Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SLASupportTreeBuilder.cpp « SLA « libslic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3fa9f3b984443c55c841d1935fbfd84223beaa1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#include "SLASupportTreeBuilder.hpp"
#include "SLASupportTreeBuildsteps.hpp"

namespace Slic3r {
namespace sla {

Contour3D sphere(double rho, Portion portion, double fa) {
    
    Contour3D ret;
    
    // prohibit close to zero radius
    if(rho <= 1e-6 && rho >= -1e-6) return ret;
    
    auto& vertices = ret.points;
    auto& facets = ret.indices;
    
    // Algorithm:
    // Add points one-by-one to the sphere grid and form facets using relative
    // coordinates. Sphere is composed effectively of a mesh of stacked circles.
    
    // adjust via rounding to get an even multiple for any provided angle.
    double angle = (2*PI / floor(2*PI / fa));
    
    // Ring to be scaled to generate the steps of the sphere
    std::vector<double> ring;
    
    for (double i = 0; i < 2*PI; i+=angle) ring.emplace_back(i);
    
    const auto sbegin = size_t(2*std::get<0>(portion)/angle);
    const auto send = size_t(2*std::get<1>(portion)/angle);
    
    const size_t steps = ring.size();
    const double increment = 1.0 / double(steps);
    
    // special case: first ring connects to 0,0,0
    // insert and form facets.
    if(sbegin == 0)
        vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*sbegin*2.0*rho));
    
    auto id = coord_t(vertices.size());
    for (size_t i = 0; i < ring.size(); i++) {
        // Fixed scaling
        const double z = -rho + increment*rho*2.0 * (sbegin + 1.0);
        // radius of the circle for this step.
        const double r = std::sqrt(std::abs(rho*rho - z*z));
        Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
        vertices.emplace_back(Vec3d(b(0), b(1), z));
        
        if (sbegin == 0)
            facets.emplace_back((i == 0) ?
                                    Vec3crd(coord_t(ring.size()), 0, 1) :
                                    Vec3crd(id - 1, 0, id));
        ++id;
    }
    
    // General case: insert and form facets for each step,
    // joining it to the ring below it.
    for (size_t s = sbegin + 2; s < send - 1; s++) {
        const double z = -rho + increment*double(s*2.0*rho);
        const double r = std::sqrt(std::abs(rho*rho - z*z));
        
        for (size_t i = 0; i < ring.size(); i++) {
            Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
            vertices.emplace_back(Vec3d(b(0), b(1), z));
            auto id_ringsize = coord_t(id - int(ring.size()));
            if (i == 0) {
                // wrap around
                facets.emplace_back(Vec3crd(id - 1, id,
                                            id + coord_t(ring.size() - 1)));
                facets.emplace_back(Vec3crd(id - 1, id_ringsize, id));
            } else {
                facets.emplace_back(Vec3crd(id_ringsize - 1, id_ringsize, id));
                facets.emplace_back(Vec3crd(id - 1, id_ringsize - 1, id));
            }
            id++;
        }
    }
    
    // special case: last ring connects to 0,0,rho*2.0
    // only form facets.
    if(send >= size_t(2*PI / angle)) {
        vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*send*2.0*rho));
        for (size_t i = 0; i < ring.size(); i++) {
            auto id_ringsize = coord_t(id - int(ring.size()));
            if (i == 0) {
                // third vertex is on the other side of the ring.
                facets.emplace_back(Vec3crd(id - 1, id_ringsize, id));
            } else {
                auto ci = coord_t(id_ringsize + coord_t(i));
                facets.emplace_back(Vec3crd(ci - 1, ci, id));
            }
        }
    }
    id++;
    
    return ret;
}

Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
{
    Contour3D ret;
    
    auto steps = int(ssteps);
    auto& points = ret.points;
    auto& indices = ret.indices;
    points.reserve(2*ssteps);
    double a = 2*PI/steps;
    
    Vec3d jp = sp;
    Vec3d endp = {sp(X), sp(Y), sp(Z) + h};
    
    // Upper circle points
    for(int i = 0; i < steps; ++i) {
        double phi = i*a;
        double ex = endp(X) + r*std::cos(phi);
        double ey = endp(Y) + r*std::sin(phi);
        points.emplace_back(ex, ey, endp(Z));
    }
    
