Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MedialAxis.cpp « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e9fc6ee4f996a9ce370cc7f0f748931dc1d3be22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
#include "MedialAxis.hpp"
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Geometry.hpp"
#include "Polygon.hpp"
#include "Line.hpp"
#include "ClipperUtils.hpp"
#include "SVG.hpp"
#include "polypartition.h"
#include "poly2tri/poly2tri.h"

#include <boost/log/trivial.hpp>

#include <algorithm>
#include <cassert>
#include <list>

namespace Slic3r {
    int count_error = 0;

    //int Slic3r::MedialAxis::staticid = 0;

void
MedialAxis::build(Polylines &polylines)
{
    //TODO: special case for triangles
    //  take the longest edge
    //  take the opposite vertex and get the otho dist
    //  move the longest edge by X% that dist (depends on angle? from 1/2 to 1/4? or always 1/3?) use move dist as width
    //  clip it and then enlarge it into anchor
    //  note: ensure that if anchor is over only one edge, it's not the one choosen.

    //TODO: special case for quasi-rectangle
    //  take longest (not-anchor if any) edge
    //  get mid-dist for each adjascent edge
    //  use these point to get the line, with the mid-dist as widths.
    //  enlarge it into anchor

    ThickPolylines tp;
    this->build(tp);
    polylines.insert(polylines.end(), tp.begin(), tp.end());
}

void
MedialAxis::polyline_from_voronoi(const Lines& voronoi_edges, ThickPolylines* polylines)
{
    std::map<const VD::edge_type*, std::pair<coordf_t, coordf_t> > thickness;
    Lines lines = voronoi_edges;
    VD vd;
    construct_voronoi(lines.begin(), lines.end(), &vd);

    typedef const VD::edge_type   edge_t;
    
    // DEBUG: dump all Voronoi edges
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_04_voronoi_" << this->id << ".svg";
    //    SVG svg(stri.str());
    //    for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
    //        if (edge->is_infinite()) continue;
    //        const edge_t* edgeptr = &*edge;
    //        ThickPolyline polyline;
    //        polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
    //        polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
    //        polyline.width.push_back(thickness[edgeptr].first);
    //        polyline.width.push_back(thickness[edgeptr].second);
    //        //polylines->push_back(polyline);
    //        svg.draw(polyline, "red");
    //    }
    //    svg.Close();
    //    return;
    //}
    
    
    
    // collect valid edges (i.e. prune those not belonging to MAT)
    // note: this keeps twins, so it inserts twice the number of the valid edges
    std::set<const VD::edge_type*> valid_edges;
    {
        std::set<const edge_t*> seen_edges;
        for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
            // if we only process segments representing closed loops, none if the
            // infinite edges (if any) would be part of our MAT anyway
            if (edge->is_secondary() || edge->is_infinite()) continue;
        
            // don't re-validate twins
            if (seen_edges.find(&*edge) != seen_edges.end()) continue;  // TODO: is this needed?
            seen_edges.insert(&*edge);
            seen_edges.insert(edge->twin());
            
            if (!this->validate_edge(&*edge, lines, thickness)) continue;
            valid_edges.insert(&*edge);
            valid_edges.insert(edge->twin());
        }
    }
    std::set<const VD::edge_type*> edges = valid_edges;
    
    // iterate through the valid edges to build polylines
    while (!edges.empty()) {
        const edge_t* edge = *edges.begin();
        if (thickness[edge].first > this->max_width*1.001) {
            //std::cerr << "Error, edge.first has a thickness of " << unscaled(this->thickness[edge].first) << " > " << unscaled(this->max_width) << "\n";
            //(void)this->edges.erase(edge);
            //(void)this->edges.erase(edge->twin());
            //continue;
        }
        if (thickness[edge].second > this->max_width*1.001) {
            //std::cerr << "Error, edge.second has a thickness of " << unscaled(this->thickness[edge].second) << " > " << unscaled(this->max_width) << "\n";
            //(void)this->edges.erase(edge);
            //(void)this->edges.erase(edge->twin());
            //continue;
        }
        
        // start a polyline
        ThickPolyline polyline;
        polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
        polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
        polyline.width.push_back(thickness[edge].first);
        polyline.width.push_back(thickness[edge].second);
        
        // remove this edge and its twin from the available edges
        (void)edges.erase(edge);
        (void)edges.erase(edge->twin());
        
        // get next points
        this->process_edge_neighbors(edge, &polyline, edges, valid_edges, thickness);
        
        // get previous points
        {
            ThickPolyline rpolyline;
            this->process_edge_neighbors(edge->twin(), &rpolyline, edges, valid_edges, thickness);
            polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
            polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
            polyline.endpoints.first = rpolyline.endpoints.second;
        }
        
        assert(polyline.width.size() == polyline.points.size());
        
        // if loop, set endpoints to false
        // prevent loop endpoints from being extended
        if (polyline.first_point().coincides_with(polyline.last_point())) {
            polyline.endpoints.first = false;
            polyline.endpoints.second = false;
        }
        
        // append polyline to result
        polylines->push_back(polyline);
    }

    #ifdef SLIC3R_DEBUG
    {
        static int iRun = 0;
        dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str());
        printf("Thick lines: ");
        for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) {
            ThickLines lines = it->thicklines();
            for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) {
                printf("%f,%f ", it2->a_width, it2->b_width);
            }
        }
        printf("\n");
    }
    #endif /* SLIC3R_DEBUG */
}

void
MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline, std::set<const VD::edge_type*> &edges, std::set<const VD::edge_type*> &valid_edges, std::map<const VD::edge_type*, std::pair<coordf_t, coordf_t> > &thickness)
{
    while (true) {
        // Since rot_next() works on the edge starting point but we want
        // to find neighbors on the ending point, we just swap edge with
        // its twin.
        const VD::edge_type* twin = edge->twin();
    
        // count neighbors for this edge
        std::vector<const VD::edge_type*> neighbors;
        for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
            neighbor = neighbor->rot_next()) {
            if (valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
        }
    
        // if we have a single neighbor then we can continue recursively
        if (neighbors.size() == 1) {
            const VD::edge_type* neighbor = neighbors.front();
            
            // break if this is a closed loop
            if (edges.count(neighbor) == 0) return;
            
            Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
            polyline->points.push_back(new_point);
            polyline->width.push_back(thickness[neighbor].second);
            
            (void)edges.erase(neighbor);
            (void)edges.erase(neighbor->twin());
            edge = neighbor;
        } else if (neighbors.size() == 0) {
            polyline->endpoints.second = true;
            return;
        } else {
            // T-shaped or star-shaped joint
            return;
        }
    }
}

bool
MedialAxis::validate_edge(const VD::edge_type* edge, Lines &lines, std::map<const VD::edge_type*, std::pair<coordf_t, coordf_t> > &thickness)
{
    // prevent overflows and detect almost-infinite edges
    if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
        std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
        std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
        std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
        std::isnan(edge->vertex0()->x()) || 
        std::isnan(edge->vertex0()->y()) ||
        std::isnan(edge->vertex1()->x()) ||
        std::isnan(edge->vertex1()->y()) )
        return false;

    // construct the line representing this edge of the Voronoi diagram
    const Line line(
        Point( edge->vertex0()->x(), edge->vertex0()->y() ),
        Point( edge->vertex1()->x(), edge->vertex1()->y() )
    );
    
    // discard edge if it lies outside the supplied shape
    // this could maybe be optimized (checking inclusion of the endpoints
    // might give false positives as they might belong to the contour itself)
    if (line.a.coincides_with_epsilon(line.b)) {
        // in this case, contains(line) returns a false positive
        if (!this->expolygon.contains(line.a)) return false;
    } else {
        //test if  (!expolygon.contains(line))
        //this if isn't perfect (the middle of the line may still be out of the polygon)
        //but this edge-case shouldn't occur anyway, by the way the voronoi is built.
        if (!expolygon.contains(line.a) || !expolygon.contains(line.b)) { //this if reduced diff_pl from 25% to 18% cpu usage
            //this line can count for 25% of slicing time, if not enclosed in if
            Polylines external_bits = diff_pl(Polylines{ Polyline{ line.a, line.b } }, expolygon);
            if (!external_bits.empty()) {
                //check if the bits that are not inside are under epsilon length
                coordf_t max_length = 0;
                for (Polyline& poly : external_bits) {
                    max_length = std::max(max_length, poly.length());
                }
                if (max_length > SCALED_EPSILON)
                    return false;
            }
        }
    }
    
    // retrieve the original line segments which generated the edge we're checking
    const VD::cell_type* cell_l = edge->cell();
    const VD::cell_type* cell_r = edge->twin()->cell();
    const Line &segment_l = this->retrieve_segment(cell_l, lines);
    const Line &segment_r = this->retrieve_segment(cell_r, lines);
    
    
    //SVG svg("edge.svg");
    //svg.draw(this->expolygon.expolygon);
    //svg.draw(line);
    //svg.draw(segment_l, "red");
    //svg.draw(segment_r, "blue");
    //svg.Close();
    //
    
    /*  Calculate thickness of the cross-section at both the endpoints of this edge.
        Our Voronoi edge is part of a CCW sequence going around its Voronoi cell 
        located on the left side. (segment_l).
        This edge's twin goes around segment_r. Thus, segment_r is 
        oriented in the same direction as our main edge, and segment_l is oriented
        in the same direction as our twin edge.
        We used to only consider the (half-)distances to segment_r, and that works
        whenever segment_l and segment_r are almost specular and facing. However, 
        at curves they are staggered and they only face for a very little length
        (our very short edge represents such visibility).
        Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
        results by Voronoi definition.
        When cell_l or cell_r don't refer to the segment but only to an endpoint, we
        calculate the distance to that endpoint instead.  */
    
    coordf_t w0 = cell_r->contains_segment()
        ? line.a.distance_to(segment_r)*2
        : line.a.distance_to(this->retrieve_endpoint(cell_r, lines))*2;
    
    coordf_t w1 = cell_l->contains_segment()
        ? line.b.distance_to(segment_l)*2
        : line.b.distance_to(this->retrieve_endpoint(cell_l, lines))*2;
    
    //don't remove the line that goes to the intersection of the contour
    // we use them to create nicer thin wall lines
    //if (cell_l->contains_segment() && cell_r->contains_segment()) {
    //    // calculate the relative angle between the two boundary segments
    //    double angle = fabs(segment_r.orientation() - segment_l.orientation());
    //    if (angle > PI) angle = 2*PI - angle;
    //    assert(angle >= 0 && angle <= PI);
    //    
    //    // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
    //    // we're interested only in segments close to the second case (facing segments)
    //    // so we allow some tolerance.
    //    // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
    //    // we don't run it on edges not generated by two segments (thus generated by one segment
    //    // and the endpoint of another segment), since their orientation would not be meaningful
    //    if (PI - angle > PI/8) {
    //        // angle is not narrow enough
    //        
    //        // only apply this filter to segments that are not too short otherwise their 
    //        // angle could possibly be not meaningful
    //        if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
    //            return false;
    //    }
    //} else {
    //    if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
    //        return false;
    //}

    // don't do that before we try to fusion them
    //if (w0 < this->min_width && w1 < this->min_width)
    //    return false;
    //

