Welcome to mirror list, hosted at ThFree Co, Russian Federation.

PrintObjectSlice.cpp « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a135c656959ba666d96aadc0c178e7c8dac69fc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
#include "ElephantFootCompensation.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "MultiMaterialSegmentation.hpp"
#include "Print.hpp"
#include "ClipperUtils.hpp"

#include <boost/log/trivial.hpp>

#include <tbb/parallel_for.h>

//! macro used to mark string used at localization, return same string
#define L(s) Slic3r::I18N::translate(s)

namespace Slic3r {

LayerPtrs new_layers(
    PrintObject                 *print_object,
    // Object layers (pairs of bottom/top Z coordinate), without the raft.
    const std::vector<coordf_t> &object_layers)
{
    LayerPtrs out;
    out.reserve(object_layers.size());
    auto     id   = int(print_object->slicing_parameters().raft_layers());
    coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
    Layer   *prev = nullptr;
    for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
        coordf_t lo = object_layers[i_layer];
        coordf_t hi = object_layers[i_layer + 1];
        coordf_t slice_z = 0.5 * (lo + hi);
        Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
        out.emplace_back(layer);
        if (prev != nullptr) {
            prev->upper_layer = layer;
            layer->lower_layer = prev;
        }
        prev = layer;
    }
    return out;
}

// Slice single triangle mesh.
static std::vector<ExPolygons> slice_volume(
    const ModelVolume             &volume,
    const std::vector<float>      &zs, 
    const MeshSlicingParamsEx     &params,
    const std::function<void()>   &throw_on_cancel_callback)
{
    std::vector<ExPolygons> layers;
    if (! zs.empty()) {
        indexed_triangle_set its = volume.mesh().its;
        if (its.indices.size() > 0) {
            MeshSlicingParamsEx params2 { params };
            params2.trafo = params2.trafo * volume.get_matrix();
            if (params2.trafo.rotation().determinant() < 0.)
                its_flip_triangles(its);
            layers = slice_mesh_ex(its, zs, params2, throw_on_cancel_callback);
            throw_on_cancel_callback();
        }
    }

    return layers;
}

// Slice single triangle mesh.
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
static std::vector<ExPolygons> slice_volume(
    const ModelVolume                           &volume,
    const std::vector<float>                    &z,
    const std::vector<t_layer_height_range>     &ranges,
    const MeshSlicingParamsEx                   &params,
    const std::function<void()>                 &throw_on_cancel_callback)
{
    std::vector<ExPolygons> out;
    if (! z.empty() && ! ranges.empty()) {
        if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
            // All layers fit into a single range.
            out = slice_volume(volume, z, params, throw_on_cancel_callback);
        } else {
            std::vector<float>                     z_filtered;
            std::vector<std::pair<size_t, size_t>> n_filtered;
            z_filtered.reserve(z.size());
            n_filtered.reserve(2 * ranges.size());
            size_t i = 0;
            for (const t_layer_height_range &range : ranges) {
                for (; i < z.size() && z[i] < range.first; ++ i) ;
                size_t first = i;
                for (; i < z.size() && z[i] < range.second; ++ i)
                    z_filtered.emplace_back(z[i]);
                if (i > first)
                    n_filtered.emplace_back(std::make_pair(first, i));
            }
            if (! n_filtered.empty()) {
                std::vector<ExPolygons> layers = slice_volume(volume, z_filtered, params, throw_on_cancel_callback);
                out.assign(z.size(), ExPolygons());
                i = 0;
                for (const std::pair<size_t, size_t> &span : n_filtered)
                    for (size_t j = span.first; j < span.second; ++ j)
                        out[j] = std::move(layers[i ++]);
            }
        }
    }
    return out;
}


struct VolumeSlices
{
    ObjectID                volume_id;
    std::vector<ExPolygons> slices;
};

static inline bool model_volume_needs_slicing(const ModelVolume &mv)
{
    ModelVolumeType type = mv.type();
    return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
}

// Slice printable volumes, negative volumes and modifier volumes, sorted by ModelVolume::id().
// Apply closing radius.
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
// Apply contour simplification.
static std::vector<VolumeSlices> slice_volumes_inner(
    const PrintConfig                                        &print_config,
    const PrintObjectConfig                                  &print_object_config,
    const Transform3d                                        &object_trafo,
    ModelVolumePtrs                                           model_volumes,
    const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
    const std::vector<float>                                 &zs,
    const std::function<void()>                              &throw_on_cancel_callback)
{
    model_volumes_sort_by_id(model_volumes);

    std::vector<VolumeSlices> out;
    out.reserve(model_volumes.size());

    std::vector<t_layer_height_range> slicing_ranges;
    if (layer_ranges.size() > 1)
        slicing_ranges.reserve(layer_ranges.size());

    MeshSlicingParamsEx params_base;
    params_base.closing_radius = print_object_config.slice_closing_radius.value;
    params_base.extra_offset   = 0;
    params_base.trafo          = object_trafo;
    params_base.resolution     = print_config.resolution.value;
    params_base.model_resolution = print_object_config.model_precision.value;

    switch (print_object_config.slicing_mode.value) {
    case SlicingMode::Regular:    params_base.mode = MeshSlicingParams::SlicingMode::Regular; break;
    case SlicingMode::EvenOdd:    params_base.mode = MeshSlicingParams::SlicingMode::EvenOdd; break;
    case SlicingMode::CloseHoles: params_base.mode = MeshSlicingParams::SlicingMode::Positive; break;
    }

    params_base.mode_below     = params_base.mode;

    const size_t num_extruders = print_config.nozzle_diameter.size();
    const bool   is_mm_painted = num_extruders > 1 && std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
    // Apply size compensation and perform clipping of multi-part objects.
    float outter_delta = print_object_config.xy_size_compensation.value;
    float inner_delta = print_object_config.xy_inner_size_compensation.value;
    float hole_delta = inner_delta + (print_object_config.hole_size_compensation.value);
    float min_delta = std::min(outter_delta, std::min(inner_delta, hole_delta));
    const float extra_offset = is_mm_painted ? 0.f : std::max(0.f, min_delta);

