Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Point.cpp « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f0d8e0508f8b30ef48f1059de725408c68c8887a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#include "Point.hpp"
#include "Line.hpp"
#include "MultiPoint.hpp"
#include "Int128.hpp"
#include "BoundingBox.hpp"
#include <algorithm>

namespace Slic3r {

std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t)
{
    unsigned int vertices_count = (unsigned int)points.size();
    if (vertices_count == 0)
        return std::vector<Vec3f>();

    unsigned int data_size = 3 * vertices_count * sizeof(float);

    Eigen::MatrixXf src(3, vertices_count);
    ::memcpy((void*)src.data(), (const void*)points.data(), data_size);

    Eigen::MatrixXf dst(3, vertices_count);
    dst = t * src.colwise().homogeneous();

    std::vector<Vec3f> ret_points(vertices_count, Vec3f::Zero());
    ::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
    return ret_points;
}

Pointf3s transform(const Pointf3s& points, const Transform3d& t)
{
    unsigned int vertices_count = (unsigned int)points.size();
    if (vertices_count == 0)
        return Pointf3s();

    unsigned int data_size = 3 * vertices_count * sizeof(double);

    Eigen::MatrixXd src(3, vertices_count);
    ::memcpy((void*)src.data(), (const void*)points.data(), data_size);

    Eigen::MatrixXd dst(3, vertices_count);
    dst = t * src.colwise().homogeneous();

    Pointf3s ret_points(vertices_count, Vec3d::Zero());
    ::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
    return ret_points;
}

void Point::rotate(double angle, const Point &center)
{
    double cur_x = (double)(*this)(0);
    double cur_y = (double)(*this)(1);
    double s     = ::sin(angle);
    double c     = ::cos(angle);
    double dx    = cur_x - (double)center(0);
    double dy    = cur_y - (double)center(1);
    (*this)(0) = (coord_t)round( (double)center(0) + c * dx - s * dy );
    (*this)(1) = (coord_t)round( (double)center(1) + c * dy + s * dx );
}

int32_t Point::nearest_point_index(const Points &points) const
{
    PointConstPtrs p;
    p.reserve(points.size());
    for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
        p.push_back(&*it);
    return this->nearest_point_index(p);
}

int32_t Point::nearest_point_index(const PointConstPtrs &points) const
{
    int32_t idx = -1;
    double distance = -1;  // double because long is limited to 2147483647 on some platforms and it's not enough
    
    for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
        /* If the X distance of the candidate is > than the total distance of the
           best previous candidate, we know we don't want it */
        double d = sqr<double>(double((*this).x() - (*it)->x()));
        if (distance != -1 && d > distance) continue;
        
        /* If the Y distance of the candidate is > than the total distance of the
           best previous candidate, we know we don't want it */
        d += sqr<double>(double((*this).y() - (*it)->y()));
        if (distance != -1 && d > distance) continue;
        
        idx = (int32_t)(it - points.begin());
        distance = d;
        
        if (distance < EPSILON) break;
    }
    
    return idx;
}

/* distance to the closest point of line */
double
Point::distance_to(const Line &line) const {
    const double dx = double(line.b.x() - line.a.x());
    const double dy = double(line.b.y() - line.a.y());

    const double l2 = dx*dx + dy*dy;  // avoid a sqrt
    if (l2 == 0.0) return this->distance_to(line.a);   // line.a == line.b case

    // Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
    // We find projection of this point onto the line. 
    // It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
    const double t = ((this->x() - line.a.x()) * dx + (this->y() - line.a.y()) * dy) / l2;
    if (t < 0.0)      return this->distance_to(line.a);  // beyond the 'a' end of the segment
    else if (t > 1.0) return this->distance_to(line.b);  // beyond the 'b' end of the segment
    Point projection(
        line.a.x() + t * dx,
        line.a.y() + t * dy
        );
    return this->distance_to(projection);
}


int32_t Point::nearest_point_index(const PointPtrs &points) const
{
    PointConstPtrs p;
    p.reserve(points.size());
    for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
        p.push_back(*it);
    return this->nearest_point_index(p);
}

bool Point::nearest_point(const Points &points, Point* point) const
{
    int idx = this->nearest_point_index(points);
    if (idx == -1) return false;
    *point = points.at(idx);
    return true;
}