    //shouldn't occur if perimeter_generator is well made. *1.05 for a little wiggle room
    if (w0 > this->max_width*1.05 && w1 > this->max_width*1.05)
        return false;
    
    thickness[edge]         = std::make_pair(w0, w1);
    thickness[edge->twin()] = std::make_pair(w1, w0);
    
    return true;
}

const Line&
MedialAxis::retrieve_segment(const VD::cell_type* cell, Lines& lines) const
{
    return lines[cell->source_index()];
}

const Point&
MedialAxis::retrieve_endpoint(const VD::cell_type* cell, Lines &lines) const
{
    const Line& line = this->retrieve_segment(cell, lines);
    if (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) {
        return line.a;
    } else {
        return line.b;
    }
}


/// remove point that are at SCALED_EPSILON * 2 distance.
void
remove_point_too_near(ThickPolyline* to_reduce)
{
    const coord_t smallest = (coord_t)SCALED_EPSILON * 2;
    size_t id = 1;
    while (id < to_reduce->points.size() - 1) {
        coord_t newdist = (coord_t)std::min(to_reduce->points[id].distance_to(to_reduce->points[id - 1])
            , to_reduce->points[id].distance_to(to_reduce->points[id + 1]));
        if (newdist < smallest) {
            to_reduce->points.erase(to_reduce->points.begin() + id);
            to_reduce->width.erase(to_reduce->width.begin() + id);
            newdist = (coord_t)to_reduce->points[id].distance_to(to_reduce->points[id - 1]);
            //if you removed a point, it check if the next one isn't too near from the previous one.
            // if not, it bypass it.
            if (newdist > smallest) {
                ++id;
            }
        }
        //go to next one
        else ++id;
    }
}

/// add points  from pattern to to_modify at the same % of the length
/// so not add if an other point is present at the correct position
void
add_point_same_percent(ThickPolyline* pattern, ThickPolyline* to_modify)
{
    const coordf_t to_modify_length = to_modify->length();
    const double percent_epsilon = SCALED_EPSILON / to_modify_length;
    const coordf_t pattern_length = pattern->length();

    double percent_length = 0;
    for (size_t idx_point = 1; idx_point < pattern->points.size() - 1; ++idx_point) {
        percent_length += pattern->points[idx_point-1].distance_to(pattern->points[idx_point]) / pattern_length;
        //find position 
        size_t idx_other = 1;
        double percent_length_other_before = 0;
        double percent_length_other = 0;
        while (idx_other < to_modify->points.size()) {
            percent_length_other_before = percent_length_other;
            percent_length_other += to_modify->points[idx_other-1].distance_to(to_modify->points[idx_other])
                / to_modify_length;
            if (percent_length_other > percent_length - percent_epsilon) {
                //if higher (we have gone over it)
                break;
            }
            ++idx_other;
        }
        if (percent_length_other > percent_length + percent_epsilon) {
            //insert a new point before the position
            double percent_dist = (percent_length - percent_length_other_before) / (percent_length_other - percent_length_other_before);
            coordf_t new_width = to_modify->width[idx_other - 1] * (1 - percent_dist);
            new_width += to_modify->width[idx_other] * (percent_dist);
            to_modify->width.insert(to_modify->width.begin() + idx_other, new_width);
            to_modify->points.insert(
                to_modify->points.begin() + idx_other,
                to_modify->points[idx_other - 1].interpolate(percent_dist, to_modify->points[idx_other]));
        }
    }
}

/// find the nearest angle in the contour (or 2 nearest if it's difficult to choose) 
/// return 1 for an angle of 90° and 0 for an angle of 0° or 180°
/// find the nearest angle in the contour (or 2 nearest if it's difficult to choose) 
/// return 1 for an angle of 90° and 0 for an angle of 0° or 180°
double
get_coeff_from_angle_countour(Point &point, const ExPolygon &contour, coord_t min_dist_between_point) {
    coordf_t nearest_dist = point.distance_to(contour.contour.points.front());
    Point point_nearest = contour.contour.points.front();
    size_t id_nearest = 0;
    coordf_t near_dist = nearest_dist;
    Point point_near = point_nearest;
    size_t id_near = 0;
    for (size_t id_point = 1; id_point < contour.contour.points.size(); ++id_point) {
        if (nearest_dist > point.distance_to(contour.contour.points[id_point])) {
            //update point_near
            id_near = id_nearest;
            point_near = point_nearest;
            near_dist = nearest_dist;
            //update nearest
            nearest_dist = point.distance_to(contour.contour.points[id_point]);
            point_nearest = contour.contour.points[id_point];
            id_nearest = id_point;
        }
    }
    double angle = 0;
    size_t id_before = id_nearest == 0 ? contour.contour.points.size() - 1 : id_nearest - 1;
    Point point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1];
    //Search one point far enough to be relevant
    while (point_nearest.distance_to(point_before) < min_dist_between_point) {
        point_before = id_before == 0 ? contour.contour.points.back() : contour.contour.points[id_before - 1];
        id_before = id_before == 0 ? contour.contour.points.size() - 1 : id_before - 1;
        //don't loop
        if (id_before == id_nearest) {
            id_before = id_nearest == 0 ? contour.contour.points.size() - 1 : id_nearest - 1;
            point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1];
            break;
        }
    }
    size_t id_after = id_nearest == contour.contour.points.size() - 1 ? 0 : id_nearest + 1;
    Point point_after = id_nearest == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1];
    //Search one point far enough to be relevant
    while (point_nearest.distance_to(point_after) < min_dist_between_point) {
        point_after = id_after == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_after + 1];
        id_after = id_after == contour.contour.points.size() - 1 ? 0 : id_after + 1;
        //don't loop
        if (id_after == id_nearest) {
            id_after = id_nearest == contour.contour.points.size() - 1 ? 0 : id_nearest + 1;
            point_after = id_nearest == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1];
            break;
        }
    }
    //compute angle
    angle = point_nearest.ccw_angle(point_before, point_after);
    if (angle >= PI) angle = 2 * PI - angle;  // smaller angle
    //compute the diff from 90°
    angle = abs(angle - PI / 2);
    if (point_near.coincides_with_epsilon(point_nearest) && std::max(nearest_dist, near_dist) + SCALED_EPSILON < point_nearest.distance_to(point_near)) {
        //not only nearest
        Point point_before = id_near == 0 ? contour.contour.points.back() : contour.contour.points[id_near - 1];
        Point point_after = id_near == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_near + 1];
        double angle2 = std::min(point_nearest.ccw_angle(point_before, point_after), point_nearest.ccw_angle(point_after, point_before));
        angle2 = abs(angle - PI / 2);
        angle = (angle + angle2) / 2;
    }

    return 1 - (angle / (PI / 2));
}

double
dot(Line l1, Line l2)
{
    Vec2d v_1(l1.b.x() - l1.a.x(), l1.b.y() - l1.a.y());
    v_1.normalize();
    Vec2d v_2(l2.b.x() - l2.a.x(), l2.b.y() - l2.a.y());
    v_2.normalize();
    return v_1.x()*v_2.x() + v_1.y()*v_2.y();
}

void
MedialAxis::fusion_curve(ThickPolylines &pp)
{
    //fusion Y with only 1 '0' value => the "0" branch "pull" the cross-point
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // only consider 2-point polyline with endpoint
        //if (polyline.points.size() != 2) continue; // too restrictive.
        if (polyline.endpoints.first) polyline.reverse();
        else if (!polyline.endpoints.second) continue;
        if (polyline.width.back() > EPSILON) continue;

        //check my length is small
        coord_t length = (coord_t)polyline.length();
        if (length > this->max_width) continue;

        size_t closest_point_idx = this->expolygon.contour.closest_point_index(polyline.points.back());

        //check the 0-width point is on the contour.
        if (closest_point_idx == (size_t)-1) continue;

        size_t prev_idx = closest_point_idx == 0 ? this->expolygon.contour.points.size() - 1 : closest_point_idx - 1;
        size_t next_idx = closest_point_idx == this->expolygon.contour.points.size() - 1 ? 0 : closest_point_idx + 1;
        double mindot = 1;
        mindot = std::min(mindot, abs(dot(Line(polyline.points[polyline.points.size() - 1], polyline.points[polyline.points.size() - 2]),
            (Line(this->expolygon.contour.points[closest_point_idx], this->expolygon.contour.points[prev_idx])))));
        mindot = std::min(mindot, abs(dot(Line(polyline.points[polyline.points.size() - 1], polyline.points[polyline.points.size() - 2]),
            (Line(this->expolygon.contour.points[closest_point_idx], this->expolygon.contour.points[next_idx])))));

        //compute angle
        double coeff_contour_angle = this->expolygon.contour.points[closest_point_idx].ccw_angle(this->expolygon.contour.points[prev_idx], this->expolygon.contour.points[next_idx]);
        if (coeff_contour_angle >= PI) coeff_contour_angle = 2 * PI - coeff_contour_angle;  // smaller angle
        //compute the diff from 90°
        coeff_contour_angle = abs(coeff_contour_angle - PI / 2);


        // look if other end is a cross point with almost 90° angle
        double sum_dot = 0;
        double min_dot = 0;
        // look if other end is a cross point with multiple other branch
        std::vector<size_t> crosspoint;
        for (size_t j = 0; j < pp.size(); ++j) {
            if (j == i) continue;
            ThickPolyline& other = pp[j];
            if (polyline.first_point().coincides_with_epsilon(other.last_point())) {
                other.reverse();
                crosspoint.push_back(j);
                double dot_temp = dot(Line(polyline.points[0], polyline.points[1]), (Line(other.points[0], other.points[1])));
                min_dot = std::min(min_dot, abs(dot_temp));
                sum_dot += dot_temp;
            } else if (polyline.first_point().coincides_with_epsilon(other.first_point())) {
                crosspoint.push_back(j);
                double dot_temp = dot(Line(polyline.points[0], polyline.points[1]), (Line(other.points[0], other.points[1])));
                min_dot = std::min(min_dot, abs(dot_temp));
                sum_dot += dot_temp;
            }
        }
        sum_dot = abs(sum_dot);

        //only consider very shallow angle for contour
        if (mindot > 0.15 &&
            (1 - (coeff_contour_angle / (PI / 2))) > 0.2) continue;

        //check if it's a line that we can pull
        if (crosspoint.size() != 2) continue;
        if (sum_dot > 0.2) continue;
        if (min_dot > 0.5) continue;
        //don't remove useful bits. TODO: use the mindot to know by how much to multiply (1 when 90°, 1.42 when 45+, 1 when 0°)
        if (polyline.length() > polyline.width.front()*1.42) continue;

        //don't pull, it distords the line if there are too many points.
        //// pull it a bit, depends on my size, the dot?, and the coeff at my 0-end (~14% for a square, almost 0 for a gentle curve)
        //coord_t length_pull = polyline.length();
        //length_pull *= 0.144 * get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, std::min(min_width, polyline.length() / 2));

        ////compute dir
        //Vectorf pull_direction(polyline.points[1].x() - polyline.points[0].x(), polyline.points[1].y() - polyline.points[0].y());
        //pull_direction = normalize(pull_direction);
        //pull_direction.x() *= length_pull;
        //pull_direction.y() *= length_pull;