    for (const ModelVolume *model_volume : model_volumes)
        if (model_volume_needs_slicing(*model_volume)) {
            MeshSlicingParamsEx params { params_base };
            if (! model_volume->is_negative_volume())
                params.extra_offset = extra_offset;
            if (layer_ranges.size() == 1) {
                if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
                    if (model_volume->is_model_part() && print_config.spiral_vase) {
                        auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(), 
                            [model_volume](const auto &slice){ return model_volume == slice.model_volume; });
                        params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
                        // Slice the bottom layers with SlicingMode::Regular.
                        // This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
                        const PrintRegionConfig &region_config = it->region->config();
                        params.slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
                        for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
                            ++ params.slicing_mode_normal_below_layer);
                    }
                    out.push_back({
                        model_volume->id(), 
                        slice_volume(*model_volume, zs, params, throw_on_cancel_callback)
                    });
                }
            } else {
                assert(! print_config.spiral_vase);
                slicing_ranges.clear();
                for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
                    if (layer_range.has_volume(model_volume->id()))
                        slicing_ranges.emplace_back(layer_range.layer_height_range);
                if (! slicing_ranges.empty())
                    out.push_back({ 
                        model_volume->id(), 
                        slice_volume(*model_volume, zs, slicing_ranges, params, throw_on_cancel_callback)
                    });
            }
            if (! out.empty() && out.back().slices.empty())
                out.pop_back();
        }

    return out;
}

static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &volume_slices, const ObjectID id)
{
    auto it = lower_bound_by_predicate(volume_slices.begin(), volume_slices.end(), [id](const VolumeSlices &vs) { return vs.volume_id < id; });
    assert(it != volume_slices.end() && it->volume_id == id);
    return *it;
}

static inline bool overlap_in_xy(const PrintObjectRegions::BoundingBox &l, const PrintObjectRegions::BoundingBox &r)
{
    return ! (l.max().x() < r.min().x() || l.min().x() > r.max().x() ||
              l.max().y() < r.min().y() || l.min().y() > r.max().y());
}

static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_first(const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges, double z)
{
    auto  it = lower_bound_by_predicate(layer_ranges.begin(), layer_ranges.end(),
        [z](const PrintObjectRegions::LayerRangeRegions &lr) { return lr.layer_height_range.second < z; });
    assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
    if (z == it->layer_height_range.second)
        if (auto it_next = it; ++ it_next != layer_ranges.end() && it_next->layer_height_range.first == z)
            it = it_next;
    assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
    return it;
}

static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_next(
    const std::vector<PrintObjectRegions::LayerRangeRegions>            &layer_ranges, 
    std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator   it,
    double                                                               z)
{
    for (; it->layer_height_range.second <= z; ++ it)
        assert(it != layer_ranges.end());
    assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z < it->layer_height_range.second);
    return it;
}

static std::vector<std::vector<ExPolygons>> slices_to_regions(
    const PrintConfig                                        &print_config,
    const PrintObject                                        &print_object,
    ModelVolumePtrs                                           model_volumes,
    const PrintObjectRegions                                 &print_object_regions,
    const std::vector<float>                                 &zs,
    std::vector<VolumeSlices>                               &&volume_slices,
    // If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
    // It is up to the model designer to handle these overlaps.
    const bool                                                clip_multipart_objects,
    const std::function<void()>                              &throw_on_cancel_callback)
{
    model_volumes_sort_by_id(model_volumes);

    std::vector<std::vector<ExPolygons>> slices_by_region(print_object_regions.all_regions.size(), std::vector<ExPolygons>(zs.size(), ExPolygons()));

    // First shuffle slices into regions if there is no overlap with another region possible, collect zs of the complex cases.
    std::vector<std::pair<size_t, float>> zs_complex;
    {
        size_t z_idx = 0;
        for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
            for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
            if (layer_range.volume_regions.empty()) {
            } else if (layer_range.volume_regions.size() == 1) {
                const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
                assert(model_volume != nullptr);
                if (model_volume->is_model_part()) {
                    VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
                    auto         &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
                    for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
                        slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
                }
            } else {
                zs_complex.reserve(zs.size());
                for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx) {
                    float z                          = zs[z_idx];
                    int   idx_first_printable_region = -1;
                    bool  complex                    = false;
                    for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
                        const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
                        if (region.bbox->min().z() <= z && region.bbox->max().z() >= z) {
                            if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
                                idx_first_printable_region = idx_region;
                            else if (idx_first_printable_region != -1) {
                                // Test for overlap with some other region.
                                for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
                                    const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
                                    if (region2.bbox->min().z() <= z && region2.bbox->max().z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
                                        complex = true;
                                        break;
                                    }
                                }
                            }
                        }
                    }
                    if (complex)
                        zs_complex.push_back({ z_idx, z });
                    else if (idx_first_printable_region >= 0) {
                        const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_first_printable_region];
                        slices_by_region[region.region->print_object_region_id()][z_idx] = std::move(volume_slices_find_by_id(volume_slices, region.model_volume->id()).slices[z_idx]);
                    }
                }
            }
            throw_on_cancel_callback();
        }
    }

