Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Point.hpp « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 30a1a4942c4837d6fc5382cbda30c290e160ca16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#ifndef slic3r_Point_hpp_
#define slic3r_Point_hpp_

#include "libslic3r.h"
#include <cstddef>
#include <vector>
#include <cmath>
#include <string>
#include <sstream>
#include <unordered_map>

#include <Eigen/Geometry> 

namespace Slic3r {

class Line;
class MultiPoint;
class Point;
typedef Point Vector;

// Eigen types, to replace the Slic3r's own types in the future.
// Vector types with a fixed point coordinate base type.
typedef Eigen::Matrix<coord_t,  2, 1, Eigen::DontAlign> Vec2crd;
typedef Eigen::Matrix<coord_t,  3, 1, Eigen::DontAlign> Vec3crd;
typedef Eigen::Matrix<int,      2, 1, Eigen::DontAlign> Vec2i;
typedef Eigen::Matrix<int,      3, 1, Eigen::DontAlign> Vec3i;
typedef Eigen::Matrix<int32_t,  2, 1, Eigen::DontAlign> Vec2i32;
typedef Eigen::Matrix<int64_t,  2, 1, Eigen::DontAlign> Vec2i64;
typedef Eigen::Matrix<int32_t,  3, 1, Eigen::DontAlign> Vec3i32;
typedef Eigen::Matrix<int64_t,  3, 1, Eigen::DontAlign> Vec3i64;

// Vector types with a double coordinate base type.
typedef Eigen::Matrix<float,    2, 1, Eigen::DontAlign> Vec2f;
typedef Eigen::Matrix<float,    3, 1, Eigen::DontAlign> Vec3f;
typedef Eigen::Matrix<double,   2, 1, Eigen::DontAlign> Vec2d;
typedef Eigen::Matrix<double,   3, 1, Eigen::DontAlign> Vec3d;

typedef std::vector<Point>                              Points;
typedef std::vector<Point*>                             PointPtrs;
typedef std::vector<const Point*>                       PointConstPtrs;
typedef std::vector<Vec3crd>                            Points3;
typedef std::vector<Vec2d>                              Pointfs;
typedef std::vector<Vec2d>                              Vec2ds;
typedef std::vector<Vec3d>                              Pointf3s;

typedef Eigen::Matrix<float,  2, 2, Eigen::DontAlign> Matrix2f;
typedef Eigen::Matrix<double, 2, 2, Eigen::DontAlign> Matrix2d;
typedef Eigen::Matrix<float,  3, 3, Eigen::DontAlign> Matrix3f;
typedef Eigen::Matrix<double, 3, 3, Eigen::DontAlign> Matrix3d;

typedef Eigen::Transform<float,  2, Eigen::Affine, Eigen::DontAlign> Transform2f;
typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
typedef Eigen::Transform<float,  3, Eigen::Affine, Eigen::DontAlign> Transform3f;
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;

inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); }

inline int32_t cross2(const Vec2i32 &v1, const Vec2i32 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline float   cross2(const Vec2f   &v1, const Vec2f   &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline double  cross2(const Vec2d   &v1, const Vec2d   &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }

template<class T, int N> Eigen::Matrix<T,  2, 1, Eigen::DontAlign>
to_2d(const Eigen::Matrix<T,  N, 1, Eigen::DontAlign> &ptN) { return {ptN(0), ptN(1)}; }

//inline Vec2i32 to_2d(const Vec3i32 &pt3) { return Vec2i32(pt3(0), pt3(1)); }
//inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
//inline Vec2f   to_2d(const Vec3f   &pt3) { return Vec2f  (pt3(0), pt3(1)); }
//inline Vec2d   to_2d(const Vec3d   &pt3) { return Vec2d  (pt3(0), pt3(1)); }

inline Vec3d   to_3d(const Vec2d &v, double z) { return Vec3d(v(0), v(1), z); }
inline Vec3f   to_3d(const Vec2f &v, float z) { return Vec3f(v(0), v(1), z); }
inline Vec3i64 to_3d(const Vec2i64 &v, float z) { return Vec3i64(int64_t(v(0)), int64_t(v(1)), int64_t(z)); }
inline Vec3crd to_3d(const Vec3crd &p, coord_t z) { return Vec3crd(p(0), p(1), z); }

inline Vec2d   unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
inline Vec2d   unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
inline Vec2d   unscale(const Vec2d   &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
inline Vec3d   unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
inline Vec3d   unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
inline Vec3d   unscale(const Vec3d   &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }

inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
inline std::string to_string(const Vec2d   &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
inline std::string to_string(const Vec3d   &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }

std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
Pointf3s transform(const Pointf3s& points, const Transform3d& t);

template<int N, class T> using Vec = Eigen::Matrix<T,  N, 1, Eigen::DontAlign, N, 1>;

class Point : public Vec2crd
{
public:
    typedef coord_t coord_type;