        ////pull the points
        //Point &p1 = pp[crosspoint[0]].points[0];
        //p1.x() = p1.x() + (coord_t)pull_direction.x();
        //p1.y() = p1.y() + (coord_t)pull_direction.y();

        //Point &p2 = pp[crosspoint[1]].points[0];
        //p2.x() = p2.x() + (coord_t)pull_direction.x();
        //p2.y() = p2.y() + (coord_t)pull_direction.y();

        //delete the now unused polyline
        pp.erase(pp.begin() + i);
        --i;
        changes = true;
    }
    if (changes) {
        concatThickPolylines(pp);
        ///reorder, in case of change
        std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
        //have to redo it to remove multi-branch bits.
        fusion_curve(pp);
    }
}

void
MedialAxis::remove_bits(ThickPolylines &pp)
{

    //remove small bits that stick out of the path
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // only consider polyline with 0-end
        if (polyline.endpoints.first) polyline.reverse();
        else if (!polyline.endpoints.second) continue;
        if (polyline.width.back() > 0) continue;

        //check my length is small
        coordf_t length = polyline.length();
        if (length > coordf_t(this->max_width) * 1.5) {
            continue;
        }

        // look if other end is a cross point with multiple other branch
        std::vector<size_t> crosspoint;
        for (size_t j = 0; j < pp.size(); ++j) {
            if (j == i) continue;
            ThickPolyline& other = pp[j];
            if (polyline.first_point().coincides_with_epsilon(other.last_point())) {
                other.reverse();
                crosspoint.push_back(j);
            } else if (polyline.first_point().coincides_with_epsilon(other.first_point())) {
                crosspoint.push_back(j);
            }
        }
        if (crosspoint.size() < 2) continue;

        //check if is smaller or the other ones are not endpoits
        int nb_better_than_me = 0;
        for (int i = 0; i < crosspoint.size(); i++) {
            if (!pp[crosspoint[0]].endpoints.second || length <= pp[crosspoint[0]].length()) 
                nb_better_than_me++;
        }
        if (nb_better_than_me < 2) continue;

        //check if the length of the polyline is small vs width of the other lines
        coord_t local_max_width = 0;
        for (int i = 0; i < crosspoint.size(); i++) {
            local_max_width = std::max(local_max_width, pp[crosspoint[i]].width[0]);
        }
        if (length > coordf_t(local_max_width + min_width))
            continue;

        //delete the now unused polyline
        pp.erase(pp.begin() + i);
        --i;
        changes = true;
    }
    if (changes) {
        concatThickPolylines(pp);
        ///reorder, in case of change
        std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
    }

    //TODO: check if there is a U-turn (almost 180° direction change) : remove it.
}

void
MedialAxis::fusion_corners(ThickPolylines &pp)
{

    //fusion Y with only 1 '0' value => the "0" branch "pull" the cross-point
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // only consider polyline with 0-end
        //if (polyline.points.size() != 2) continue; // maybe we should have something to merge X-point to 2-point if it's near enough.
        if (polyline.endpoints.first) polyline.reverse();
        else if (!polyline.endpoints.second) continue;

        //check my length is small
        coord_t length = (coord_t)polyline.length();
        if (length > this->max_width) continue;

        // look if other end is a cross point with multiple other branch
        std::vector<size_t> crosspoint;
        for (size_t j = 0; j < pp.size(); ++j) {
            if (j == i) continue;
            ThickPolyline& other = pp[j];
            if (polyline.first_point().coincides_with_epsilon(other.last_point())) {
                other.reverse();
                crosspoint.push_back(j);
            } else if (polyline.first_point().coincides_with_epsilon(other.first_point())) {
                crosspoint.push_back(j);
            }
        }
        //check if it's a line that we can pull
        if (crosspoint.size() != 2) continue;

        // check if i am at the external side of a curve
        double angle1 = polyline.points[0].ccw_angle(polyline.points[1], pp[crosspoint[0]].points[1]);
        if (angle1 >= PI) angle1 = 2 * PI - angle1;  // smaller angle
        double angle2 = polyline.points[0].ccw_angle(polyline.points[1], pp[crosspoint[1]].points[1]);
        if (angle2 >= PI) angle2 = 2 * PI - angle2;  // smaller angle
        if (angle1 + angle2 < PI) continue;

        //check if is smaller or the other ones are not endpoits
        if (pp[crosspoint[0]].endpoints.second && length > pp[crosspoint[0]].length()) continue;
        if (pp[crosspoint[1]].endpoints.second && length > pp[crosspoint[1]].length()) continue;

        if (polyline.width.back() > 0) {
            //FIXME: also pull (a bit less) points that are near to this one.
            // if true, pull it a bit, depends on my size, the dot?, and the coeff at my 0-end (~14% for a square, almost 0 for a gentle curve)
            coord_t length_pull = (coord_t)polyline.length();
            length_pull *= (coord_t)(0.144 * get_coeff_from_angle_countour(
                polyline.points.back(),
                this->expolygon,
                std::min(min_width, (coord_t)(polyline.length() / 2))));

            //compute dir
            Vec2d pull_direction(polyline.points[1].x() - polyline.points[0].x(), polyline.points[1].y() - polyline.points[0].y());
            pull_direction.normalize();
            pull_direction.x() *= length_pull;
            pull_direction.y() *= length_pull;

            //pull the points
            Point& p1 = pp[crosspoint[0]].points[0];
            p1.x() = p1.x() + (coord_t)pull_direction.x();
            p1.y() = p1.y() + (coord_t)pull_direction.y();

            Point& p2 = pp[crosspoint[1]].points[0];
            p2.x() = p2.x() + (coord_t)pull_direction.x();
            p2.y() = p2.y() + (coord_t)pull_direction.y();
        }

        //delete the now unused polyline
        pp.erase(pp.begin() + i);
        --i;
        changes = true;
    }
    if (changes) {
        concatThickPolylines(pp);
        ///reorder, in case of change
        std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
    }
}

void
MedialAxis::extends_line_both_side(ThickPolylines& pp) {
    const ExPolygons anchors = offset2_ex(to_polygons(diff_ex(*this->bounds, this->expolygon)), double(-SCALED_RESOLUTION), double(SCALED_RESOLUTION));
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        this->extends_line(polyline, anchors, this->min_width);
        if (!polyline.points.empty()) {
            polyline.reverse();
            this->extends_line(polyline, anchors, this->min_width);
        }
        if (polyline.points.empty()) {
            pp.erase(pp.begin() + i);
            --i;
        }
    }
}

void
MedialAxis::extends_line(ThickPolyline& polyline, const ExPolygons& anchors, const coord_t join_width)
{
    // extend initial and final segments of each polyline if they're actual endpoints
    // We assign new endpoints to temporary variables because in case of a single-line
    // polyline, after we extend the start point it will be caught by the intersection()
    // call, so we keep the inner point until we perform the second intersection() as well
    if (polyline.endpoints.second && !bounds->has_boundary_point(polyline.points.back())) {
        size_t first_idx = polyline.points.size() - 2;
        Line line(*(polyline.points.begin() + first_idx), polyline.points.back());
        while (line.length() < SCALED_RESOLUTION && first_idx>0) {
            first_idx--;
            line.a = *(polyline.points.begin() + first_idx);
        }
        // prevent the line from touching on the other side, otherwise intersection() might return that solution
        if (polyline.points.size() == 2 && this->expolygon.contains(line.midpoint())) line.a = line.midpoint();

        line.extend_end((double)this->max_width);
        Point new_back;
        if (this->expolygon.contour.has_boundary_point(polyline.points.back())) {
            new_back = polyline.points.back();
        } else {
            bool finded = this->expolygon.contour.first_intersection(line, &new_back);
            //verify also for holes.
            Point new_back_temp;
            for (Polygon hole : this->expolygon.holes) {
                if (hole.first_intersection(line, &new_back_temp)) {
                    if (!finded || line.a.distance_to(new_back_temp) < line.a.distance_to(new_back)) {
                        finded = true;
                        new_back = new_back_temp;
                    }
                }
            }
            // safety check if no intersection
            if (!finded) {
                if (!this->expolygon.contains(line.b)) {
                    //it's outside!!!
                    //if (!this->expolygon.contains(line.a)) {
                    //    std::cout << "Error, a line is formed that start outside a polygon, end outside of it and don't cross it!\n";
                    //} else {
                    //    std::cout << "Error, a line is formed that start in a polygon, end outside of it and don't cross it!\n";
                    //}

                    //{
                    //    std::stringstream stri;
                    //    stri << "Error_" << (count_error++) << ".svg";
                    //    SVG svg(stri.str());
                    //    svg.draw(anchors);
                    //    svg.draw(this->expolygon);
                    //    svg.draw(line);
                    //    svg.draw(polyline);
                    //    svg.Close();
                    //}
                    //it's not possible to print that
                    polyline.points.clear();
                    polyline.width.clear();
                    return;
                }
                new_back = line.b;
            }
            polyline.points.push_back(new_back);
            polyline.width.push_back(polyline.width.back());
        }
        Point new_bound;
        bool finded = bounds->contour.first_intersection(line, &new_bound);
        //verify also for holes.
        Point new_bound_temp;
        for (Polygon hole : bounds->holes) {
            if (hole.first_intersection(line, &new_bound_temp)) {
                if (!finded || line.a.distance_to(new_bound_temp) < line.a.distance_to(new_bound)) {
                    finded = true;
                    new_bound = new_bound_temp;
                }
            }
        }
        // safety check if no intersection
        if (!finded) {
            if (line.b.coincides_with_epsilon(polyline.points.back()))
                return;
            //check if we don't over-shoot inside us
            bool is_in_anchor = false;
            for (const ExPolygon& a : anchors) {
                if (a.contains(line.b)) {
                    is_in_anchor = true;
                    break;
                }
            }
            if (!is_in_anchor) return;
            new_bound = line.b;
        }
       /* if (new_bound.coincides_with_epsilon(new_back)) {
            return;
        }*/
        // find anchor
        Point best_anchor;
        coordf_t shortest_dist = (coordf_t)this->max_width;
        for (const ExPolygon& a : anchors) {
            Point p_maybe_inside = a.contour.centroid();
            coordf_t test_dist = new_bound.distance_to(p_maybe_inside) + new_back.distance_to(p_maybe_inside);
            //if (test_dist < max_width / 2 && (test_dist < shortest_dist || shortest_dist < 0)) {
            double angle_test = new_back.ccw_angle(p_maybe_inside, line.a);
            if (angle_test > PI) angle_test = 2 * PI - angle_test;
            if (test_dist < (coordf_t)this->max_width && test_dist<shortest_dist && abs(angle_test) > PI / 2) {
                shortest_dist = test_dist;
                best_anchor = p_maybe_inside;
            }
        }
        if (best_anchor.x() != 0 && best_anchor.y() != 0) {
            Point p_obj = best_anchor + new_bound;
            p_obj.x() /= 2;
            p_obj.y() /= 2;
            Line l2 = Line(new_back, p_obj);
            l2.extend_end((coordf_t)this->max_width);
            (void)bounds->contour.first_intersection(l2, &new_bound);
        }
        if (new_bound.coincides_with_epsilon(new_back))
            return;
        polyline.points.push_back(new_bound);
        //polyline.width.push_back(join_width);
        //it thickens the line a bit too early, imo
        polyline.width.push_back(polyline.width.back());
    }
}

void
MedialAxis::main_fusion(ThickPolylines& pp)
{
    //int idf = 0;

    bool changes = true;
    std::map<Point, double> coeff_angle_cache;
    while (changes) {
        concatThickPolylines(pp);
        //reoder pp by length (ascending) It's really important to do that to avoid building the line from the width insteand of the length
        std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) {
            bool ahas0 = a.width.front() == 0 || a.width.back() == 0;
            bool bhas0 = b.width.front() == 0 || b.width.back() == 0;
            if (ahas0 && !bhas0) return true;
            if (!ahas0 && bhas0) return false;
            return a.length() < b.length();
        });
        changes = false;
        for (size_t i = 0; i < pp.size(); ++i) {
            ThickPolyline& polyline = pp[i];