    // Second perform region clipping and assignment in parallel.
    if (! zs_complex.empty()) {
        std::vector<std::vector<VolumeSlices*>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
        for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
            std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
            layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
            for (const PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions)
                layer_range_regions_to_slices.push_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()));
        }
        tbb::parallel_for(
            tbb::blocked_range<size_t>(0, zs_complex.size()),
            [&slices_by_region, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
                (const tbb::blocked_range<size_t> &range) {
                float z              = zs_complex[range.begin()].second;
                auto  it_layer_range = layer_range_first(print_object_regions.layer_ranges, z);
                // Per volume_regions slices at this Z height.
                struct RegionSlice { 
                    ExPolygons  expolygons;
                    // Identifier of this region in PrintObjectRegions::all_regions
                    int         region_id;
                    ObjectID    volume_id;
                    bool operator<(const RegionSlice &rhs) const {
                        bool this_empty = this->region_id < 0 || this->expolygons.empty();
                        bool rhs_empty  = rhs.region_id < 0 || rhs.expolygons.empty();
                        // Sort the empty items to the end of the list.
                        // Sort by region_id & volume_id lexicographically.
                        return ! this_empty && (rhs_empty || (this->region_id < rhs.region_id || (this->region_id == rhs.region_id && volume_id < volume_id)));
                    }
                };
                std::vector<RegionSlice> temp_slices;
                for (size_t zs_complex_idx = range.begin(); zs_complex_idx < range.end(); ++ zs_complex_idx) {
                    auto [z_idx, z] = zs_complex[zs_complex_idx];
                    it_layer_range = layer_range_next(print_object_regions.layer_ranges, it_layer_range, z);
                    const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
                    {
                        std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
                        // Per volume_regions slices at thiz Z height.
                        temp_slices.clear();
                        temp_slices.reserve(layer_range.volume_regions.size());
                        for (VolumeSlices* &slices : layer_range_regions_to_slices) {
                            const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
                            temp_slices.push_back({ std::move(slices->slices[z_idx]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
                        }
                    }
                    for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
                        if (! temp_slices[idx_region].expolygons.empty()) {
                            const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
                            if (region.model_volume->is_modifier()) {
                                assert(region.parent > -1);
                                bool next_region_same_modifier = idx_region + 1 < int(temp_slices.size()) && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
                                RegionSlice &parent_slice = temp_slices[region.parent];
                                RegionSlice &this_slice   = temp_slices[idx_region];
                                ExPolygons   source       = std::move(this_slice.expolygons);
                                if (parent_slice.expolygons.empty()) {
                                    this_slice  .expolygons.clear();
                                } else {
                                    this_slice  .expolygons = intersection_ex(parent_slice.expolygons, source);
                                    parent_slice.expolygons = diff_ex        (parent_slice.expolygons, source);
                                }
                                if (next_region_same_modifier)
                                    // To be used in the following iteration.
                                    temp_slices[idx_region + 1].expolygons = std::move(source);
                            } else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
                                // Clip every non-zero region preceding it.
                                for (int idx_region2 = 0; idx_region2 < idx_region; ++ idx_region2)
                                    if (! temp_slices[idx_region2].expolygons.empty()) {
                                        if (const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
                                            ! region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
                                            temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
                                    }
                            }
                        }
                    // Sort by region_id, push empty slices to the end.
                    std::sort(temp_slices.begin(), temp_slices.end());
                    // Remove the empty slices.
                    temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.region_id == -1 || slice.expolygons.empty(); }), temp_slices.end());
                    // Merge slices and store them to the output.
                    for (int i = 0; i < int(temp_slices.size());) {
                        // Find a range of temp_slices with the same region_id.
                        int j = i;
                        bool merged = false;
                        ExPolygons &expolygons = temp_slices[i].expolygons;
                        for (++ j; j < int(temp_slices.size()) && temp_slices[i].region_id == temp_slices[j].region_id; ++ j)
                            if (ExPolygons &expolygons2 = temp_slices[j].expolygons; ! expolygons2.empty()) {
                                if (expolygons.empty()) {
                                    expolygons = std::move(expolygons2);
                                } else {
                                    append(expolygons, std::move(expolygons2));
                                    merged = true;
                                }
                            }
                        // Don't unite the regions if ! clip_multipart_objects. In that case it is user's responsibility
                        // to handle region overlaps. Indeed, one may intentionally let the regions overlap to produce crossing perimeters 
                        // for example.
                        if (merged && clip_multipart_objects)
                            expolygons = closing_ex(expolygons, float(scale_(EPSILON)));
                        slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
                        i = j;
                    }
                    throw_on_cancel_callback();
                }
            });
    }

    // filament shrink
    for (const std::unique_ptr<PrintRegion>& pr : print_object_regions.all_regions) {
        if (pr.get()) {
            std::vector<ExPolygons>& region_polys = slices_by_region[pr->print_object_region_id()];
            const size_t extruder_id = pr->extruder(FlowRole::frPerimeter, print_object) - 1;
            double scale = print_config.filament_shrink.get_abs_value(extruder_id, 1);
            if (scale != 1) {
                scale = 1 / scale;
                for (ExPolygons& polys : region_polys)
                    for (ExPolygon& poly : polys)
                        poly.scale(scale);
            }
        }
    }

    return slices_by_region;
}

std::string fix_slicing_errors(LayerPtrs &layers, const std::function<void()> &throw_if_canceled)
{
    // Collect layers with slicing errors.
    // These layers will be fixed in parallel.
    std::vector<size_t> buggy_layers;
    buggy_layers.reserve(layers.size());
    for (size_t idx_layer = 0; idx_layer < layers.size(); ++ idx_layer)
        if (layers[idx_layer]->slicing_errors)
            buggy_layers.push_back(idx_layer);

    BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, buggy_layers.size()),
        [&layers, &throw_if_canceled, &buggy_layers](const tbb::blocked_range<size_t>& range) {
            for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
                throw_if_canceled();
                size_t idx_layer = buggy_layers[buggy_layer_idx];
                Layer *layer     = layers[idx_layer];
                assert(layer->slicing_errors);
                // Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
                // BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
                for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
                    LayerRegion *layerm = layer->get_region(region_id);
                    // Find the first valid layer below / above the current layer.
                    const Surfaces *upper_surfaces = nullptr;
                    const Surfaces *lower_surfaces = nullptr;
                    for (size_t j = idx_layer + 1; j < layers.size(); ++ j)
                        if (! layers[j]->slicing_errors) {
                            upper_surfaces = &layers[j]->regions()[region_id]->slices().surfaces;
                            break;
                        }
                    for (int j = int(idx_layer) - 1; j >= 0; -- j)
                        if (! layers[j]->slicing_errors) {
                            lower_surfaces = &layers[j]->regions()[region_id]->slices().surfaces;
                            break;
                        }
                    // Collect outer contours and holes from the valid layers above & below.
                    Polygons outer;
                    outer.reserve(
                        ((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) + 
                        ((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
                    size_t num_holes = 0;
                    if (upper_surfaces)
                        for (const auto &surface : *upper_surfaces) {
                            outer.push_back(surface.expolygon.contour);
                            num_holes += surface.expolygon.holes.size();
                        }
                    if (lower_surfaces)
                        for (const auto &surface : *lower_surfaces) {
                            outer.push_back(surface.expolygon.contour);
                            num_holes += surface.expolygon.holes.size();
                        }
                    Polygons holes;
                    holes.reserve(num_holes);
                    if (upper_surfaces)
                        for (const auto &surface : *upper_surfaces)
                            polygons_append(holes, surface.expolygon.holes);
                    if (lower_surfaces)
                        for (const auto &surface : *lower_surfaces)
                            polygons_append(holes, surface.expolygon.holes);
                    layerm->m_slices.set(diff_ex(union_(outer), holes), stPosInternal | stDensSparse);
                }
                // Update layer slices after repairing the single regions.
                layer->make_slices();
            }
        });
    throw_if_canceled();
    BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";

