Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Hollowing.cpp « SLA « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6df752fd366121e0bc730f31c05ab6e6409a724f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#include <functional>

#include <libslic3r/OpenVDBUtils.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
#include <libslic3r/SLA/IndexedMesh.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/SimplifyMesh.hpp>
#include <libslic3r/SLA/SupportTreeMesher.hpp>

#include <boost/log/trivial.hpp>

#include <libslic3r/MTUtils.hpp>
#include <libslic3r/I18N.hpp>

//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)

namespace Slic3r {
namespace sla {

template<class S, class = FloatingOnly<S>>
inline void _scale(S s, TriangleMesh &m) { m.scale(float(s)); }

template<class S, class = FloatingOnly<S>>
inline void _scale(S s, Contour3D &m) { for (auto &p : m.points) p *= s; }

static TriangleMesh _generate_interior(const TriangleMesh  &mesh,
                                       const JobController &ctl,
                                       double               min_thickness,
                                       double               voxel_scale,
                                       double               closing_dist)
{
    TriangleMesh imesh{mesh};
    
    _scale(voxel_scale, imesh);
    
    double offset = voxel_scale * min_thickness;
    double D = voxel_scale * closing_dist;
    float  out_range = 0.1f * float(offset);
    float  in_range = 1.1f * float(offset + D);
    
    if (ctl.stopcondition()) return {};
    else ctl.statuscb(0, L("Hollowing"));
    
    auto gridptr = mesh_to_grid(imesh, {}, out_range, in_range);
    
    assert(gridptr);
    
    if (!gridptr) {
        BOOST_LOG_TRIVIAL(error) << "Returned OpenVDB grid is NULL";
        return {};
    }
    
    if (ctl.stopcondition()) return {};
    else ctl.statuscb(30, L("Hollowing"));
    
    if (closing_dist > .0) {
        gridptr = redistance_grid(*gridptr, -(offset + D), double(in_range));
    } else {
        D = -offset;
    }
    
    if (ctl.stopcondition()) return {};
    else ctl.statuscb(70, L("Hollowing"));
    
    double iso_surface = D;
    double adaptivity = 0.;
    auto omesh = grid_to_mesh(*gridptr, iso_surface, adaptivity);
    
    _scale(1. / voxel_scale, omesh);
    
    if (ctl.stopcondition()) return {};
    else ctl.statuscb(100, L("Hollowing"));
    
    return omesh;
}

std::unique_ptr<TriangleMesh> generate_interior(const TriangleMesh &   mesh,
                                                const HollowingConfig &hc,
                                                const JobController &  ctl)
{
    static const double MIN_OVERSAMPL = 3.;
    static const double MAX_OVERSAMPL = 8.;
        
    // I can't figure out how to increase the grid resolution through openvdb
    // API so the model will be scaled up before conversion and the result
    // scaled down. Voxels have a unit size. If I set voxelSize smaller, it
    // scales the whole geometry down, and doesn't increase the number of
    // voxels.
    //
    // max 8x upscale, min is native voxel size
    auto voxel_scale = MIN_OVERSAMPL + (MAX_OVERSAMPL - MIN_OVERSAMPL) * hc.quality;
    auto meshptr = std::make_unique<TriangleMesh>(
        _generate_interior(mesh, ctl, hc.min_thickness, voxel_scale,
                           hc.closing_distance));
    
    if (meshptr && !meshptr->empty()) {
        
        // This flips the normals to be outward facing...
        meshptr->require_shared_vertices();
        indexed_triangle_set its = std::move(meshptr->its);
        
        Slic3r::simplify_mesh(its);
        
        // flip normals back...
        for (stl_triangle_vertex_indices &ind : its.indices)
            std::swap(ind(0), ind(2));
        
        *meshptr = Slic3r::TriangleMesh{its};
    }
    
    return meshptr;
}

Contour3D DrainHole::to_mesh() const
{
    auto r = double(radius);
    auto h = double(height);
    sla::Contour3D hole = sla::cylinder(r, h, steps);
    Eigen::Quaterniond q;
    q.setFromTwoVectors(Vec3d{0., 0., 1.}, normal.cast<double>());
    for(auto& p : hole.points) p = q * p + pos.cast<double>();
    
    return hole;
}

bool DrainHole::operator==(const DrainHole &sp) const
{
    return (pos == sp.pos) && (normal == sp.normal) &&
            is_approx(radius, sp.radius) &&
            is_approx(height, sp.height);
}

bool DrainHole::is_inside(const Vec3f& pt) const
{
    Eigen::Hyperplane<float, 3> plane(normal, pos);
    float dist = plane.signedDistance(pt);
    if (dist < float(EPSILON) || dist > height)
        return false;