            //simple check to see if i can be fusionned
            if (!polyline.endpoints.first && !polyline.endpoints.second) continue;


            ThickPolyline* best_candidate = nullptr;
            float best_dot = -1;
            size_t best_idx = 0;
            double dot_poly_branch = 0;
            double dot_candidate_branch = 0;

            bool find_main_branch = false;
            size_t biggest_main_branch_id = 0;
            coord_t biggest_main_branch_length = 0;

            // find another polyline starting here
            for (size_t j = i + 1; j < pp.size(); ++j) {
                ThickPolyline& other = pp[j];
                if (polyline.last_point().coincides_with_epsilon(other.last_point())) {
                    polyline.reverse();
                    other.reverse();
                } else if (polyline.first_point().coincides_with_epsilon(other.last_point())) {
                    other.reverse();
                } else if (polyline.first_point().coincides_with_epsilon(other.first_point())) {
                } else if (polyline.last_point().coincides_with_epsilon(other.first_point())) {
                    polyline.reverse();
                } else {
                    continue;
                }
                //std::cout << " try : " << i << ":" << j << " : " << 
                //    (polyline.points.size() < 2 && other.points.size() < 2) <<
                //    (!polyline.endpoints.second || !other.endpoints.second) <<
                //    ((polyline.points.back().distance_to(other.points.back())
                //    + (polyline.width.back() + other.width.back()) / 4)
                //    > max_width*1.05) <<
                //    (abs(polyline.length() - other.length()) > max_width) << "\n";

                //// mergeable tests
                if (polyline.points.size() < 2 && other.points.size() < 2) continue;
                if (!polyline.endpoints.second || !other.endpoints.second) continue;
                // test if the new width will not be too big if a fusion occur
                //note that this isn't the real calcul. It's just to avoid merging lines too far apart.
                if (
                    ((polyline.points.back().distance_to(other.points.back())
                    + (polyline.width.back() + other.width.back()) / 4)
                > this->max_width *1.05))
                    continue;
                // test if the lines are not too different in length.
                if (abs(polyline.length() - other.length()) > (coordf_t)this->max_width) continue;


                //test if we don't merge with something too different and without any relevance.
                double coeffSizePolyI = 1;
                if (polyline.width.back() == 0) {
                    coeffSizePolyI = 0.1 + 0.9*get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, std::min(min_width, (coord_t)(polyline.length() / 2)));
                }
                double coeffSizeOtherJ = 1;
                if (other.width.back() == 0) {
                    coeffSizeOtherJ = 0.1 + 0.9*get_coeff_from_angle_countour(other.points.back(), this->expolygon, std::min(min_width, (coord_t)(polyline.length() / 2)));
                }
                //std::cout << " try2 : " << i << ":" << j << " : "
                //    << (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width / 2)
                //    << (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width)
                //    << "\n";
                if (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > (coordf_t)(this->max_width / 2)) continue;


                //compute angle to see if it's better than previous ones (straighter = better).
                //we need to add how strait we are from our main.
                float test_dot = (float)(dot(polyline.lines().front(), other.lines().front()));

                // Get the branch/line in wich we may merge, if possible
                // with that, we can decide what is important, and how we can merge that.
                // angle_poly - angle_candi =90° => one is useless
                // both angle are equal => both are useful with same strength
                // ex: Y => | both are useful to crete a nice line
                // ex2: TTTTT => -----  these 90° useless lines should be discarded
                find_main_branch = false;
                biggest_main_branch_id = 0;
                biggest_main_branch_length = 0;
                for (size_t k = 0; k < pp.size(); ++k) {
                    //std::cout << "try to find main : " << k << " ? " << i << " " << j << " ";
                    if (k == i || k == j) continue;
                    ThickPolyline& main = pp[k];
                    if (polyline.first_point().coincides_with_epsilon(main.last_point())) {
                        main.reverse();
                        if (!main.endpoints.second)
                            find_main_branch = true;
                        else if (biggest_main_branch_length < main.length()) {
                            biggest_main_branch_id = k;
                            biggest_main_branch_length = (coord_t)main.length();
                        }
                    } else if (polyline.first_point().coincides_with_epsilon(main.first_point())) {
                        if (!main.endpoints.second)
                            find_main_branch = true;
                        else if (biggest_main_branch_length < main.length()) {
                            biggest_main_branch_id = k;
                            biggest_main_branch_length = (coord_t)main.length();
                        }
                    }
                    if (find_main_branch) {
                        //use this variable to store the good index and break to compute it
                        biggest_main_branch_id = k;
                        break;
                    }
                }
                double dot_poly_branch_test = 0.707;
                double dot_candidate_branch_test = 0.707;
                if (!find_main_branch && biggest_main_branch_length == 0) {
                    // nothing -> it's impossible!
                    dot_poly_branch_test = 0.707;
                    dot_candidate_branch_test = 0.707;
                    //std::cout << "no main branch... impossible!!\n";
                } else if (!find_main_branch && (
                    (pp[biggest_main_branch_id].length() < polyline.length() && (polyline.width.back() != 0 || pp[biggest_main_branch_id].width.back() ==0)) 
                    || (pp[biggest_main_branch_id].length() < other.length() && (other.width.back() != 0 || pp[biggest_main_branch_id].width.back() == 0)))) {
                    //the main branch should have no endpoint or be bigger!
                    //here, it have an endpoint, and is not the biggest -> bad!
                    //std::cout << "he main branch should have no endpoint or be bigger! here, it have an endpoint, and is not the biggest -> bad!\n";
                    continue;
                } else {
                    //compute the dot (biggest_main_branch_id)
                    dot_poly_branch_test = -dot(Line(polyline.points[0], polyline.points[1]), Line(pp[biggest_main_branch_id].points[0], pp[biggest_main_branch_id].points[1]));
                    dot_candidate_branch_test = -dot(Line(other.points[0], other.points[1]), Line(pp[biggest_main_branch_id].points[0], pp[biggest_main_branch_id].points[1]));
                    if (dot_poly_branch_test < 0) dot_poly_branch_test = 0;
                    if (dot_candidate_branch_test < 0) dot_candidate_branch_test = 0;
                    if (pp[biggest_main_branch_id].width.back()>0)
                        test_dot += 2 * (float)dot_poly_branch;
                    //std::cout << "compute dot "<< dot_poly_branch_test<<" & "<< dot_candidate_branch_test <<"\n";
                }
                //test if it's useful to merge or not
                //ie, don't merge  'T' but ok for 'Y', merge only lines of not disproportionate different length (ratio max: 4) (or they are both with 0-width end)
                if (dot_poly_branch_test < 0.1 || dot_candidate_branch_test < 0.1 ||
                    (
                        ((polyline.length()>other.length() ? polyline.length() / other.length() : other.length() / polyline.length()) > 4) 
                        && !(polyline.width.back() == 0 && other.width.back()==0)
                        )) {
                    //std::cout << "not useful to merge\n";
                    continue;
                }
                if (test_dot > best_dot) {
                    best_candidate = &other;
                    best_idx = j;
                    best_dot = test_dot;
                    dot_poly_branch = dot_poly_branch_test;
                    dot_candidate_branch = dot_candidate_branch_test;
                    //{
                    //    std::cout << "going to merge: b1=" << i << ", b2=" << best_idx << ", main=" << biggest_main_branch_id << "\n";
                    //    std::cout << "b1=" << polyline.points.front().x() << " : " << polyline.points.front().y() << " => " << polyline.points.back().x() << " : " << polyline.points.back().y() << "\n";
                    //    std::cout << "b2=" << other.points.front().x() << " : " << other.points.front().y() << " => " << other.points.back().x() << " : " << other.points.back().y() << "\n";
                    //    std::cout << "main=" << pp[biggest_main_branch_id].points.front().x() << " : " << pp[biggest_main_branch_id].points.front().y() << " => " << pp[biggest_main_branch_id].points.back().x() << " : " << pp[biggest_main_branch_id].points.back().y() << "\n";
                    //}
                }
            }
            if (best_candidate != nullptr) {
                //idf++;
                //std::cout << " == fusion " << id <<" : "<< idf << " == with "<< i <<" & "<<best_idx<<"\n";
                // delete very near points
                remove_point_too_near(&polyline);
                remove_point_too_near(best_candidate);

                // add point at the same pos than the other line to have a nicer fusion
                add_point_same_percent(&polyline, best_candidate);
                add_point_same_percent(best_candidate, &polyline);

                //get the angle of the nearest points of the contour to see : _| (good) \_ (average) __(bad)
                //sqrt because the result are nicer this way: don't over-penalize /_ angles
                //TODO: try if we can achieve a better result if we use a different algo if the angle is <90°
                const double coeff_angle_poly = (coeff_angle_cache.find(polyline.points.back()) != coeff_angle_cache.end())
                    ? coeff_angle_cache[polyline.points.back()]
                    : (get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, std::min(min_width, (coord_t)(polyline.length() / 2))));
                const double coeff_angle_candi = (coeff_angle_cache.find(best_candidate->points.back()) != coeff_angle_cache.end())
                    ? coeff_angle_cache[best_candidate->points.back()]
                    : (get_coeff_from_angle_countour(best_candidate->points.back(), this->expolygon, std::min(min_width, (coord_t)(best_candidate->length() / 2))));

                //this will encourage to follow the curve, a little, because it's shorter near the center
                //without that, it tends to go to the outter rim.
                //std::cout << " std::max(polyline.length(), best_candidate->length())=" << std::max(polyline.length(), best_candidate->length())
                //    << ", polyline.length()=" << polyline.length()
                //    << ", best_candidate->length()=" << best_candidate->length()
                //    << ", polyline.length() / max=" << (polyline.length() / std::max(polyline.length(), best_candidate->length()))
                //    << ", best_candidate->length() / max=" << (best_candidate->length() / std::max(polyline.length(), best_candidate->length()))
                //    << "\n";
                double weight_poly = 2 - (polyline.length() / std::max(polyline.length(), best_candidate->length()));
                double weight_candi = 2 - (best_candidate->length() / std::max(polyline.length(), best_candidate->length()));
                weight_poly *= coeff_angle_poly;
                weight_candi *= coeff_angle_candi;
                const double coeff_poly = (dot_poly_branch * weight_poly) / (dot_poly_branch * weight_poly + dot_candidate_branch * weight_candi);
                const double coeff_candi = 1.0 - coeff_poly;
                //std::cout << "coeff_angle_poly=" << coeff_angle_poly
                //    << ", coeff_angle_candi=" << coeff_angle_candi
                //    << ", weight_poly=" << (2 - (polyline.length() / std::max(polyline.length(), best_candidate->length())))
                //    << ", weight_candi=" << (2 - (best_candidate->length() / std::max(polyline.length(), best_candidate->length())))
                //    << ", sumpoly=" << weight_poly
                //    << ", sumcandi=" << weight_candi
                //    << ", dot_poly_branch=" << dot_poly_branch
                //    << ", dot_candidate_branch=" << dot_candidate_branch
                //    << ", coeff_poly=" << coeff_poly
                //    << ", coeff_candi=" << coeff_candi
                //    << "\n";
                //iterate the points
                // as voronoi should create symetric thing, we can iterate synchonously
                size_t idx_point = 1;
                while (idx_point < std::min(polyline.points.size(), best_candidate->points.size())) {
                    //fusion
                    polyline.points[idx_point].x() = (coord_t)( polyline.points[idx_point].x() * coeff_poly + best_candidate->points[idx_point].x() * coeff_candi);
                    polyline.points[idx_point].y() = (coord_t)(polyline.points[idx_point].y() * coeff_poly + best_candidate->points[idx_point].y() * coeff_candi);