    Point() : Vec2crd(0, 0) {}
    Point(int32_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
    Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
    Point(double x, double y) : Vec2crd(coord_t(lrint(x)), coord_t(lrint(y))) {}
    Point(const Point &rhs) { *this = rhs; }
	explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(lrint(rhs.x())), coord_t(lrint(rhs.y()))) {}
	// This constructor allows you to construct Point from Eigen expressions
    template<typename OtherDerived>
    Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
    static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }

    // This method allows you to assign Eigen expressions to MyVectorType
    template<typename OtherDerived>
    Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
    {
        this->Vec2crd::operator=(other);
        return *this;
    }

    bool operator< (const Point& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }

    Point& operator+=(const Point& rhs) { (*this)(0) += rhs(0); (*this)(1) += rhs(1); return *this; }
    Point& operator-=(const Point& rhs) { (*this)(0) -= rhs(0); (*this)(1) -= rhs(1); return *this; }
	Point& operator*=(const double &rhs) { (*this)(0) = coord_t((*this)(0) * rhs); (*this)(1) = coord_t((*this)(1) * rhs); return *this; }
    Point operator*(const double &rhs) { return Point((*this)(0) * rhs, (*this)(1) * rhs); }

    void   rotate(double angle);
    void   rotate(double angle, const Point &center);
    Point  rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
    Point  rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
    int    nearest_point_index(const Points &points) const;
    int    nearest_point_index(const PointConstPtrs &points) const;
    int    nearest_point_index(const PointPtrs &points) const;
    bool   nearest_point(const Points &points, Point* point) const;
    double ccw(const Point &p1, const Point &p2) const;
    double ccw(const Line &line) const;
    double ccw_angle(const Point &p1, const Point &p2) const;
    Point  projection_onto(const MultiPoint &poly) const;
    Point  projection_onto(const Line &line) const;
};

inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON))
{
	Point d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon;
}

inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON))
{
	Vec2f d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon;
}

inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
{
	Vec2d d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon;
}

inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON))
{
	Vec3f d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
}

inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON)
{
	Vec3d d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
}

namespace int128 {
    // Exact orientation predicate,
    // returns +1: CCW, 0: collinear, -1: CW.
    int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
    // Exact orientation predicate,
    // returns +1: CCW, 0: collinear, -1: CW.
    int cross(const Vec2crd &v1, const Vec2crd &v2);
}

// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
    size_t operator()(const Vec2crd &pt) const {
        return std::hash<coord_t>()(pt(0)) ^ std::hash<coord_t>()(pt(1));
    }
};

// A generic class to search for a closest Point in a given radius.
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
// The PointAccessor has to return const Point*.
// If a nullptr is returned, it is ignored by the query.
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
{
public:
    ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) : 
		m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
    {
        // Resolution of a grid, twice the search radius + some epsilon.
		coord_t gridres = 2 * m_search_radius + 4;
        m_grid_resolution = gridres;
        assert(m_grid_resolution > 0);
        assert(m_grid_resolution < (coord_t(1) << 30));
		// Compute m_grid_log2 = log2(m_grid_resolution)
		if (m_grid_resolution > 32767) {
			m_grid_resolution >>= 16;
			m_grid_log2 += 16;
		}
		if (m_grid_resolution > 127) {
			m_grid_resolution >>= 8;
			m_grid_log2 += 8;
		}
		if (m_grid_resolution > 7) {
			m_grid_resolution >>= 4;
			m_grid_log2 += 4;
		}
		if (m_grid_resolution > 1) {
			m_grid_resolution >>= 2;
			m_grid_log2 += 2;
		}
		if (m_grid_resolution > 0)
			++ m_grid_log2;
		m_grid_resolution = 1 << m_grid_log2;
		assert(m_grid_resolution >= gridres);
		assert(gridres > m_grid_resolution / 2);
    }

    void insert(const ValueType &value) {
        const Vec2crd *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
    }

    void insert(ValueType &&value) {
        const Vec2crd *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
    }

    // Erase a data point equal to value. (ValueType has to declare the operator==).
    // Returns true if the data point equal to value was found and removed.
    bool erase(const ValueType &value) {
        const Point *pt = m_point_accessor(value);
        if (pt != nullptr) {
            // Range of fragment starts around grid_corner, close to pt.
            auto range = m_map.equal_range(Point((*pt)(0)>>m_grid_log2, (*pt)(1)>>m_grid_log2));
            // Remove the first item.
            for (auto it = range.first; it != range.second; ++ it) {
                if (it->second == value) {
                    m_map.erase(it);
                    return true;
                }
            }
        }
        return false;
    }

