R_DEBUG
    {
        static int iRun = 0;
        dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str());
        printf("Thick lines: ");
        for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) {
            ThickLines lines = it->thicklines();
            for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) {
                printf("%f,%f ", it2->a_width, it2->b_width);
            }
        }
        printf("\n");
    }
    #endif /* SLIC3R_DEBUG */
}

void
MedialAxis::build(Polylines* polylines)
{
    ThickPolylines tp;
    this->build(&tp);
    polylines->insert(polylines->end(), tp.begin(), tp.end());
}

void
MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline)
{
    while (true) {
        // Since rot_next() works on the edge starting point but we want
        // to find neighbors on the ending point, we just swap edge with
        // its twin.
        const VD::edge_type* twin = edge->twin();
    
        // count neighbors for this edge
        std::vector<const VD::edge_type*> neighbors;
        for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
            neighbor = neighbor->rot_next()) {
            if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
        }
    
        // if we have a single neighbor then we can continue recursively
        if (neighbors.size() == 1) {
            const VD::edge_type* neighbor = neighbors.front();
            
            // break if this is a closed loop
            if (this->edges.count(neighbor) == 0) return;
            
            Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
            polyline->points.push_back(new_point);
            polyline->width.push_back(this->thickness[neighbor].first);
            polyline->width.push_back(this->thickness[neighbor].second);
            (void)this->edges.erase(neighbor);
            (void)this->edges.erase(neighbor->twin());
            edge = neighbor;
        } else if (neighbors.size() == 0) {
            polyline->endpoints.second = true;
            return;
        } else {
            // T-shaped or star-shaped joint
            return;
        }
    }
}

bool
MedialAxis::validate_edge(const VD::edge_type* edge)
{
    // prevent overflows and detect almost-infinite edges
    if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) || 
        std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) || 
        std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
        std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED))
        return false;

    // construct the line representing this edge of the Voronoi diagram
    const Line line(
        Point( edge->vertex0()->x(), edge->vertex0()->y() ),
        Point( edge->vertex1()->x(), edge->vertex1()->y() )
    );
    
    // discard edge if it lies outside the supplied shape
    // this could maybe be optimized (checking inclusion of the endpoints
    // might give false positives as they might belong to the contour itself)
    if (this->expolygon != NULL) {
        if (line.a == line.b) {
            // in this case, contains(line) returns a false positive
            if (!this->expolygon->contains(line.a)) return false;
        } else {
            if (!this->expolygon->contains(line)) return false;
        }
    }
    
    // retrieve the original line segments which generated the edge we're checking
    const VD::cell_type* cell_l = edge->cell();
    const VD::cell_type* cell_r = edge->twin()->cell();
    const Line &segment_l = this->retrieve_segment(cell_l);
    const Line &segment_r = this->retrieve_segment(cell_r);
    
    /*
    SVG svg("edge.svg");
    svg.draw(*this->expolygon);
    svg.draw(line);
    svg.draw(segment_l, "red");
    svg.draw(segment_r, "blue");
    svg.Close();
    */
    
    /*  Calculate thickness of the cross-section at both the endpoints of this edge.
        Our Voronoi edge is part of a CCW sequence going around its Voronoi cell 
        located on the left side. (segment_l).
        This edge's twin goes around segment_r. Thus, segment_r is 
        oriented in the same direction as our main edge, and segment_l is oriented
        in the same direction as our twin edge.
        We used to only consider the (half-)distances to segment_r, and that works
        whenever segment_l and segment_r are almost specular and facing. However, 
        at curves they are staggered and they only face for a very little length
        (our very short edge represents such visibility).
        Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
        results by Voronoi definition.
        When cell_l or cell_r don't refer to the segment but only to an endpoint, we
        calculate the distance to that endpoint instead.  */
    
    coordf_t w0 = cell_r->contains_segment()
        ? segment_r.distance_to(line.a)*2
        : (this->retrieve_endpoint(cell_r) - line.a).cast<double>().norm()*2;
    
    coordf_t w1 = cell_l->contains_segment()
        ? segment_l.distance_to(line.b)*2
        : (this->retrieve_endpoint(cell_l) - line.b).cast<double>().norm()*2;
    
    if (cell_l->contains_segment() && cell_r->contains_segment()) {
        // calculate the relative angle between the two boundary segments
        double angle = fabs(segment_r.orientation() - segment_l.orientation());
        if (angle > PI) angle = 2*PI - angle;
        assert(angle >= 0 && angle <= PI);
        
        // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
        // we're interested only in segments close to the second case (facing segments)
        // so we allow some tolerance.
        // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
        // we don't run it on edges not generated by two segments (thus generated by one segment
        // and the endpoint of another segment), since their orientation would not be meaningful
        if (PI - angle > PI/8) {
            // angle is not narrow enough
            
            // only apply this filter to segments that are not too short otherwise their 
            // angle could possibly be not meaningful
            if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
                return false;
        }
    } else {
        if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
            return false;
    }
    
    if (w0 < this->min_width && w1 < this->min_width)
        return false;
    
    if (w0 > this->max_width && w1 > this->max_width)
        return false;
    
    this->thickness[edge]         = std::make_pair(w0, w1);
    this->thickness[edge->twin()] = std::make_pair(w1, w0);
    
    return true;
}

const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell) const
{
    return this->lines[cell->source_index()];
}

const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const
{
    const Line& line = this->retrieve_segment(cell);
    if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) {
        return line.a;
    } else {
        return line.b;
    }
}

void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
{
    transform = Transform3d::Identity();
    transform.translate(translation);
    transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
    transform.scale(scale.cwiseProduct(mirror));
}

Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
{
    Transform3d transform;
    assemble_transform(transform, translation, rotation, scale, mirror);
    return transform;
}

Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix)
{
    // reference: http://www.gregslabaugh.net/publications/euler.pdf
    Vec3d angles1 = Vec3d::Zero();
    Vec3d angles2 = Vec3d::Zero();
    if (is_approx(std::abs(rotation_matrix(2, 0)), 1.0))
    {
        angles1(2) = 0.0;
        if (rotation_matrix(2, 0) < 0.0) // == -1.0
        {
            angles1(1) = 0.5 * (double)PI;
            angles1(0) = angles1(2) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2));
        }
        else // == 1.0
        {
            angles1(1) = - 0.5 * (double)PI;
            angles1(0) = - angles1(2) + ::atan2(- rotation_matrix(0, 1), - rotation_matrix(0, 2));
        }
        angles2 = angles1;
    }
    else
    {
        angles1(1) = -::asin(rotation_matrix(2, 0));
        double inv_cos1 = 1.0 / ::cos(angles1(1));
        angles1(0) = ::atan2(rotation_matrix(2, 1) * inv_cos1, rotation_matrix(2, 2) * inv_cos1);
        angles1(2) = ::atan2(rotation_matrix(1, 0) * inv_cos1, rotation_matrix(0, 0) * inv_cos1);

        angles2(1) = (double)PI - angles1(1);
        double inv_cos2 = 1.0 / ::cos(angles2(1));
        angles2(0) = ::atan2(rotation_matrix(2, 1) * inv_cos2, rotation_matrix(2, 2) * inv_cos2);
        angles2(2) = ::atan2(rotation_matrix(1, 0) * inv_cos2, rotation_matrix(0, 0) * inv_cos2);
    }

    // The following euristic is the best found up to now (in the sense that it works fine with the greatest number of edge use-cases)
    // but there are other use-cases were it does not
    // We need to improve it
    double min_1 = angles1.cwiseAbs().minCoeff();
    double min_2 = angles2.cwiseAbs().minCoeff();
    bool use_1 = (min_1 < min_2) || (is_approx(min_1, min_2) && (angles1.norm() <= angles2.norm()));

    return use_1 ? angles1 : angles2;
}

Vec3d extract_euler_angles(const Transform3d& transform)
{
    // use only the non-translational part of the transform
    Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m = transform.matrix().block(0, 0, 3, 3);
    // remove scale
    m.col(0).normalize();
    m.col(1).normalize();
    m.col(2).normalize();
    return extract_euler_angles(m);
}

Transformation::Flags::Flags()
    : dont_translate(true)
    , dont_rotate(true)
    , dont_scale(true)
    , dont_mirror(true)
{
}

bool Transformation::Flags::needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
{
    return (this->dont_translate != dont_translate) || (this->dont_rotate != dont_rotate) || (this->dont_scale != dont_scale) || (this->dont_mirror != dont_mirror);
}

void Transformation::Flags::set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror)
{
    this->dont_translate = dont_translate;
    this->dont_rotate = dont_rotate;
    this->dont_scale = dont_scale;
    this->dont_mirror = dont_mirror;
}