                    // The width decrease with distance from the centerline.
                    // This formula is what works the best, even if it's not perfect (created empirically).  0->3% error on a gap fill on some tests.
                    //If someone find  an other formula based on the properties of the voronoi algorithm used here, and it works better, please use it.
                    //or maybe just use the distance to nearest edge in bounds...
                    double value_from_current_width = 0.5*polyline.width[idx_point] * dot_poly_branch / std::max(dot_poly_branch, dot_candidate_branch);
                    value_from_current_width += 0.5*best_candidate->width[idx_point] * dot_candidate_branch / std::max(dot_poly_branch, dot_candidate_branch);
                    double value_from_dist = 2 * polyline.points[idx_point].distance_to(best_candidate->points[idx_point]);
                    value_from_dist *= sqrt(std::min(dot_poly_branch, dot_candidate_branch) / std::max(dot_poly_branch, dot_candidate_branch));
                    polyline.width[idx_point] = value_from_current_width + value_from_dist;
                    //std::cout << "width:" << polyline.width[idx_point] << " = " << value_from_current_width << " + " << value_from_dist 
                    //    << " (<" << max_width << " && " << (bounds.contour.closest_point(polyline.points[idx_point])->distance_to(polyline.points[idx_point]) * 2.1)<<")\n";
                    //failsafes
                    if (polyline.width[idx_point] > this->max_width)
                        polyline.width[idx_point] = this->max_width;
                    //failsafe: try to not go out of the radius of the section, take the width of the merging point for that. (and with some offset)
                    coord_t main_branch_width = pp[biggest_main_branch_id].width.front();
                    coordf_t main_branch_dist = pp[biggest_main_branch_id].points.front().distance_to(polyline.points[idx_point]);
                    coord_t max_width_from_main = (coord_t)std::sqrt(main_branch_width*main_branch_width + main_branch_dist*main_branch_dist);
                    if (find_main_branch && polyline.width[idx_point] > max_width_from_main)
                        polyline.width[idx_point] = max_width_from_main;
                    if (find_main_branch && polyline.width[idx_point] > pp[biggest_main_branch_id].width.front() * 1.1)
                        polyline.width[idx_point] = coord_t(pp[biggest_main_branch_id].width.front() * 1.1);
                    //std::cout << "main fusion, max dist : " << max_width_from_main << "\n";

                    ++idx_point;
                }
                if (idx_point < best_candidate->points.size()) {
                    if (idx_point + 1 < best_candidate->points.size()) {
                        //create a new polyline
                        pp.emplace_back();
                        best_candidate = &pp[best_idx]; // have to refresh the pointer, as the emplace_back() may have moved the array
                        pp.back().endpoints.first = true;
                        pp.back().endpoints.second = best_candidate->endpoints.second;
                        for (size_t idx_point_new_line = idx_point; idx_point_new_line < best_candidate->points.size(); ++idx_point_new_line) {
                            pp.back().points.push_back(best_candidate->points[idx_point_new_line]);
                            pp.back().width.push_back(best_candidate->width[idx_point_new_line]);
                        }
                    } else {
                        //Add last point
                        polyline.points.push_back(best_candidate->points[idx_point]);
                        polyline.width.push_back(best_candidate->width[idx_point]);
                        //select if an end occur
                        polyline.endpoints.second &= best_candidate->endpoints.second;
                    }

                } else {
                    //select if an end occur
                    polyline.endpoints.second &= best_candidate->endpoints.second;
                }

                //remove points that are the same or too close each other, ie simplify
                for (size_t idx_point = 1; idx_point < polyline.points.size(); ++idx_point) {
                    if (polyline.points[idx_point - 1].distance_to(polyline.points[idx_point]) < SCALED_EPSILON) {
                        if (idx_point < polyline.points.size() - 1) {
                            polyline.points.erase(polyline.points.begin() + idx_point);
                            polyline.width.erase(polyline.width.begin() + idx_point);
                        } else {
                            polyline.points.erase(polyline.points.begin() + idx_point - 1);
                            polyline.width.erase(polyline.width.begin() + idx_point - 1);
                        }
                        --idx_point;
                    }
                }
                //remove points that are outside of the geometry
                for (size_t idx_point = 0; idx_point < polyline.points.size(); ++idx_point) {
                    if (!bounds->contains_b(polyline.points[idx_point])) {
                        polyline.points.erase(polyline.points.begin() + idx_point);
                        polyline.width.erase(polyline.width.begin() + idx_point);
                        --idx_point;
                    }
                }

                if (polyline.points.size() < 2) {
                    //remove self
                    pp.erase(pp.begin() + i);
                    --i;
                    --best_idx;
                } else {
                    //update cache
                    coeff_angle_cache[polyline.points.back()] = coeff_angle_poly * coeff_poly + coeff_angle_candi * coeff_candi;
                }

                pp.erase(pp.begin() + best_idx);
                //{
                //    std::stringstream stri;
                //    stri << "medial_axis_2.0_aft_fus_" << id << "_" << idf << ".svg";
                //    SVG svg(stri.str());
                //    svg.draw(bounds);
                //    svg.draw(this->expolygon);
                //    svg.draw(pp);
                //    svg.Close();
                //}
                changes = true;
                break;
            }
        }
    }
}

void
MedialAxis::remove_too_thin_extrusion(ThickPolylines& pp)
{
    // remove too thin extrusion at start & end of polylines
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // remove bits with too small extrusion
        while (polyline.points.size() > 1 && polyline.width.front() < this->min_width && polyline.endpoints.first) {
            //try to split if possible
            if (polyline.width[1] > min_width) {
                double percent_can_keep = (min_width - polyline.width[0]) / (polyline.width[1] - polyline.width[0]);
                if (polyline.points.front().distance_to(polyline.points[1]) * (1 - percent_can_keep) > SCALED_RESOLUTION) {
                    //Can split => move the first point and assign a new weight.
                    //the update of endpoints wil be performed in concatThickPolylines
                    polyline.points.front() = polyline.points.front().interpolate(percent_can_keep, polyline.points[1]);
                    polyline.width.front() = min_width;
                } else {
                    /// almost 0-length, Remove
                    polyline.points.erase(polyline.points.begin());
                    polyline.width.erase(polyline.width.begin());
                }
                changes = true;
                break;
            }
            polyline.points.erase(polyline.points.begin());
            polyline.width.erase(polyline.width.begin());
            changes = true;
        }
        while (polyline.points.size() > 1 && polyline.width.back() < this->min_width && polyline.endpoints.second) {
            //try to split if possible
            if (polyline.width[polyline.points.size() - 2] > min_width) {
                double percent_can_keep = (min_width - polyline.width.back()) / (polyline.width[polyline.points.size() - 2] - polyline.width.back());
                if (polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * (1 - percent_can_keep) > SCALED_RESOLUTION) {
                    //Can split => move the first point and assign a new weight.
                    //the update of endpoints wil be performed in concatThickPolylines
                    polyline.points.back() = polyline.points.back().interpolate(percent_can_keep, polyline.points[polyline.points.size() - 2]);
                    polyline.width.back() = min_width;
                } else {
                    /// almost 0-length, Remove
                    polyline.points.erase(polyline.points.end() - 1);
                    polyline.width.erase(polyline.width.end() - 1);
                }
                changes = true;
                break;
            }
            polyline.points.erase(polyline.points.end() - 1);
            polyline.width.erase(polyline.width.end() - 1);
            changes = true;
        }
        //remove points and bits that comes from a "main line"
        if (polyline.points.size() < 2 || (changes && polyline.length() < this->max_width && polyline.points.size() ==2)) {
            //remove self if too small
            pp.erase(pp.begin() + i);
            --i;
        }
    }
    if (changes) concatThickPolylines(pp);
}

void
MedialAxis::concatenate_polylines_with_crossing(ThickPolylines& pp)
{

    // concatenate, but even where multiple thickpolyline join, to create nice long strait polylines
    /*  If we removed any short polylines we now try to connect consecutive polylines
    in order to allow loop detection. Note that this algorithm is greedier than
    MedialAxis::process_edge_neighbors() as it will connect random pairs of
    polylines even when more than two start from the same point. This has no
    drawbacks since we optimize later using nearest-neighbor which would do the
    same, but should we use a more sophisticated optimization algorithm we should
    not connect polylines when more than two meet.
    Optimisation of the old algorithm : now we select the most "strait line" choice
    when we merge with an other line at a point with more than two meet.
    */
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        if (polyline.endpoints.first && polyline.endpoints.second) continue; // optimization

        ThickPolyline* best_candidate = nullptr;
        float best_dot = -1;
        size_t best_idx = 0;

        // find another polyline starting here
        for (size_t j = 0; j < pp.size(); ++j) {
            if (j == i) continue;
            ThickPolyline& other = pp[j];
            if (other.endpoints.first && other.endpoints.second) continue;
            bool me_reverse = false;
            bool other_reverse = false;
            if (polyline.last_point().coincides_with_epsilon(other.last_point())) {
                other_reverse = true;
            } else if (polyline.first_point().coincides_with_epsilon(other.last_point())) {
                me_reverse = true;
                other_reverse = true;
            } else if (polyline.first_point().coincides_with_epsilon(other.first_point())) {
                me_reverse = true;
            } else if (!polyline.last_point().coincides_with_epsilon(other.first_point())) {
                continue;
            }