    Eigen::ParametrizedLine<float, 3> axis(pos, normal);
    if ( axis.squaredDistance(pt) < pow(radius, 2.f))
        return true;

    return false;
}


// Given a line s+dir*t, find parameter t of intersections with the hole
// and the normal (points inside the hole). Outputs through out reference,
// returns true if two intersections were found.
bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
                                  std::array<std::pair<float, Vec3d>, 2>& out)
                                  const
{
    assert(is_approx(normal.norm(), 1.f));
    const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());

    for (size_t i=0; i<2; ++i)
        out[i] = std::make_pair(sla::IndexedMesh::hit_result::infty(), Vec3d::Zero());

    const float sqr_radius = pow(radius, 2.f);

    // first check a bounding sphere of the hole:
    Vec3f center = pos+normal*height/2.f;
    float sqr_dist_limit = pow(height/2.f, 2.f) + sqr_radius ;
    if (ray.squaredDistance(center) > sqr_dist_limit)
        return false;

    // The line intersects the bounding sphere, look for intersections with
    // bases of the cylinder.

    size_t found = 0; // counts how many intersections were found
    Eigen::Hyperplane<float, 3> base;
    if (! is_approx(ray.direction().dot(normal), 0.f)) {
        for (size_t i=1; i<=1; --i) {
            Vec3f cylinder_center = pos+i*height*normal;
            if (i == 0) {
                // The hole base can be identical to mesh surface if it is flat
                // let's better move the base outward a bit
                cylinder_center -= EPSILON*normal;
            }
            base = Eigen::Hyperplane<float, 3>(normal, cylinder_center);
            Vec3f intersection = ray.intersectionPoint(base);
            // Only accept the point if it is inside the cylinder base.
            if ((cylinder_center-intersection).squaredNorm() < sqr_radius) {
                out[found].first = ray.intersectionParameter(base);
                out[found].second = (i==0 ? 1. : -1.) * normal.cast<double>();
                ++found;
            }
        }
    }
    else
    {
        // In case the line was perpendicular to the cylinder axis, previous
        // block was skipped, but base will later be assumed to be valid.
        base = Eigen::Hyperplane<float, 3>(normal, pos-EPSILON*normal);
    }

    // In case there is still an intersection to be found, check the wall
    if (found != 2 && ! is_approx(std::abs(ray.direction().dot(normal)), 1.f)) {
        // Project the ray onto the base plane
        Vec3f proj_origin = base.projection(ray.origin());
        Vec3f proj_dir = base.projection(ray.origin()+ray.direction())-proj_origin;
        // save how the parameter scales and normalize the projected direction
        float par_scale = proj_dir.norm();
        proj_dir = proj_dir/par_scale;
        Eigen::ParametrizedLine<float, 3> projected_ray(proj_origin, proj_dir);
        // Calculate point on the secant that's closest to the center
        // and its distance to the circle along the projected line
        Vec3f closest = projected_ray.projection(pos);
        float dist = sqrt((sqr_radius - (closest-pos).squaredNorm()));
        // Unproject both intersections on the original line and check
        // they are on the cylinder and not past it:
        for (int i=-1; i<=1 && found !=2; i+=2) {
            Vec3f isect = closest + i*dist * projected_ray.direction();
            Vec3f to_isect = isect-proj_origin;
            float par = to_isect.norm() / par_scale;
            if (to_isect.normalized().dot(proj_dir.normalized()) < 0.f)
                par *= -1.f;
            Vec3d hit_normal = (pos-isect).normalized().cast<double>();
            isect = ray.pointAt(par);
            // check that the intersection is between the base planes:
            float vert_dist = base.signedDistance(isect);
            if (vert_dist > 0.f && vert_dist < height) {
                out[found].first = par;
                out[found].second = hit_normal;
                ++found;
            }
        }
    }

    // If only one intersection was found, it is some corner case,
    // no intersection will be returned:
    if (found != 2)
        return false;

    // Sort the intersections:
    if (out[0].first > out[1].first)
        std::swap(out[0], out[1]);

    return true;
}

void cut_drainholes(std::vector<ExPolygons> & obj_slices,
                    const std::vector<float> &slicegrid,
                    float                     closing_radius,
                    const sla::DrainHoles &   holes,
                    std::function<void(void)> thr)
{
    TriangleMesh mesh;
    for (const sla::DrainHole &holept : holes)
        mesh.merge(sla::to_triangle_mesh(holept.to_mesh()));
    
    if (mesh.empty()) return;
    
    mesh.require_shared_vertices();
    
    TriangleMeshSlicer slicer(&mesh);
    
    std::vector<ExPolygons> hole_slices;
    slicer.slice(slicegrid, SlicingMode::Regular, closing_radius, &hole_slices, thr);
    
    if (obj_slices.size() != hole_slices.size())
        BOOST_LOG_TRIVIAL(warning)
            << "Sliced object and drain-holes layer count does not match!";

    size_t until = std::min(obj_slices.size(), hole_slices.size());
    
    for (size_t i = 0; i < until; ++i)
        obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
}

void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg)
{
    std::unique_ptr<Slic3r::TriangleMesh> inter_ptr =
            Slic3r::sla::generate_interior(mesh);

    if (inter_ptr) mesh.merge(*inter_ptr);
    mesh.require_shared_vertices();
}

}} // namespace Slic3r::sla