Transformation::Transformation()
{
    reset();
}

Transformation::Transformation(const Transform3d& transform)
{
    set_from_transform(transform);
}

void Transformation::set_offset(const Vec3d& offset)
{
    set_offset(X, offset(0));
    set_offset(Y, offset(1));
    set_offset(Z, offset(2));
}

void Transformation::set_offset(Axis axis, double offset)
{
    if (m_offset(axis) != offset)
    {
        m_offset(axis) = offset;
        m_dirty = true;
    }
}

void Transformation::set_rotation(const Vec3d& rotation)
{
    set_rotation(X, rotation(0));
    set_rotation(Y, rotation(1));
    set_rotation(Z, rotation(2));
}

void Transformation::set_rotation(Axis axis, double rotation)
{
    rotation = angle_to_0_2PI(rotation);
    if (is_approx(std::abs(rotation), 2.0 * (double)PI))
        rotation = 0.0;

    if (m_rotation(axis) != rotation)
    {
        m_rotation(axis) = rotation;
        m_dirty = true;
    }
}

void Transformation::set_scaling_factor(const Vec3d& scaling_factor)
{
    set_scaling_factor(X, scaling_factor(0));
    set_scaling_factor(Y, scaling_factor(1));
    set_scaling_factor(Z, scaling_factor(2));
}

void Transformation::set_scaling_factor(Axis axis, double scaling_factor)
{
    if (m_scaling_factor(axis) != std::abs(scaling_factor))
    {
        m_scaling_factor(axis) = std::abs(scaling_factor);
        m_dirty = true;
    }
}

void Transformation::set_mirror(const Vec3d& mirror)
{
    set_mirror(X, mirror(0));
    set_mirror(Y, mirror(1));
    set_mirror(Z, mirror(2));
}

void Transformation::set_mirror(Axis axis, double mirror)
{
    double abs_mirror = std::abs(mirror);
    if (abs_mirror == 0.0)
        mirror = 1.0;
    else if (abs_mirror != 1.0)
        mirror /= abs_mirror;

    if (m_mirror(axis) != mirror)
    {
        m_mirror(axis) = mirror;
        m_dirty = true;
    }
}

void Transformation::set_from_transform(const Transform3d& transform)
{
    // offset
    set_offset(transform.matrix().block(0, 3, 3, 1));

    Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m3x3 = transform.matrix().block(0, 0, 3, 3);

    // mirror
    // it is impossible to reconstruct the original mirroring factors from a matrix,
    // we can only detect if the matrix contains a left handed reference system
    // in which case we reorient it back to right handed by mirroring the x axis
    Vec3d mirror = Vec3d::Ones();
    if (m3x3.col(0).dot(m3x3.col(1).cross(m3x3.col(2))) < 0.0)
    {
        mirror(0) = -1.0;
        // remove mirror
        m3x3.col(0) *= -1.0;
    }
    set_mirror(mirror);

    // scale
    set_scaling_factor(Vec3d(m3x3.col(0).norm(), m3x3.col(1).norm(), m3x3.col(2).norm()));

    // remove scale
    m3x3.col(0).normalize();
    m3x3.col(1).normalize();
    m3x3.col(2).normalize();

    // rotation
    set_rotation(extract_euler_angles(m3x3));

    // forces matrix recalculation matrix
    m_matrix = get_matrix();

//    // debug check
//    if (!m_matrix.isApprox(transform))
//        std::cout << "something went wrong in extracting data from matrix" << std::endl;
}

void Transformation::reset()
{
    m_offset = Vec3d::Zero();
    m_rotation = Vec3d::Zero();
    m_scaling_factor = Vec3d::Ones();
    m_mirror = Vec3d::Ones();
    m_matrix = Transform3d::Identity();
    m_dirty = false;
}

const Transform3d& Transformation::get_matrix(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
{
    if (m_dirty || m_flags.needs_update(dont_translate, dont_rotate, dont_scale, dont_mirror))
    {
        m_matrix = Geometry::assemble_transform(
            dont_translate ? Vec3d::Zero() : m_offset, 
            dont_rotate ? Vec3d::Zero() : m_rotation,
            dont_scale ? Vec3d::Ones() : m_scaling_factor,
            dont_mirror ? Vec3d::Ones() : m_mirror
            );

        m_flags.set(dont_translate, dont_rotate, dont_scale, dont_mirror);
        m_dirty = false;
    }

    return m_matrix;
}

Transformation Transformation::operator * (const Transformation& other) const
{
    return Transformation(get_matrix() * other.get_matrix());
}