    // remove empty layers from bottom
    while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
        delete layers.front();
        layers.erase(layers.begin());
        layers.front()->lower_layer = nullptr;
        for (size_t i = 0; i < layers.size(); ++ i)
            layers[i]->set_id(layers[i]->id() - 1);
    }

    return buggy_layers.empty() ? "" :
        "The model has overlapping or self-intersecting facets. I tried to repair it, "
        "however you might want to check the results or repair the input file and retry.\n";
}

// Called by make_perimeters()
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
void PrintObject::slice()
{
    if (! this->set_started(posSlice))
        return;
    m_print->set_status(0, L("Processing triangulated mesh"));
    std::vector<coordf_t> layer_height_profile;
    this->update_layer_height_profile(*this->model_object(), *m_slicing_params, layer_height_profile);
    m_print->throw_if_canceled();
    m_typed_slices = false;
    this->clear_layers();
    m_layers = new_layers(this, generate_object_layers(*m_slicing_params, layer_height_profile));
    this->slice_volumes();
    m_print->throw_if_canceled();
    // Fix the model.
    //FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
    std::string warning = fix_slicing_errors(m_layers, [this](){ m_print->throw_if_canceled(); });
    m_print->throw_if_canceled();
    if (! warning.empty())
        BOOST_LOG_TRIVIAL(info) << warning;

    //create polyholes
    this->_transform_hole_to_polyholes();

    // Update bounding boxes, back up raw slices of complex models.
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, m_layers.size()),
        [this](const tbb::blocked_range<size_t>& range) {
            for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
                m_print->throw_if_canceled();
                Layer &layer = *m_layers[layer_idx];
                layer.lslices_bboxes.clear();
                layer.lslices_bboxes.reserve(layer.lslices.size());
                for (const ExPolygon &expoly : layer.lslices)
                	layer.lslices_bboxes.emplace_back(get_extents(expoly));
                layer.backup_untyped_slices();
            }
        });
    if (m_layers.empty())
        throw Slic3r::SlicingError("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");    
    this->set_done(posSlice);
}

template<typename ThrowOnCancel>
static inline void apply_mm_segmentation(PrintObject &print_object, ThrowOnCancel throw_on_cancel)
{
    // Returns MMU segmentation based on painting in MMU segmentation gizmo
    std::vector<std::vector<ExPolygons>> segmentation = multi_material_segmentation_by_painting(print_object, throw_on_cancel);
    assert(segmentation.size() == print_object.layer_count());
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, segmentation.size(), std::max(segmentation.size() / 128, size_t(1))),
        [&print_object, &segmentation, throw_on_cancel](const tbb::blocked_range<size_t> &range) {
            const auto  &layer_ranges   = print_object.shared_regions()->layer_ranges;
            double       z              = print_object.get_layer(range.begin())->slice_z;
            auto         it_layer_range = layer_range_first(layer_ranges, z);
            const size_t num_extruders = print_object.print()->config().nozzle_diameter.size();
            struct ByExtruder {
                ExPolygons  expolygons;
                BoundingBox bbox;
            };
            std::vector<ByExtruder> by_extruder;
            struct ByRegion {
                ExPolygons  expolygons;
                bool        needs_merge { false };
            };
            std::vector<ByRegion> by_region;
            for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
                throw_on_cancel();
                Layer *layer = print_object.get_layer(layer_id);
                it_layer_range = layer_range_next(layer_ranges, it_layer_range, layer->slice_z);
                const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
                // Gather per extruder expolygons.
                by_extruder.assign(num_extruders, ByExtruder());
                by_region.assign(layer->region_count(), ByRegion());
                bool layer_split = false;
                for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id) {
                    ByExtruder &region = by_extruder[extruder_id];
                    append(region.expolygons, std::move(segmentation[layer_id][extruder_id]));
                    if (! region.expolygons.empty()) {
                        region.bbox = get_extents(region.expolygons);
                        layer_split = true;
                    }
                }
                if (! layer_split)
                    continue;
                // Split LayerRegions by by_extruder regions.
                // layer_range.painted_regions are sorted by extruder ID and parent PrintObject region ID.
                auto it_painted_region = layer_range.painted_regions.begin();
                for (int region_id = 0; region_id < int(layer->region_count()); ++ region_id)
                    if (LayerRegion &layerm = *layer->get_region(region_id); ! layerm.slices().surfaces.empty()) {
                        assert(layerm.region().print_object_region_id() == region_id);
                        const BoundingBox bbox = get_extents(layerm.slices().surfaces);
                        assert(it_painted_region < layer_range.painted_regions.end());
                        // Find the first it_painted_region which overrides this region.
                        for (; layer_range.volume_regions[it_painted_region->parent].region->print_object_region_id() < region_id; ++ it_painted_region)
                            assert(it_painted_region != layer_range.painted_regions.end());
                        assert(it_painted_region != layer_range.painted_regions.end());
                        assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region());
                        // 1-based extruder ID
                        bool   self_trimmed = false;
                        int    self_extruder_id = -1;
                        for (int extruder_id = 1; extruder_id <= int(by_extruder.size()); ++ extruder_id)
                            if (ByExtruder &segmented = by_extruder[extruder_id - 1]; segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
                                // Find the target region.
                                for (; int(it_painted_region->extruder_id) < extruder_id; ++ it_painted_region)
                                    assert(it_painted_region != layer_range.painted_regions.end());
                                assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region() && int(it_painted_region->extruder_id) == extruder_id);
                                //FIXME Don't trim by self, it is not reliable.
                                if (&layerm.region() == it_painted_region->region) {
                                    self_extruder_id = extruder_id;
                                    continue;
                                }
                                // Steal from this region.
                                int         target_region_id = it_painted_region->region->print_object_region_id();
                                ExPolygons  stolen           = intersection_ex(layerm.slices().surfaces, segmented.expolygons);
                                if (! stolen.empty()) {
                                    ByRegion &dst = by_region[target_region_id];
                                    if (dst.expolygons.empty()) {
                                        dst.expolygons = std::move(stolen);
                                    } else {
                                        append(dst.expolygons, std::move(stolen));
                                        dst.needs_merge = true;
                                    }
                                }
#if 0
                                if (&layerm.region() == it_painted_region->region)
                                    // Slices of this LayerRegion were trimmed by a MMU region of the same PrintRegion.
                                    self_trimmed = true;
#endif
                            }
                        if (! self_trimmed) {
                            // Trim slices of this LayerRegion with all the MMU regions.
                            Polygons mine = to_polygons(layerm.slices().surfaces);
                            for (auto &segmented : by_extruder)
                                if (&segmented - by_extruder.data() + 1 != self_extruder_id && segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
                                    mine = diff(mine, segmented.expolygons);
                                    if (mine.empty())
                                        break;
                                }
                            // Filter out unprintable polygons produced by subtraction multi-material painted regions from layerm.region().
                            // ExPolygon returned from multi-material segmentation does not precisely match ExPolygons in layerm.region()
                            // (because of preprocessing of the input regions in multi-material segmentation). Therefore, subtraction from
                            // layerm.region() could produce a huge number of small unprintable regions for the model's base extruder.
                            // This could, on some models, produce bulges with the model's base color (#7109).
                            if (! mine.empty())
                                mine = opening(union_ex(mine), float(scale_(5 * EPSILON)), float(scale_(5 * EPSILON)));
                            if (! mine.empty()) {
                                ByRegion &dst = by_region[layerm.region().print_object_region_id()];
                                if (dst.expolygons.empty()) {
                                    dst.expolygons = union_ex(mine);
                                } else {
                                    append(dst.expolygons, union_ex(mine));
                                    dst.needs_merge = true;
                                }
                            }
                        }
                    }
                // Re-create Surfaces of LayerRegions.
                for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
                    ByRegion &src = by_region[region_id];
                    if (src.needs_merge)
                        // Multiple regions were merged into one.
                        src.expolygons = closing_ex(src.expolygons, float(scale_(10 * EPSILON)));
                    layer->get_region(region_id)->m_slices.set(std::move(src.expolygons), stPosInternal | stDensSparse);
                }
            }
        });
}