    // Return a pair of <ValueType*, distance_squared>
    std::pair<const ValueType*, double> find(const Vec2crd &pt) {
        // Iterate over 4 closest grid cells around pt,
        // find the closest start point inside these cells to pt.
        const ValueType *value_min = nullptr;
        double           dist_min = std::numeric_limits<double>::max();
        // Round pt to a closest grid_cell corner.
        Vec2crd            grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2);
        // For four neighbors of grid_corner:
        for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
            for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
                // Range of fragment starts around grid_corner, close to pt.
                auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y));
                // Find the map entry closest to pt.
                for (auto it = range.first; it != range.second; ++it) {
                    const ValueType &value = it->second;
                    const Vec2crd *pt2 = m_point_accessor(value);
                    if (pt2 != nullptr) {
                        const double d2 = (pt - *pt2).cast<double>().squaredNorm();
                        if (d2 < dist_min) {
                            dist_min = d2;
                            value_min = &value;
                        }
                    }
                }
            }
        }
        return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ? 
            std::make_pair(value_min, dist_min) : 
            std::make_pair(nullptr, std::numeric_limits<double>::max());
    }

private:
    typedef typename std::unordered_multimap<Vec2crd, ValueType, PointHash> map_type;
    PointAccessor m_point_accessor;
    map_type m_map;
    coord_t  m_search_radius;
    coord_t  m_grid_resolution;
    coord_t  m_grid_log2;
};

std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);


// /////////////////////////////////////////////////////////////////////////////
// Type safe conversions to and from scaled and unscaled coordinates
// /////////////////////////////////////////////////////////////////////////////

// Semantics are the following:
// Upscaling (scaled()): only from floating point types (or Vec) to either
//                       floating point or integer 'scaled coord' coordinates.
// Downscaling (unscaled()): from arithmetic (or Vec) to floating point only

// Conversion definition from unscaled to floating point scaled
template<class Tout,
         class Tin,
         class = FloatingOnly<Tin>>
inline constexpr FloatingOnly<Tout> scaled(const Tin &v) noexcept
{
    return Tout(v / Tin(SCALING_FACTOR));
}

// Conversion definition from unscaled to integer 'scaled coord'.
// TODO: is the rounding necessary? Here it is commented  out to show that
// it can be different for integers but it does not have to be. Using
// std::round means loosing noexcept and constexpr modifiers
template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
inline constexpr ScaledCoordOnly<Tout> scaled(const Tin &v) noexcept
{
    //return static_cast<Tout>(std::round(v / SCALING_FACTOR));
    return Tout(v / Tin(SCALING_FACTOR));
}

// Conversion for Eigen vectors (N dimensional points)
template<class Tout = coord_t,
         class Tin,
         int N,
         class = FloatingOnly<Tin>,
         int...EigenArgs>
inline Eigen::Matrix<ArithmeticOnly<Tout>, N, EigenArgs...>
scaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v)
{
    return (v / SCALING_FACTOR).template cast<Tout>();
}

// Conversion from arithmetic scaled type to floating point unscaled
template<class Tout = double,
         class Tin,
         class = ArithmeticOnly<Tin>,
         class = FloatingOnly<Tout>>
inline constexpr Tout unscaled(const Tin &v) noexcept
{
    return Tout(v * Tout(SCALING_FACTOR));
}

// Unscaling for Eigen vectors. Input base type can be arithmetic, output base
// type can only be floating point.
template<class Tout = double,
         class Tin,
         int N,
         class = ArithmeticOnly<Tin>,
         class = FloatingOnly<Tout>,
         int...EigenArgs>
inline constexpr Eigen::Matrix<Tout, N, EigenArgs...>
unscaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v) noexcept
{
    return v.template cast<Tout>() * SCALING_FACTOR;
}

} // namespace Slic3r

// start Boost
#include <boost/version.hpp>
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
    template <>
    struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
   
    template <>
    struct point_traits<Slic3r::Point> {
        typedef coord_t coordinate_type;
    
        static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
            return (coordinate_type)point((orient == HORIZONTAL) ? 0 : 1);
        }
    };
    
    template <>
    struct point_mutable_traits<Slic3r::Point> {
        typedef coord_t coordinate_type;
        static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
            point((orient == HORIZONTAL) ? 0 : 1) = value;
        }
        static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
            return Slic3r::Point(x_value, y_value);
        }
    };
} }
// end Boost

// Serialization through the Cereal library
namespace cereal {
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2crd &v) { archive(v.x(), v.y()); }
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3crd &v) { archive(v.x(), v.y(), v.z()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i   &v) { archive(v.x(), v.y()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i   &v) { archive(v.x(), v.y(), v.z()); }
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i64 &v) { archive(v.x(), v.y()); }
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i64 &v) { archive(v.x(), v.y(), v.z()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2f   &v) { archive(v.x(), v.y()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3f   &v) { archive(v.x(), v.y(), v.z()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2d   &v) { archive(v.x(), v.y()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3d   &v) { archive(v.x(), v.y(), v.z()); }

	template<class Archive> void load(Archive& archive, Slic3r::Matrix2f &m) { archive.loadBinary((char*)m.data(), sizeof(float) * 4); }
	template<class Archive> void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); }
}

#endif