Transformation Transformation::volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox)
{
    Transformation out;

    if (instance_transformation.is_scaling_uniform()) {
        // No need to run the non-linear least squares fitting for uniform scaling.
        // Just set the inverse.
        out.set_from_transform(instance_transformation.get_matrix(true).inverse());
    }
    else if (is_rotation_ninety_degrees(instance_transformation.get_rotation()))
    {
        // Anisotropic scaling, rotation by multiples of ninety degrees.
        Eigen::Matrix3d instance_rotation_trafo =
            (Eigen::AngleAxisd(instance_transformation.get_rotation().z(), Vec3d::UnitZ()) *
            Eigen::AngleAxisd(instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
            Eigen::AngleAxisd(instance_transformation.get_rotation().x(), Vec3d::UnitX())).toRotationMatrix();
        Eigen::Matrix3d volume_rotation_trafo =
            (Eigen::AngleAxisd(-instance_transformation.get_rotation().x(), Vec3d::UnitX()) *
            Eigen::AngleAxisd(-instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
            Eigen::AngleAxisd(-instance_transformation.get_rotation().z(), Vec3d::UnitZ())).toRotationMatrix();

        // 8 corners of the bounding box.
        auto pts = Eigen::MatrixXd(8, 3);
        pts(0, 0) = bbox.min.x(); pts(0, 1) = bbox.min.y(); pts(0, 2) = bbox.min.z();
        pts(1, 0) = bbox.min.x(); pts(1, 1) = bbox.min.y(); pts(1, 2) = bbox.max.z();
        pts(2, 0) = bbox.min.x(); pts(2, 1) = bbox.max.y(); pts(2, 2) = bbox.min.z();
        pts(3, 0) = bbox.min.x(); pts(3, 1) = bbox.max.y(); pts(3, 2) = bbox.max.z();
        pts(4, 0) = bbox.max.x(); pts(4, 1) = bbox.min.y(); pts(4, 2) = bbox.min.z();
        pts(5, 0) = bbox.max.x(); pts(5, 1) = bbox.min.y(); pts(5, 2) = bbox.max.z();
        pts(6, 0) = bbox.max.x(); pts(6, 1) = bbox.max.y(); pts(6, 2) = bbox.min.z();
        pts(7, 0) = bbox.max.x(); pts(7, 1) = bbox.max.y(); pts(7, 2) = bbox.max.z();

        // Corners of the bounding box transformed into the modifier mesh coordinate space, with inverse rotation applied to the modifier.
        auto qs = pts *
            (instance_rotation_trafo *
            Eigen::Scaling(instance_transformation.get_scaling_factor().cwiseProduct(instance_transformation.get_mirror())) *
            volume_rotation_trafo).inverse().transpose();
        // Fill in scaling based on least squares fitting of the bounding box corners.
        Vec3d scale;
        for (int i = 0; i < 3; ++i)
            scale(i) = pts.col(i).dot(qs.col(i)) / pts.col(i).dot(pts.col(i));

        out.set_rotation(Geometry::extract_euler_angles(volume_rotation_trafo));
        out.set_scaling_factor(Vec3d(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2))));
        out.set_mirror(Vec3d(scale(0) > 0 ? 1. : -1, scale(1) > 0 ? 1. : -1, scale(2) > 0 ? 1. : -1));
    }
    else
    {
        // General anisotropic scaling, general rotation.
        // Keep the modifier mesh in the instance coordinate system, so the modifier mesh will not be aligned with the world.
        // Scale it to get the required size.
        out.set_scaling_factor(instance_transformation.get_scaling_factor().cwiseInverse());
    }

    return out;
}

// For parsing a transformation matrix from 3MF / AMF.
Transform3d transform3d_from_string(const std::string& transform_str)
{
    Transform3d transform = Transform3d::Identity();

    if (!transform_str.empty())
    {
        std::vector<std::string> mat_elements_str;
        boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on);

        unsigned int size = (unsigned int)mat_elements_str.size();
        if (size == 16)
        {
            unsigned int i = 0;
            for (unsigned int r = 0; r < 4; ++r)
            {
                for (unsigned int c = 0; c < 4; ++c)
                {
                    transform(r, c) = ::atof(mat_elements_str[i++].c_str());
                }
            }
        }
    }

    return transform;
}

Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
    return
        // From the current coordinate system to world.
        Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) *
        // From world to the initial coordinate system.
        Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ());
}

// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
    Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
    Vec3d  axis  = angle_axis.axis();
    double angle = angle_axis.angle();
#ifndef NDEBUG
    if (std::abs(angle) > 1e-8) {
        assert(std::abs(axis.x()) < 1e-8);
        assert(std::abs(axis.y()) < 1e-8);
    }
#endif /* NDEBUG */
    return (axis.z() < 0) ? -angle : angle;
}

} }