ExPolygons PrintObject::_shrink_contour_holes(double contour_delta, double not_convex_delta, double convex_delta, const ExPolygons& polys) const {
    ExPolygons new_ex_polys;
    double max_hole_area = scale_d(scale_d(m_config.hole_size_threshold.value));
    for (const ExPolygon& ex_poly : polys) {
        Polygons contours;
        ExPolygons holes;
        for (const Polygon& hole : ex_poly.holes) {
            //check if convex to reduce it
            // check whether first point forms a convex angle
            //note: we allow a deviation of 5.7° (0.01rad = 0.57°)
            bool ok = true;
            ok = (hole.points.front().ccw_angle(hole.points.back(), *(hole.points.begin() + 1)) <= PI + 0.1);
            // check whether points 1..(n-1) form convex angles
            if (ok)
                for (Points::const_iterator p = hole.points.begin() + 1; p != hole.points.end() - 1; ++p) {
                    ok = (p->ccw_angle(*(p - 1), *(p + 1)) <= PI + 0.1);
                    if (!ok) break;
                }

            // check whether last point forms a convex angle
            ok &= (hole.points.back().ccw_angle(*(hole.points.end() - 2), hole.points.front()) <= PI + 0.1);

            if (ok && not_convex_delta != convex_delta) {
                if (convex_delta != 0) {
                    //apply hole threshold cutoff
                    double convex_delta_adapted = convex_delta;
                    double area = -hole.area();
                    if (area > max_hole_area * 4 && max_hole_area > 0) {
                        convex_delta_adapted = not_convex_delta;
                    } else if (area > max_hole_area && max_hole_area > 0) {
                        // not a hard threshold, to avoid artefacts on slopped holes.
                        double percent = (max_hole_area * 4 - area) / (max_hole_area * 3);
                        convex_delta_adapted = convex_delta * percent + (1 - percent) * not_convex_delta;
                    }
                    if (convex_delta_adapted != 0) {
                        Polygon hole_as_contour = hole;
                        hole_as_contour.make_counter_clockwise();
                        for (ExPolygon& newHole : offset_ex(ExPolygon{ hole_as_contour }, convex_delta_adapted)) {
                            holes.push_back(std::move(newHole));
                        }
                    } else {
                        holes.push_back(ExPolygon{ hole });
                        holes.back().contour.make_counter_clockwise();
                    }
                } else {
                    holes.push_back(ExPolygon{ hole });
                    holes.back().contour.make_counter_clockwise();
                }
            } else {
                if (not_convex_delta != 0) {
                    Polygon hole_as_contour = hole;
                    hole_as_contour.make_counter_clockwise();
                    for (ExPolygon& newHole : offset_ex(ExPolygon{ hole_as_contour }, not_convex_delta)) {
                        holes.push_back(std::move(newHole));
                    }
                } else {
                    holes.push_back(ExPolygon{ hole });
                    holes.back().contour.make_counter_clockwise();
                }
            }
        }
        //modify contour
        if (contour_delta != 0) {
            Polygons new_contours = offset(ex_poly.contour, contour_delta);
            if (new_contours.size() == 0)
                continue;
            contours.insert(contours.end(), std::make_move_iterator(new_contours.begin()), std::make_move_iterator(new_contours.end()));
        } else {
            contours.push_back(ex_poly.contour);
        }
        ExPolygons temp = diff_ex(union_ex(contours), union_ex(holes));
        new_ex_polys.insert(new_ex_polys.end(), std::make_move_iterator(temp.begin()), std::make_move_iterator(temp.end()));
    }
    return union_ex(new_ex_polys);
}