/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
 * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
 * gives the signed area of the triangle formed by p1, p2 and this point.
 * In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
 * z-component of their 3D cross product.
 * We return double because it must be big enough to hold 2*max(|coordinate|)^2
 */
double Point::ccw(const Point &p1, const Point &p2) const
{
    //static_assert(sizeof(coord_t) == 4, "Point::ccw() requires a 32 bit coord_t");
    //return cross2((p2 - p1).cast<int64_t>(), (*this - p1).cast<int64_t>());
    return cross2((p2 - p1).cast<double>(), (*this - p1).cast<double>());
}

double Point::ccw(const Line &line) const
{
    return this->ccw(line.a, line.b);
}

// returns the CCW angle between this-p1 and this-p2
// i.e. this assumes a CCW rotation from p1 to p2 around this
double Point::ccw_angle(const Point &p1, const Point &p2) const
{
    //FIXME this calculates an atan2 twice! Project one vector into the other!
    double angle = atan2(p1.x() - (*this).x(), p1.y() - (*this).y())
                 - atan2(p2.x() - (*this).x(), p2.y() - (*this).y());
    // we only want to return only positive angles
    return angle <= 0 ? angle + 2*PI : angle;
}

Point Point::projection_onto(const MultiPoint &poly) const
{
    Point running_projection = poly.first_point();
    double running_min = (running_projection - *this).cast<double>().norm();
    
    Lines lines = poly.lines();
    for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
        Point point_temp = this->projection_onto(*line);
        if ((point_temp - *this).cast<double>().norm() < running_min) {
	        running_projection = point_temp;
	        running_min = (running_projection - *this).cast<double>().norm();
        }
    }
    return running_projection;
}

Point Point::projection_onto(const Line &line) const
{
    if (line.a == line.b) return line.a;
    
    /*
        (Ported from VisiLibity by Karl J. Obermeyer)
        The projection of point_temp onto the line determined by
        line_segment_temp can be represented as an affine combination
        expressed in the form projection of
        Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second.
        If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
        must be closest to calling Point.
    */
    double lx = (double)(line.b(0) - line.a(0));
    double ly = (double)(line.b(1) - line.a(1));
    double theta = ( (double)(line.b(0) - (*this)(0))*lx + (double)(line.b(1)- (*this)(1))*ly ) 
          / ( sqr<double>(lx) + sqr<double>(ly) );
    
    if (0.0 <= theta && theta <= 1.0)
        return (theta * line.a.cast<coordf_t>() + (1.0-theta) * line.b.cast<coordf_t>()).cast<coord_t>();
    
    // Else pick closest endpoint.
    return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b;
}

bool has_duplicate_points(std::vector<Point> &&pts)
{
    std::sort(pts.begin(), pts.end());
    for (size_t i = 1; i < pts.size(); ++ i)
        if (pts[i - 1] == pts[i])
            return true;
    return false;
}

BoundingBox get_extents(const Points &pts)
{ 
    return BoundingBox(pts);
}

BoundingBox get_extents(const std::vector<Points> &pts)
{
    BoundingBox bbox;
    for (const Points &p : pts)
        bbox.merge(get_extents(p));
    return bbox;
}

BoundingBoxf get_extents(const std::vector<Vec2d> &pts)
{
    BoundingBoxf bbox;
    for (const Vec2d &p : pts)
        bbox.merge(p);
    return bbox;
}

/// This method create a new point on the line defined by this and p2.
/// The new point is place at position defined by |p2-this| * percent, starting from this
/// \param percent the proportion of the segment length to place the point
/// \param p2 the second point, forming a segment with this
/// \return a new point, == this if percent is 0 and == p2 if percent is 1
Point Point::interpolate(const double percent, const Point &p2) const
{
    Point p_out;
    p_out.x() = coord_t(this->x()*(1 - percent) + p2.x()*(percent));
    p_out.y() = coord_t(this->y()*(1 - percent) + p2.y()*(percent));
    return p_out;
}

std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
{
    return stm << pointf(0) << "," << pointf(1);
}

namespace int128 {

int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
{
    Slic3r::Vector v1(p2 - p1);
    Slic3r::Vector v2(p3 - p1);
    return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
}

int cross(const Vec2crd &v1, const Vec2crd &v2)
{
    return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y());
}

}

}