            Vec2d v_poly(me_reverse ? polyline.lines().front().vector().x() : polyline.lines().back().vector().x(), 
                me_reverse ? polyline.lines().front().vector().y() : polyline.lines().back().vector().y());
            v_poly *= (1 / std::sqrt(v_poly.x()*v_poly.x() + v_poly.y()*v_poly.y()));
            Vec2d v_other(other_reverse ? other.lines().back().vector().x() : other.lines().front().vector().x(),
                other_reverse ? other.lines().back().vector().y() : other.lines().front().vector().y());
            v_other *= (1 / std::sqrt(v_other.x()*v_other.x() + v_other.y()*v_other.y()));
            float other_dot = std::abs(float( v_poly.x()*v_other.x() + v_poly.y()*v_other.y() ));
            if (other_dot > best_dot) {
                best_candidate = &other;
                best_idx = j;
                best_dot = other_dot;
            }
        }
        if (best_candidate != nullptr && best_candidate->points.size() > 1) {
            if (polyline.last_point().coincides_with_epsilon(best_candidate->last_point())) {
                best_candidate->reverse();
            } else if (polyline.first_point().coincides_with_epsilon(best_candidate->last_point())) {
                polyline.reverse();
                best_candidate->reverse();
            } else if (polyline.first_point().coincides_with_epsilon(best_candidate->first_point())) {
                polyline.reverse();
            }
            //intersections may create over-extrusion because the included circle can be a bit larger. We have to make it short again if needed.
            if (polyline.points.size() > 1 && best_candidate->points.size() > 1
                    && polyline.width.back() > polyline.width[polyline.width.size() - 2]
                    && polyline.width.back() > best_candidate->width[1]) {
                polyline.width.back() = std::min(polyline.width[polyline.width.size() - 2], best_candidate->width[1]);
            }
            //be far enough
            int far_idx = 1;
            while (far_idx < best_candidate->points.size() && polyline.last_point().coincides_with_epsilon(best_candidate->points[far_idx]))
                far_idx++;
            polyline.points.insert(polyline.points.end(), best_candidate->points.begin() + far_idx, best_candidate->points.end());
            polyline.width.insert(polyline.width.end(), best_candidate->width.begin() + far_idx, best_candidate->width.end());
            polyline.endpoints.second = best_candidate->endpoints.second;
            assert(polyline.width.size() == polyline.points.size());
            if (best_idx < i) i--;
            pp.erase(pp.begin() + best_idx);
        }
    }
}

void
MedialAxis::remove_too_thin_points(ThickPolylines& pp)
{
    //remove too thin polylines points (inside a polyline : split it)
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline* polyline = &pp[i];

        // remove bits with too small extrusion
        size_t idx_point = 0;
        while (idx_point<polyline->points.size()) {
            if (polyline->width[idx_point] < min_width) {
                if (idx_point == 0) {
                    //too thin at start
                    polyline->points.erase(polyline->points.begin());
                    polyline->width.erase(polyline->width.begin());
                    idx_point = 0;
                } else if (idx_point == 1) {
                    //too thin at start
                    polyline->points.erase(polyline->points.begin());
                    polyline->width.erase(polyline->width.begin());
                    polyline->points.erase(polyline->points.begin());
                    polyline->width.erase(polyline->width.begin());
                    idx_point = 0;
                } else if (idx_point == polyline->points.size() - 2) {
                    //too thin at (near) end
                    polyline->points.erase(polyline->points.end() - 1);
                    polyline->width.erase(polyline->width.end() - 1);
                    polyline->points.erase(polyline->points.end() - 1);
                    polyline->width.erase(polyline->width.end() - 1);
                } else if (idx_point == polyline->points.size() - 1) {
                    //too thin at end
                    polyline->points.erase(polyline->points.end() - 1);
                    polyline->width.erase(polyline->width.end() - 1);
                } else {
                    //too thin in middle : split
                    pp.emplace_back();
                    polyline = &pp[i]; // have to refresh the pointer, as the emplace_back() may have moved the array
                    ThickPolyline &newone = pp.back();
                    newone.points.insert(newone.points.begin(), polyline->points.begin() + idx_point + 1, polyline->points.end());
                    newone.width.insert(newone.width.begin(), polyline->width.begin() + idx_point + 1, polyline->width.end());
                    polyline->points.erase(polyline->points.begin() + idx_point, polyline->points.end());
                    polyline->width.erase(polyline->width.begin() + idx_point, polyline->width.end());
                }
            } else idx_point++;

            if (polyline->points.size() < 2) {
                //remove self if too small
                pp.erase(pp.begin() + i);
                --i;
                break;
            }
        }
    }
}

void
MedialAxis::remove_too_short_polylines(ThickPolylines& pp, const coord_t min_size)
{
    // reduce the flow at the intersection ( + ) points
    //FIXME: TODO: note that crossings are unnafected right now. they may need a different codepath directly in their method
    //TODO: unit tests for that.
    //TODO: never triggered. ther's only the sections passed by crossing fusion that aren't edge-case and it's not treated by this. => comment for now
    //for each not-endpoint point
    //std::vector<bool> endpoint_not_used(pp.size() * 2, true);
    //for (size_t idx_endpoint = 0; idx_endpoint < endpoint_not_used.size(); idx_endpoint++) {
    //    ThickPolyline& polyline = pp[idx_endpoint / 2];
    //    //update endpoint_not_used if not seen before
    //    if (idx_endpoint % 2 == 0 && endpoint_not_used[idx_endpoint]) {
    //        //update
    //        endpoint_not_used[(idx_endpoint / 2)] = !polyline.endpoints.first;
    //        endpoint_not_used[(idx_endpoint / 2) + 1] = endpoint_not_used[(idx_endpoint / 2) + 1] && !polyline.endpoints.second;
    //    }
    //    if (endpoint_not_used[idx_endpoint]) {
    //        int nb_endpoints;
    //        Point pt = idx_endpoint % 2 == 0 ? polyline.first_point() : polyline.last_point();
    //        if (idx_endpoint % 2 == 0 && pt.coincides_with_epsilon(polyline.last_point())) {
    //            nb_endpoints++;
    //            endpoint_not_used[(idx_endpoint / 2) + 1] = false;
    //        }
    //        //good, now find other points
    //        for (size_t idx_other_pp = (idx_endpoint / 2) + 1; idx_other_pp < pp.size(); idx_other_pp++) {
    //            ThickPolyline& other = pp[idx_other_pp];
    //            if (pt.coincides_with_epsilon(other.first_point())) {
    //                nb_endpoints++;
    //                endpoint_not_used[idx_other_pp * 2] = false;
    //            }
    //            if (pt.coincides_with_epsilon(other.last_point())) {
    //                nb_endpoints++;
    //                endpoint_not_used[idx_other_pp * 2 + 1] = false;
    //            }
    //        }
    //        if (nb_endpoints < 3)
    //            continue;
    //        // reduce width accordingly
    //        float reduction = 2.f / nb_endpoints;
    //        std::cout << "reduce " << reduction << " points!\n";
    //        if (idx_endpoint % 2 == 0 ) {
    //            polyline.width.front() *= reduction;
    //            if(pt.coincides_with_epsilon(polyline.last_point()))
    //                polyline.width.back() *= reduction;
    //        } else {
    //            polyline.width.back() *= reduction;
    //        }
    //        //good, now find other points
    //        for (size_t idx_other_pp = (idx_endpoint / 2) + 1; idx_other_pp < pp.size(); idx_other_pp++) {
    //            ThickPolyline& other = pp[idx_other_pp];
    //            if (pt.coincides_with_epsilon(other.first_point())) {
    //                other.width.front() *= reduction;
    //            }
    //            if (pt.coincides_with_epsilon(other.last_point())) {
    //                other.width.back() *= reduction;
    //            }
    //        }
    //        //TODO: restore good width at width dist, or reduce other points up to width dist
    //    }
    //}

    //remove too short polyline
    bool changes = true;
    while (changes) {
        changes = false;

        coordf_t shortest_size = (coordf_t) min_size;
        size_t shortest_idx = -1;
        for (size_t i = 0; i < pp.size(); ++i) {
            ThickPolyline& polyline = pp[i];
            // Remove the shortest polylines : polyline that are shorter than wider
            // (we can't do this check before endpoints extension and clipping because we don't
            // know how long will the endpoints be extended since it depends on polygon thickness
            // which is variable - extension will be <= max_width/2 on each side) 
            if ((polyline.endpoints.first || polyline.endpoints.second)) {
                coordf_t local_max_width = this->max_width / 2;
                for (coordf_t w : polyline.width)
                    local_max_width = std::max(local_max_width, w);
                if(polyline.length() < local_max_width) {
                    if (shortest_size > polyline.length()) {
                        shortest_size = polyline.length();
                        shortest_idx = i;
                    }
                }
            }
        }
        if (shortest_idx < pp.size()) {
            pp.erase(pp.begin() + shortest_idx);
            changes = true;
        }
        if (changes) concatThickPolylines(pp);
    }

    //remove points too near each other
    changes = true;
    while (changes) {
        changes = false;

        coordf_t shortest_size = (coordf_t)min_size;
        size_t shortest_idx = -1;
        for (size_t polyidx = 0; polyidx < pp.size(); ++polyidx) {
            ThickPolyline& tp = pp[polyidx];
            for (size_t pt_idx = 1; pt_idx < tp.points.size() - 1; pt_idx++) {
                if (tp.points[pt_idx - 1].coincides_with_epsilon(tp.points[pt_idx])) {
                    tp.points.erase(tp.points.begin() + pt_idx);
                    tp.width.erase(tp.width.begin() + pt_idx);
                    pt_idx--;
                    changes = true;
                }
            }
            //check last segment
            if (tp.points.size() > 2 && tp.points[tp.points.size() - 2].coincides_with_epsilon(tp.points.back())) {
                tp.points.erase(tp.points.end() - 2);
                tp.width.erase(tp.width.end() - 2);
                changes = true;
            }
            //delete null-length polylines
            if (tp.length() < SCALED_EPSILON && tp.first_point().coincides_with_epsilon(tp.last_point())) {
                pp.erase(pp.begin() + polyidx);
                --polyidx;
                changes = true;
            }
        }
        if (changes) concatThickPolylines(pp);
    }

}

void
MedialAxis::check_width(ThickPolylines& pp, coord_t local_max_width, std::string msg)
{
    //remove empty polyline
    int nb = 0;
    for (size_t i = 0; i < pp.size(); ++i) {
        for (size_t j = 0; j < pp[i].width.size(); ++j) {
            if (pp[i].width[j] > coord_t(local_max_width * 1.01)) {
                BOOST_LOG_TRIVIAL(error) << "Error " << msg << " width " << unscaled(pp[i].width[j]) << "(" << i << ":" << j << ") > " << unscaled(local_max_width) << "\n";
                nb++;
            }
        }
    }
    if (nb > 0) BOOST_LOG_TRIVIAL(error) << "== nbBig = " << nb << " ==\n";
}

void
MedialAxis::ensure_not_overextrude(ThickPolylines& pp)
{
    //ensure the volume extruded is correct for what we have been asked
    // => don't over-extrude
    double surface = 0;
    double volume = 0;
    for (ThickPolyline& polyline : pp) {
        for (ThickLine &l : polyline.thicklines()) {
            surface += l.length() * (l.a_width + l.b_width) / 2;
            coord_t width_mean = (l.a_width + l.b_width) / 2;
            volume += height * (width_mean - height * (1. - 0.25 * PI)) * l.length();
        }
    }