/// max angle: you ahve to be lwer than that to divide it. PI => all accepted
/// min angle: don't smooth sharp angles! 0  => all accepted
/// cutoff_dist: maximum dist between two point to add new points
/// max dist : maximum distance between two pointsd, where we add new points
Polygon _smooth_curve(Polygon& p, double max_angle, double min_angle_convex, double min_angle_concave, coord_t cutoff_dist, coord_t max_dist) {
    if (p.size() < 4) return p;
    Polygon pout;
    //duplicate points to simplify the loop
    p.points.insert(p.points.end(), p.points.begin(), p.points.begin() + 3);
    for (size_t idx = 1; idx < p.size() - 2; idx++) {
        //put first point
        pout.points.push_back(p[idx]);
        //get angles
        double angle1 = p[idx].ccw_angle(p.points[idx - 1], p.points[idx + 1]);
        bool angle1_concave = true;
        if (angle1 > PI) {
            angle1 = 2 * PI - angle1;
            angle1_concave = false;
        }
        double angle2 = p[idx + 1].ccw_angle(p.points[idx], p.points[idx + 2]);
        bool angle2_concave = true;
        if (angle2 > PI) {
            angle2 = 2 * PI - angle2;
            angle2_concave = false;
        }
        //filters
        bool angle1_ok = angle1_concave ? angle1 >= min_angle_concave : angle1 >= min_angle_convex;
        bool angle2_ok = angle2_concave ? angle2 >= min_angle_concave : angle2 >= min_angle_convex;
        if (!angle1_ok && !angle2_ok) continue;
        if (angle1 > max_angle && angle2 > max_angle) continue;
        if (cutoff_dist > 0 && p.points[idx].distance_to(p.points[idx + 1]) > cutoff_dist) continue;
        // add points, but how many?
        coordf_t dist = p[idx].distance_to(p[idx + 1]);
        int nb_add = dist / max_dist;
        if (max_angle < PI) {
            int nb_add_per_angle = std::max((PI - angle1) / (PI - max_angle), (PI - angle2) / (PI - max_angle));
            nb_add = std::min(nb_add, nb_add_per_angle);
        }
        if (nb_add == 0) continue;

        //cr�ation des points de controles
        Vec2d vec_ab = (p[idx] - p[idx - 1]).cast<double>();
        Vec2d vec_bc = (p[idx + 1] - p[idx]).cast<double>();
        Vec2d vec_cb = (p[idx] - p[idx + 1]).cast<double>();
        Vec2d vec_dc = (p[idx + 1] - p[idx + 2]).cast<double>();
        vec_ab.normalize();
        vec_bc.normalize();
        vec_cb.normalize();
        vec_dc.normalize();
        Vec2d vec_b_tang = vec_ab + vec_bc;
        vec_b_tang.normalize();
        //should be 0.55 / 1.414 = ~0.39 to create a true circle from a square (90°)
        // it's ~0.36 for exagon (120°)
        // it's ~0.34 for octogon (135°)
        vec_b_tang *= dist * (0.31 + 0.12 * (1 - (angle1 / PI)));
        Vec2d vec_c_tang = vec_dc + vec_cb;
        vec_c_tang.normalize();
        vec_c_tang *= dist * (0.31 + 0.12 * (1 - (angle2 / PI)));
        Point bp = p[idx] + ((!angle1_ok) ? vec_bc.cast<coord_t>() : vec_b_tang.cast<coord_t>());
        Point cp = p[idx + 1] + ((!angle2_ok) ? vec_cb.cast<coord_t>() : vec_c_tang.cast<coord_t>());
        for (int idx_np = 0; idx_np < nb_add; idx_np++) {
            const float percent_np = (idx_np + 1) / (float)(nb_add + 1);
            const float inv_percent_np = 1 - percent_np;
            pout.points.emplace_back();
            Point& new_p = pout.points.back();
            const float coeff0 = inv_percent_np * inv_percent_np * inv_percent_np;
            const float coeff1 = percent_np * inv_percent_np * inv_percent_np;
            const float coeff2 = percent_np * percent_np * inv_percent_np;
            const float coeff3 = percent_np * percent_np * percent_np;
            new_p.x() = (p[idx].x() * coeff0)
                + (3 * bp.x() * coeff1)
                + (3 * cp.x() * coeff2)
                + (p[idx + 1].x() * coeff3);
            new_p.y() = (p[idx].y() * coeff0)
                + (3 * bp.y() * coeff1)
                + (3 * cp.y() * coeff2)
                + (p[idx + 1].y() * coeff3);
        }

    }
    return pout;
}

ExPolygons PrintObject::_smooth_curves(const ExPolygons& input, const PrintRegionConfig& conf) const {
    ExPolygons new_polys;
    for (const ExPolygon& ex_poly : input) {
        ExPolygon new_ex_poly(ex_poly);
        new_ex_poly.contour.remove_collinear(SCALED_EPSILON * 10);
        new_ex_poly.contour = _smooth_curve(new_ex_poly.contour, PI,
            conf.curve_smoothing_angle_convex.value * PI / 180.0,
            conf.curve_smoothing_angle_concave.value * PI / 180.0,
            scale_(conf.curve_smoothing_cutoff_dist.value),
            scale_(conf.curve_smoothing_precision.value));
        for (Polygon& phole : new_ex_poly.holes) {
            phole.reverse(); // make_counter_clockwise();
            phole.remove_collinear(SCALED_EPSILON * 10);
            phole = _smooth_curve(phole, PI,
                conf.curve_smoothing_angle_convex.value * PI / 180.0,
                conf.curve_smoothing_angle_concave.value * PI / 180.0,
                scale_(conf.curve_smoothing_cutoff_dist.value),
                scale_(conf.curve_smoothing_precision.value));
            phole.reverse(); // make_clockwise();
        }
        new_polys.push_back(new_ex_poly);
    }
    return new_polys;
}

// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::slice_volumes()
{
    BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
    const Print *print                      = this->print();
    const auto   throw_on_cancel_callback   = std::function<void()>([print](){ print->throw_if_canceled(); });

    // Clear old LayerRegions, allocate for new PrintRegions.
    for (Layer* layer : m_layers) {
        layer->m_regions.clear();
        layer->m_regions.reserve(m_shared_regions->all_regions.size());
        for (const std::unique_ptr<PrintRegion> &pr : m_shared_regions->all_regions)
            layer->m_regions.emplace_back(new LayerRegion(layer, pr.get()));
    }

    std::vector<float>                   slice_zs      = zs_from_layers(m_layers);
    std::vector<VolumeSlices> volume_slices = slice_volumes_inner(
        print->config(),
        this->config(),
        this->trafo_centered(),
        this->model_object()->volumes,
        m_shared_regions->layer_ranges,
        slice_zs,
        throw_on_cancel_callback);

    std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(
        print->config(),
        *this,
        this->model_object()->volumes, 
        *m_shared_regions, 
        slice_zs,
        std::move(volume_slices),
        m_config.clip_multipart_objects,
        throw_on_cancel_callback);



    for (size_t region_id = 0; region_id < region_slices.size(); ++ region_id) {
        std::vector<ExPolygons> &by_layer = region_slices[region_id];
        for (size_t layer_id = 0; layer_id < by_layer.size(); ++ layer_id)
            m_layers[layer_id]->regions()[region_id]->m_slices.append(std::move(by_layer[layer_id]), stPosInternal | stDensSparse);
    }
    region_slices.clear();
    
    BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
    while (! m_layers.empty()) {
        const Layer *layer = m_layers.back();
        if (! layer->empty())
            break;
        delete layer;
        m_layers.pop_back();
    }
    if (! m_layers.empty())
        m_layers.back()->upper_layer = nullptr;
    m_print->throw_if_canceled();

    // Is any ModelVolume MMU painted?
    if (const auto& volumes = this->model_object()->volumes;
        m_print->config().nozzle_diameter.size() > 1 &&
        std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume* v) { return !v->mmu_segmentation_facets.empty(); }) != volumes.end()) {

        // If XY Size compensation is also enabled, notify the user that XY Size compensation
        // would not be used because the object is multi-material painted.
        if (m_config.xy_size_compensation.value != 0.f || m_config.xy_inner_size_compensation.value != 0.f || m_config.hole_size_compensation.value != 0.f) {
            this->active_step_add_warning(
                PrintStateBase::WarningLevel::CRITICAL,
                L("An object has enabled XY Size compensation which will not be used because it is also multi-material painted.\nXY Size "
                  "compensation cannot be combined with multi-material painting.") +
                    "\n" + (L("Object name")) + ": " + this->model_object()->name);
        }

        BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - MMU segmentation";
        apply_mm_segmentation(*this, [print]() { print->throw_if_canceled(); });
    }


    BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
    {
        // Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.
        ////const size_t num_extruders = print->config().nozzle_diameter.size();
        ////const auto   xy_compensation_scaled            = (num_extruders > 1 && this->is_mm_painted()) ? scaled<float>(0.f) : scaled<float>(std::min(m_config.xy_size_compensation.value, 0.));
        ////const float  elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
        ////	// Only enable Elephant foot compensation if printing directly on the print bed.
        ////    float(scale_(m_config.elefant_foot_compensation.value)) :
        ////	0.f;
        // Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
	    //ExPolygons  lslices_1st_layer;
	    tbb::parallel_for(
	        tbb::blocked_range<size_t>(0, m_layers.size()),
			[this](const tbb::blocked_range<size_t>& range) {
	            for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
	                m_print->throw_if_canceled();
	                Layer *layer = m_layers[layer_id];
	                // Apply size compensation and perform clipping of multi-part objects.
                    float outter_delta = float(scale_(m_config.xy_size_compensation.value));
                    float inner_delta = float(scale_(m_config.xy_inner_size_compensation.value));
                    float hole_delta = inner_delta + float(scale_(m_config.hole_size_compensation.value));
                    //FIXME only apply the compensation if no raft is enabled.
                    float first_layer_compensation = 0.f;
                    int first_layers = m_config.first_layer_size_compensation_layers.value;
                    if (layer_id < first_layers && m_config.raft_layers == 0 && m_config.first_layer_size_compensation.value != 0) {
                        // Only enable Elephant foot compensation if printing directly on the print bed.
                        first_layer_compensation = float(scale_(m_config.first_layer_size_compensation.value));
                        // reduce first_layer_compensation for every layer over the first one.
                        first_layer_compensation = (first_layers - layer_id) * first_layer_compensation / float(first_layers);
                        // simplify compensations if possible
                        if (first_layer_compensation > 0) {
                            outter_delta += first_layer_compensation;
                            inner_delta += first_layer_compensation;
                            hole_delta += first_layer_compensation;
                            first_layer_compensation = 0;
                        } else {
                            float min_delta = std::min(outter_delta, std::min(inner_delta, hole_delta));
                            if (min_delta > 0) {
                                if (-first_layer_compensation < min_delta) {
                                    outter_delta += first_layer_compensation;
                                    inner_delta += first_layer_compensation;
                                    hole_delta += first_layer_compensation;
                                    first_layer_compensation = 0;
                                } else {
                                    first_layer_compensation += min_delta;
                                    outter_delta -= min_delta;
                                    inner_delta -= min_delta;
                                    hole_delta -= min_delta;
                                }
                            }
                        }
                    }
                    
                    //remove the upscaling done by the slicing
                    const float aleady_done_delta = is_mm_painted() ? 0.f : std::max(0.f, std::min(outter_delta, std::min(inner_delta, hole_delta)));
                    outter_delta -= aleady_done_delta;
                    inner_delta -= aleady_done_delta;
                    hole_delta -= aleady_done_delta;
                    //TODO: test it's done for multi-region and not

	                if (layer->regions().size() == 1) {
	                    // Optimized version for a single region layer.
	                    // Single region, growing or shrinking.
                        LayerRegion* layerm = layer->regions().front();
                        ExPolygons expolygons = to_expolygons(std::move(layerm->m_slices.surfaces));
                        // Apply all three main XY compensation.
                        if (hole_delta > 0 || inner_delta > 0 || outter_delta > 0) {
                            expolygons = _shrink_contour_holes(std::max(0.f, outter_delta), std::max(0.f, inner_delta), std::max(0.f, hole_delta), expolygons);
                        }
                        // Apply the elephant foot compensation.
                        if (layer_id < first_layers && first_layer_compensation != 0.f) {
                            expolygons = union_ex(Slic3r::elephant_foot_compensation(expolygons, layerm->flow(frExternalPerimeter),
                                unscale<double>(-first_layer_compensation)));
                        }
                        // Apply all three main negative XY compensation.
                        if (hole_delta < 0 || inner_delta < 0 || outter_delta < 0) {
                            expolygons = _shrink_contour_holes(std::min(0.f, outter_delta), std::min(0.f, inner_delta), std::min(0.f, hole_delta), expolygons);
                        }
                        if (layer->regions().front()->region().config().curve_smoothing_precision > 0.f) {
                            //smoothing
                            expolygons = _smooth_curves(expolygons, layer->regions().front()->region().config());
                        }
                        layerm->m_slices.set(std::move(expolygons), stPosInternal | stDensSparse);
                    } else {