    // compute bounds volume
    double boundsVolume = 0;
    boundsVolume += height*bounds->area();
    // add external "perimeter gap"
    double perimeterRoundGap = bounds->contour.length() * height * (1 - 0.25*PI) * 0.5;
    // add holes "perimeter gaps"
    double holesGaps = 0;
    for (const Polygon &hole : bounds->holes) {
        holesGaps += hole.length() * height * (1 - 0.25*PI) * 0.5;
    }
    boundsVolume += perimeterRoundGap + holesGaps;

    if (boundsVolume < volume) {
        //reduce width
        double reduce_by = boundsVolume / volume;
        for (ThickPolyline& polyline : pp) {
            for (coord_t &width : polyline.width) {
                width = coord_t( double(width) * reduce_by);
            }
        }
    }
}

void
MedialAxis::simplify_polygon_frontier()
{
    //it will remove every point in the surface contour that aren't on the bounds contour
    this->expolygon = this->surface;
    this->expolygon.contour.remove_collinear(SCALED_EPSILON);
    for (Polygon &hole : this->expolygon.holes)
        hole.remove_collinear(SCALED_EPSILON);
    if (&this->surface != this->bounds) {
        bool need_intersect = false;
        for (size_t i = 0; i < this->expolygon.contour.points.size(); i++) {
            Point &p_check = this->expolygon.contour.points[i];
            //if (!find) {
            if (!bounds->has_boundary_point(p_check)) {
                //check if we put it at a bound point instead of delete it
                size_t prev_i = i == 0 ? this->expolygon.contour.points.size() - 1 : (i - 1);
                size_t next_i = i == this->expolygon.contour.points.size() - 1 ? 0 : (i + 1);
                const Point* closest = bounds->contour.closest_point(p_check);
                if (closest != nullptr && closest->distance_to(p_check) + SCALED_EPSILON
                    < std::min(p_check.distance_to(this->expolygon.contour.points[prev_i]), p_check.distance_to(this->expolygon.contour.points[next_i])) / 2) {
                    p_check.x() = closest->x();
                    p_check.y() = closest->y();
                    need_intersect = true;
                } else {
                    this->expolygon.contour.points.erase(this->expolygon.contour.points.begin() + i);
                    i--;
                }
            }
        }
        if (need_intersect) {
            ExPolygons simplified_polygons = intersection_ex(this->expolygon, *bounds);
            if (simplified_polygons.size() == 1) {
                this->expolygon = simplified_polygons[0];
            } else {
                //can't simplify that much, reuse the given one
                this->expolygon = this->surface;
                this->expolygon.contour.remove_collinear(SCALED_EPSILON);
                for (Polygon &hole : this->expolygon.holes)
                    hole.remove_collinear(SCALED_EPSILON);
            }
        }
    }

    if (!this->expolygon.contour.points.empty())
        this->expolygon.remove_point_too_near((coord_t)SCALED_RESOLUTION);
}

/// Grow the extrusion to at least nozzle_diameter*1.05 (lowest safe extrusion width)
/// Do not grow points inside the anchor.
void
MedialAxis::grow_to_nozzle_diameter(ThickPolylines& pp, const ExPolygons& anchors)
{
    //compute the min width
    coord_t min_width = this->nozzle_diameter;
    if (this->height > 0) min_width = Flow::new_from_spacing(
        float(unscaled(this->nozzle_diameter)),
        float(unscaled(this->nozzle_diameter)),
        float(unscaled(this->height)),
        1, false).scaled_width();
    //ensure the width is not lower than min_width.
    for (ThickPolyline& polyline : pp) {
        for (int i = 0; i < polyline.points.size(); ++i) {
            bool is_anchored = false;
            for (const ExPolygon &poly : anchors) {
                if (poly.contains(polyline.points[i])) {
                    is_anchored = true;
                    break;
                }
            }
            if (!is_anchored && polyline.width[i] < min_width)
                polyline.width[i] = min_width;
        }
    }
}

void
MedialAxis::taper_ends(ThickPolylines& pp)
{
    // minimum size of the taper: be sure to extrude at least the "round edges" of the extrusion (0-spacing extrusion).
    const coord_t min_size = (coord_t) std::max(this->nozzle_diameter * 0.1, this->height * (1. - 0.25 * PI));
    const coordf_t length = (coordf_t) std::min(this->taper_size, (this->nozzle_diameter - min_size) / 2);
    if (length <= SCALED_RESOLUTION) return;
    //ensure the width is not lower than min_size.
    for (ThickPolyline& polyline : pp) {
        if (polyline.length() < length * 2.2) continue;
        if (polyline.endpoints.first) {
            polyline.width[0] = min_size;
            coord_t current_dist = min_size;
            coord_t last_dist = min_size;
            for (size_t i = 1; i<polyline.width.size(); ++i) {
                current_dist += (coord_t) polyline.points[i - 1].distance_to(polyline.points[i]);
                if (current_dist > length) {
                    //create a new point if not near enough
                    if (current_dist > length + SCALED_RESOLUTION) {
                        coordf_t percent_dist = (length - last_dist) / (current_dist - last_dist);
                        polyline.points.insert(polyline.points.begin() + i, polyline.points[i - 1].interpolate(percent_dist, polyline.points[i]));
                        polyline.width.insert(polyline.width.begin() + i, polyline.width[i]);
                    }
                    break;
                }
                polyline.width[i] = std::max((coordf_t)min_size, min_size + (polyline.width[i] - min_size) * current_dist / length);
                last_dist = current_dist;
            }
        }
        if (polyline.endpoints.second) {
            polyline.width[polyline.width.size() - 1] = min_size;
            coord_t current_dist = min_size;
            coord_t last_dist = min_size;
            for (size_t i = polyline.width.size()-1; i > 0; --i) {
                current_dist += (coord_t)polyline.points[i].distance_to(polyline.points[i - 1]);
                if (current_dist > length) {
                    //create new point if not near enough
                    if (current_dist > length + SCALED_RESOLUTION) {
                        coordf_t percent_dist = (length - last_dist) / (current_dist - last_dist);
                        polyline.points.insert(polyline.points.begin() + i, polyline.points[i].interpolate(percent_dist, polyline.points[i - 1]));
                        polyline.width.insert(polyline.width.begin() + i, polyline.width[i - 1]);
                    }
                    break;
                }
                polyline.width[i - 1] = std::max((coordf_t)min_size, min_size + (polyline.width[i - 1] - min_size) * current_dist / length);
                last_dist = current_dist;
            }
        }
    }
}

double
check_circular(ExPolygon& expolygon, coord_t max_variation) {
    if (expolygon.holes.size() > 0) return 0;

    //test if convex
    if (expolygon.contour.concave_points().empty() && expolygon.contour.points.size() > 3) {
        // Computing circle center
        Point center = expolygon.contour.centroid();
        coordf_t radius_min = std::numeric_limits<float>::max(), radius_max = 0;
        for (int i = 0; i < expolygon.contour.points.size(); ++i) {
            coordf_t dist = expolygon.contour.points[i].distance_to(center);
            radius_min = std::min(radius_min, dist);
            radius_max = std::max(radius_max, dist);
        }
        // check with max_variation to be sure it's round enough
        if (radius_max - radius_min < max_variation) {
            return radius_max;
        }
    }
    return 0;
}

void
MedialAxis::build(ThickPolylines &polylines_out)
{
    //static int id = 0;
    //id++;
    //std::cout << id << "\n";
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_0_enter_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(this->surface);
    //    svg.Close();
    //}
    simplify_polygon_frontier();
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_0.5_simplified_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.Close();
    //}
    //safety check
    if (this->expolygon.area() < this->min_width * this->min_width) this->expolygon = this->surface;
    if (this->expolygon.area() < this->min_width * this->min_width) return;

    //check for circular shape
    coordf_t radius = check_circular(this->expolygon, this->min_width/4);
    if (radius > 0 && this->expolygon.contour.points.size() > 4) {
        ExPolygons miniPeri = offset_ex(this->expolygon.contour, -radius / 2);
        if (miniPeri.size() == 1 && miniPeri[0].holes.size() == 0) {
            ThickPolyline thickPoly;
            thickPoly.points = miniPeri[0].contour.points;
            thickPoly.points.push_back(thickPoly.points.front());
            thickPoly.endpoints.first = false;
            thickPoly.endpoints.second = false;
            for (int i = 0; i < thickPoly.points.size(); i++) {
                thickPoly.width.push_back(radius);
            }
            polylines_out.insert(polylines_out.end(), thickPoly);
            return;
        }
    }

    //std::cout << "simplify_polygon_frontier\n";
    // compute the Voronoi diagram and extract medial axis polylines
    ThickPolylines pp;
    this->polyline_from_voronoi(this->expolygon.lines(), &pp);
    //FIXME this is a stop-gap for voronoi bug, see superslicer/issues/995
    {
        double ori_area = 0;
        for (ThickPolyline& tp : pp) {
            for (int i = 1; i < tp.points.size(); i++) {
                ori_area += (tp.width[i - 1] + tp.width[i]) * tp.points[i - 1].distance_to(tp.points[i]) / 2;
            }
        }
        double area = this->expolygon.area();
        double ratio_area = ori_area / area;
        if (ratio_area < 1) ratio_area = 1 / ratio_area;
        //check if the returned voronoi is really off
        if (ratio_area > 1.1) {
            //add a little offset and retry
            ExPolygons fixer = offset_ex(this->expolygon, SCALED_EPSILON);
            if (fixer.size() == 1) {
                ExPolygon fixPoly = fixer[0];
                ThickPolylines pp_stopgap;
                this->polyline_from_voronoi(fixPoly.lines(), &pp_stopgap);
                double fix_area = 0;
                for (ThickPolyline& tp : pp_stopgap) {
                    for (int i = 1; i < tp.points.size(); i++) {
                        fix_area += (tp.width[i - 1] + tp.width[i]) * tp.points[i - 1].distance_to(tp.points[i]) / 2;
                    }
                }
                double fix_ratio_area = fix_area / area;
                if (fix_ratio_area < 1) fix_ratio_area = 1 / fix_ratio_area;
                //if it's less off, then use it.
                if (fix_ratio_area < ratio_area) {
                    pp = pp_stopgap;
                }
            }
        }
    }
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_0.9_voronoi_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    //sanity check, as the voronoi can return (abeit very rarely) randomly high values.
    for (size_t tp_idx = 0; tp_idx < pp.size(); tp_idx++) {
        ThickPolyline& tp = pp[tp_idx];
        for (size_t i = 0; i < tp.width.size(); i++) {
            if (tp.width[i] > this->max_width) {
                tp.width[i] = this->max_width;
            }
        }
        // voronoi bugfix: when we have a wheel, it creates a polyline at the center, completly out of the polygon. #651
        // note: can't reproduce in the new verison. This may have been fixed by another way.
        //if (tp.endpoints.first && tp.endpoints.second && !this->expolygon.contains(tp.first_point()) && !this->expolygon.contains(tp.last_point()) && pp.size() > 1) {
        //    //delete this out-of-bounds polyline
        //    pp.erase(pp.begin() + tp_idx);
        //    --tp_idx;
        //}
        //voronoi problem: can put two consecutive points at the same position. Delete one.
        for (size_t i = 1; i < tp.points.size()-1; i++) {
            if (tp.points[i-1].distance_to_square(tp.points[i]) < SCALED_EPSILON) {
                tp.points.erase(tp.points.begin() + i);
                tp.width.erase(tp.width.begin() + i);
                i--;
            }
        }
        //delete the inner one
        if (tp.points.size()>2 && tp.points[tp.points.size() - 2].distance_to_square(tp.points.back()) < SCALED_EPSILON) {
            tp.points.erase(tp.points.end() - 2);
            tp.width.erase(tp.width.end() - 2);
        }
        //delete null-length polylines
        if (tp.length() < SCALED_EPSILON && tp.first_point().coincides_with_epsilon(tp.last_point())) {
            pp.erase(pp.begin() + tp_idx);
            --tp_idx;
        }
    }
    //std::cout << "polyline_from_voronoi\n";
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_1_voronoi_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    //check_width(pp, this->max_width, "polyline_from_voronoi");
    
    concatThickPolylines(pp);