                        float max_growth = std::max(hole_delta, std::max(inner_delta, outter_delta));
                        float min_growth = std::min(hole_delta, std::min(inner_delta, outter_delta));
                        bool clip = m_config.clip_multipart_objects.value;
                        ExPolygons merged_poly_for_holes_growing;
                        if (max_growth > 0) {
                            //merge polygons because region can cut "holes".
                            //then, cut them to give them again later to their region
                            merged_poly_for_holes_growing = layer->merged(float(SCALED_EPSILON));
                            merged_poly_for_holes_growing = _shrink_contour_holes(std::max(0.f, outter_delta), std::max(0.f, inner_delta), std::max(0.f, hole_delta), union_ex(merged_poly_for_holes_growing));
                        }
                        bool has_curve_smoothing = false;
                        for (size_t region_id = 0; region_id < layer->regions().size() && !has_curve_smoothing; ++region_id) {
                            LayerRegion* layerm = layer->regions()[region_id];
                            has_curve_smoothing = layerm->region().config().curve_smoothing_precision > 0.f;
                        }
                        //note: ps has removed that step...
                        if (clip || max_growth > 0 || has_curve_smoothing) {
                            // Multiple regions, growing or just clipping one region by the other.
                            // When clipping the regions, priority is given to the first regions.
                            Polygons processed;
                            for (size_t region_id = 0; region_id < layer->regions().size(); ++region_id) {
                                LayerRegion* layerm = layer->regions()[region_id];
                                ExPolygons slices = to_expolygons(std::move(layerm->slices().surfaces));
                                if (max_growth > 0.f) {
                                    slices = intersection_ex(offset_ex(slices, max_growth), merged_poly_for_holes_growing);
                                }
                                // Apply the first_layer_compensation if >0.
                                if (layer_id == 0 && first_layer_compensation > 0)
                                    slices = offset_ex(std::move(slices), std::max(first_layer_compensation, 0.f));
                                //smoothing
                                if (layerm->region().config().curve_smoothing_precision > 0.f)
                                    slices = _smooth_curves(slices, layerm->region().config());
                                // Trim by the slices of already processed regions.
                                if (region_id > 0 && clip)
                                    slices = diff_ex(to_polygons(std::move(slices)), processed);
                                if (clip && (region_id + 1 < layer->regions().size()))
                                    // Collect the already processed regions to trim the to be processed regions.
                                    polygons_append(processed, slices);
                                layerm->m_slices.set(std::move(slices), stPosInternal | stDensSparse);
                            }
                        }
                        if (min_growth < 0.f || first_layer_compensation != 0.f) {
                            // Apply the negative XY compensation. (the ones that is <0)
                            ExPolygons trimming;
                            static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
                            if (layer_id < first_layers && first_layer_compensation < 0.f) {
                                ExPolygons expolygons_first_layer = offset_ex(layer->merged(eps), -eps);
                                trimming = Slic3r::elephant_foot_compensation(expolygons_first_layer,
                                    layer->regions().front()->flow(frExternalPerimeter), unscale<double>(-first_layer_compensation));
                            } else {
                                trimming = layer->merged(float(SCALED_EPSILON));
                            }
                            if (min_growth < 0)
                                trimming = _shrink_contour_holes(std::min(0.f, outter_delta), std::min(0.f, inner_delta), std::min(0.f, hole_delta), trimming);
                            //trim surfaces
                            for (size_t region_id = 0; region_id < layer->regions().size(); ++region_id) {
                                layer->regions()[region_id]->trim_surfaces(to_polygons(trimming));
                            }
                        }
                    }
	                // Merge all regions' slices to get islands, chain them by a shortest path.
	                layer->make_slices();
                    //FIXME: can't make it work in multi-region object, it seems useful to avoid bridge on top of first layer compensation
                    //so it's disable, if you want an offset, use the offset field.
                    //if (layer->regions().size() == 1 && ! m_layers.empty() && layer_id == 0 && first_layer_compensation < 0 && m_config.raft_layers == 0) {
                    //    // The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
                    //    // Store the uncompensated value there.
                    //    assert(! m_layers.empty());
                    //    assert(m_layers.front()->id() == 0);
                    //    m_layers.front()->lslices = offset_ex(std::move(m_layers.front()->lslices), -first_layer_compensation);
                    //}
	            }
	        });
	}

    m_print->throw_if_canceled();
    BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - end";
}

std::vector<Polygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
{
    auto it_volume     = this->model_object()->volumes.begin();
    auto it_volume_end = this->model_object()->volumes.end();
    for (; it_volume != it_volume_end && (*it_volume)->type() != model_volume_type; ++ it_volume) ;
    std::vector<Polygons> slices;
    if (it_volume != it_volume_end) {
        // Found at least a single support volume of model_volume_type.
        std::vector<float> zs = zs_from_layers(this->layers());
        std::vector<char>  merge_layers;
        bool               merge = false;
        const Print       *print = this->print();
        auto               throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
        MeshSlicingParamsEx params;
        params.trafo = this->trafo_centered();
        for (; it_volume != it_volume_end; ++ it_volume)
            if ((*it_volume)->type() == model_volume_type) {
                std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, params, throw_on_cancel_callback);
                if (slices.empty()) {
                    slices.reserve(slices2.size());
                    for (ExPolygons &src : slices2)
                        slices.emplace_back(to_polygons(std::move(src)));
                } else if (!slices2.empty()) {
                    if (merge_layers.empty())
                        merge_layers.assign(zs.size(), false);
                    for (size_t i = 0; i < zs.size(); ++ i) {
                        if (slices[i].empty())
                            slices[i] = to_polygons(std::move(slices2[i]));
                        else if (! slices2[i].empty()) {
                            append(slices[i], to_polygons(std::move(slices2[i])));
                            merge_layers[i] = true;
                            merge = true;
                        }
                    }
                }
            }
        if (merge) {
            std::vector<Polygons*> to_merge;
            to_merge.reserve(zs.size());
            for (size_t i = 0; i < zs.size(); ++ i)
                if (merge_layers[i])
                    to_merge.emplace_back(&slices[i]);
            tbb::parallel_for(
                tbb::blocked_range<size_t>(0, to_merge.size()),
                [&to_merge](const tbb::blocked_range<size_t> &range) {
                    for (size_t i = range.begin(); i < range.end(); ++ i)
                        *to_merge[i] = union_(*to_merge[i]);
            });
        }
    }
    return slices;
}

} // namespace Slic3r