    //std::cout << "concatThickPolylines\n";
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_1_voronoi_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    /* Find the maximum width returned; we're going to use this for validating and
       filtering the output segments. */
    coord_t max_w = 0;
    for (ThickPolylines::const_iterator it = pp.begin(); it != pp.end(); ++it)
        max_w = std::max(max_w, (coord_t)*std::max_element(it->width.begin(), it->width.end()));

    //for (auto &p : pp) {
    //    std::cout << "Start polyline : ";
    //    for (auto &w : p.width) {
    //        std::cout << ", " << w;
    //    }
    //    std::cout << "\n";
    //}

    // "remove" the little paths that are at the outside of a curve.
    fusion_curve(pp);
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_2_curve_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}


    // Aligned fusion: Fusion the bits at the end of lines by "increasing thickness"
    // For that, we have to find other lines,
    // and with a next point no more distant than the max width.
    // Then, we can merge the bit from the first point to the second by following the mean.
    //
    main_fusion(pp);
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_3_fusion_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    //fusion right-angle corners.
    fusion_corners(pp);

    // Loop through all returned polylines in order to extend their endpoints to the 
    //   expolygon boundaries (if done here, it may be cut later if not thick enough)
    if (stop_at_min_width) {
        //{
        //    std::stringstream stri;
        //    stri << "medial_axis_3_3_extends_" << id << ".svg";
        //    SVG svg(stri.str());
        //    svg.draw(*bounds, "grey");
        //    svg.draw(this->expolygon, "green");
        //    svg.draw(pp, "red");
        //    svg.Close();
        //}
        extends_line_both_side(pp);
    }

    /*for (auto &p : pp) {
        std::cout << "Fusion polyline : ";
        for (auto &w : p.width) {
            std::cout << ", " << w;
        }
        std::cout << "\n";
    }*/
    //reduce extrusion when it's too thin to be printable
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_3_6_remove_thin_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    remove_too_thin_extrusion(pp);
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_4_thinok_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    remove_too_thin_points(pp);
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_5.0_thuinner_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    // Loop through all returned polylines in order to extend their endpoints to the 
    //   expolygon boundaries
    if (!stop_at_min_width) {
        extends_line_both_side(pp);
    }
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_5_expand_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}
    //TODO: reduce the flow at the intersection ( + ) points on crossing?
    concatenate_polylines_with_crossing(pp);
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_6_concat_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    remove_too_short_polylines(pp, max_w * 2);
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_8_tooshort_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    ensure_not_overextrude(pp);
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_9.1_end_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}
    if (nozzle_diameter != min_width) {
        grow_to_nozzle_diameter(pp, diff_ex(*this->bounds, this->expolygon));
    }
    if(this->taper_size != 0){
        taper_ends(pp);
    }
    //{
    //    std::stringstream stri;
    //    stri << "medial_axis_9.9_endnwithtaper_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(*bounds, "grey");
    //    svg.draw(this->expolygon, "green");
    //    svg.draw(pp, "red");
    //    svg.Close();
    //}

    remove_bits(pp);

    //sort_polylines(pp);

    //for (auto &p : pp) {
    //    std::cout << " polyline : ";
    //    for (auto &w : p.width) {
    //        std::cout << ", " << w;
    //    }
    //    std::cout << "\n";
    //}

    polylines_out.insert(polylines_out.end(), pp.begin(), pp.end());

}

ExtrusionEntityCollection
thin_variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow, coord_t resolution_internal)
{
    assert(resolution_internal > SCALED_EPSILON);

    // this value determines granularity of adaptive width, as G-code does not allow
    // variable extrusion within a single move; this value shall only affect the amount
    // of segments, and any pruning shall be performed before we apply this tolerance
    const coord_t tolerance = flow.scaled_width() / 10;//scale_(0.05);

    ExtrusionEntityCollection coll;
    for (const ThickPolyline &p : polylines) {
        ExtrusionPaths paths;
        ExtrusionPath path(role);
        ThickLines lines = p.thicklines();

        coordf_t saved_line_len = 0;
        for (int i = 0; i < (int)lines.size(); ++i) {
            ThickLine& line = lines[i];

            const coordf_t line_len = line.length();
            const coordf_t prev_line_len = saved_line_len;
            saved_line_len = line_len;

            assert(line.a_width >= 0 && !std::isnan(line.a_width));
            assert(line.b_width >= 0 && !std::isnan(line.b_width));
            coord_t thickness_delta = std::abs(line.a_width - line.b_width);

            // split lines ?
            if (resolution_internal < line_len) {
                if (thickness_delta > tolerance && ceil(float(thickness_delta) / float(tolerance)) > 2) {
                    const uint16_t segments = 1 + (uint16_t)std::min((uint32_t)16000, (uint32_t)ceil(float(thickness_delta) / float(tolerance)));
                    Points pp;
                    std::vector<coordf_t> width;
                    {
                        for (size_t j = 0; j < segments; ++j) {
                            pp.push_back(line.a.interpolate(((double)j) / segments, line.b));
                            double percent_width = ((double)j) / (segments - 1);
                            width.push_back(line.a_width * (1 - percent_width) + line.b_width * percent_width);
                        }
                        pp.push_back(line.b);

                        assert(pp.size() == segments + 1);
                        assert(width.size() == segments);
                    }

                    // delete this line and insert new ones
                    lines.erase(lines.begin() + i);
                    for (size_t j = 0; j < segments; ++j) {
                        ThickLine new_line(pp[j], pp[j + 1]);
                        new_line.a_width = width[j];
                        new_line.b_width = width[j];
                        lines.insert(lines.begin() + i + j, new_line);
                    }

                    // go back to the start of this loop iteration
                    --i;
                    continue;
                } else if (thickness_delta > 0) {
                    //create a middle point
                    ThickLine new_line(line.a.interpolate(0.5, line.b), line.b);
                    new_line.a_width = line.b_width;
                    new_line.b_width = line.b_width;
                    line.b = new_line.a;
                    line.b_width = line.a_width;
                    lines.insert(lines.begin() + i + 1, new_line);

                    // go back to the start of this loop iteration
                    --i;
                    continue;
                }
            } else if (i > 0 && resolution_internal > line_len + prev_line_len) {
                //merge lines?
                //if it's a loop, merge only if the distance is high enough
                if (p.first_point() == p.last_point() && p.length() < (line_len + prev_line_len) * 6)
                    continue;
                ThickLine& prev_line = lines[i - 1];
                coordf_t width = prev_line_len * (prev_line.a_width + prev_line.b_width) / 2;
                width += line_len * (line.a_width + line.b_width) / 2;
                prev_line.b = line.b;
                const coordf_t new_length = prev_line.length();
                if (new_length < SCALED_EPSILON) {
                    // too short, remove it and restart
                    if (i > 1) {
                        line.a = lines[i - 2].b;
                    }
                    lines.erase(lines.begin() + i-1);
                    i-=2;
                    continue;
                }
                width /= new_length;
                prev_line.a_width = width;
                prev_line.b_width = width;
                saved_line_len = new_length;
                //erase 'line'
                lines.erase(lines.begin() + i);
                --i;
                continue;
            } else if (thickness_delta > 0) {
                //set width as a middle-ground
                line.a_width = (line.a_width + line.b_width) / 2;
                line.b_width = line.a_width;
            }
        }
        for (int i = 0; i < (int)lines.size(); ++i) {
            ThickLine& line = lines[i];

            //gapfill : we want to be able to fill the voids (touching the perimeters), so the spacing is what we want.
            //thinwall: we want the extrusion to not go out of the polygon, so the width is what we want.
            //  but we can't extrude with a negative spacing, so we have to gradually fall back to spacing if the width is too small.

            // default: extrude a thin wall that doesn't go outside of the specified width.
            coordf_t wanted_width = unscaled(line.a_width);
            if (role == erGapFill) {
                // Convert from spacing to extrusion width based on the extrusion model
                // of a square extrusion ended with semi circles.
                wanted_width = unscaled(line.a_width) + flow.height * (1. - 0.25 * PI);
            } else if (unscale<coordf_t>(line.a_width) < 2 * flow.height * (1. - 0.25 * PI)) {
                //width (too) small, be sure to not extrude with negative spacing.
                //we began to fall back to spacing gradually even before the spacing go into the negative
                //  to make extrusion1 < extrusion2 if width1 < width2 even if width2 is too small. 
                wanted_width = unscaled(line.a_width)*0.35 + 1.3 * flow.height * (1. - 0.25 * PI);
            }

            if (path.polyline.points.empty()) {
                flow.width = wanted_width;
                path.polyline.append(line.a);
                path.polyline.append(line.b);
                assert(flow.mm3_per_mm() == flow.mm3_per_mm());
                assert(flow.width == flow.width);
                assert(flow.height == flow.height);
                path.mm3_per_mm = flow.mm3_per_mm();
                path.width = flow.width;
                path.height = flow.height;
            } else {
                coord_t thickness_delta = scale_t(fabs(flow.width - wanted_width));
                if (thickness_delta <= tolerance / 2) {
                    // the width difference between this line and the current flow width is 
                    // within the accepted tolerance
                    path.polyline.append(line.b);
                } else {
                    // we need to initialize a new line
                    paths.emplace_back(std::move(path));
                    path = ExtrusionPath(role);
                    flow.width = wanted_width;
                    path.polyline.append(line.a);
                    path.polyline.append(line.b);
                    assert(flow.mm3_per_mm() == flow.mm3_per_mm());
                    assert(flow.width == flow.width);
                    assert(flow.height == flow.height);
                    path.mm3_per_mm = flow.mm3_per_mm();
                    path.width = flow.width;
                    path.height = flow.height;
                }
            }
            assert(path.polyline.points.size() > 2 || path.first_point() != path.last_point());
        }
        if (path.polyline.is_valid())
            paths.emplace_back(std::move(path));

        // Append paths to collection.
        if (!paths.empty()) {
            if (paths.front().first_point().coincides_with_epsilon(paths.back().last_point())) {
                coll.append(ExtrusionLoop(paths));
            } else {
                if (role == erThinWall){
                    //thin walls : avoid to cut them, please.
                    //also, keep the start, as the start should be already in a frontier where possible.
                    ExtrusionEntityCollection unsortable_coll(paths);
                    unsortable_coll.set_can_sort_reverse(false, false);
                    coll.append(unsortable_coll);
                } else {
                    if (paths.size() <= 1) {
                        coll.append(paths);
                    } else {
                        ExtrusionEntityCollection unsortable_coll(paths);
                        //gap fill : can reverse, but refrain from cutting them as it creates a mess.
                        // I say that, but currently (false, true) does bad things.
                        unsortable_coll.set_can_sort_reverse(false, true);
                        coll.append(unsortable_coll);
                    }
                }
            }
        }
    }
    return coll;
}

} // namespace Slic3r