    // Lower circle points
    for(int i = 0; i < steps; ++i) {
        double phi = i*a;
        double x = jp(X) + r*std::cos(phi);
        double y = jp(Y) + r*std::sin(phi);
        points.emplace_back(x, y, jp(Z));
    }
    
    // Now create long triangles connecting upper and lower circles
    indices.reserve(2*ssteps);
    auto offs = steps;
    for(int i = 0; i < steps - 1; ++i) {
        indices.emplace_back(i, i + offs, offs + i + 1);
        indices.emplace_back(i, offs + i + 1, i + 1);
    }
    
    // Last triangle connecting the first and last vertices
    auto last = steps - 1;
    indices.emplace_back(0, last, offs);
    indices.emplace_back(last, offs + last, offs);
    
    // According to the slicing algorithms, we need to aid them with generating
    // a watertight body. So we create a triangle fan for the upper and lower
    // ending of the cylinder to close the geometry.
    points.emplace_back(jp); int ci = int(points.size() - 1);
    for(int i = 0; i < steps - 1; ++i)
        indices.emplace_back(i + offs + 1, i + offs, ci);
    
    indices.emplace_back(offs, steps + offs - 1, ci);
    
    points.emplace_back(endp); ci = int(points.size() - 1);
    for(int i = 0; i < steps - 1; ++i)
        indices.emplace_back(ci, i, i + 1);
    
    indices.emplace_back(steps - 1, 0, ci);
    
    return ret;
}

Head::Head(double       r_big_mm,
           double       r_small_mm,
           double       length_mm,
           double       penetration,
           const Vec3d &direction,
           const Vec3d &offset,
           const size_t circlesteps)
    : steps(circlesteps)
    , dir(direction)
    , tr(offset)
    , r_back_mm(r_big_mm)
    , r_pin_mm(r_small_mm)
    , width_mm(length_mm)
    , penetration_mm(penetration)
{
    
    // We create two spheres which will be connected with a robe that fits
    // both circles perfectly.
    
    // Set up the model detail level
    const double detail = 2*PI/steps;
    
    // We don't generate whole circles. Instead, we generate only the
    // portions which are visible (not covered by the robe) To know the
    // exact portion of the bottom and top circles we need to use some
    // rules of tangent circles from which we can derive (using simple
    // triangles the following relations:
    
    // The height of the whole mesh
    const double h = r_big_mm + r_small_mm + width_mm;
    double phi = PI/2 - std::acos( (r_big_mm - r_small_mm) / h );
    
    // To generate a whole circle we would pass a portion of (0, Pi)
    // To generate only a half horizontal circle we can pass (0, Pi/2)
    // The calculated phi is an offset to the half circles needed to smooth
    // the transition from the circle to the robe geometry
    
    auto&& s1 = sphere(r_big_mm, make_portion(0, PI/2 + phi), detail);
    auto&& s2 = sphere(r_small_mm, make_portion(PI/2 + phi, PI), detail);
    
    for(auto& p : s2.points) p.z() += h;
    
    mesh.merge(s1);
    mesh.merge(s2);
    
    for(size_t idx1 = s1.points.size() - steps, idx2 = s1.points.size();
        idx1 < s1.points.size() - 1;
        idx1++, idx2++)
    {
        coord_t i1s1 = coord_t(idx1), i1s2 = coord_t(idx2);
        coord_t i2s1 = i1s1 + 1, i2s2 = i1s2 + 1;
        
        mesh.indices.emplace_back(i1s1, i2s1, i2s2);
        mesh.indices.emplace_back(i1s1, i2s2, i1s2);
    }
    
    auto i1s1 = coord_t(s1.points.size()) - coord_t(steps);
    auto i2s1 = coord_t(s1.points.size()) - 1;
    auto i1s2 = coord_t(s1.points.size());
    auto i2s2 = coord_t(s1.points.size()) + coord_t(steps) - 1;
    
    mesh.indices.emplace_back(i2s2, i2s1, i1s1);
    mesh.indices.emplace_back(i1s2, i2s2, i1s1);
    
    // To simplify further processing, we translate the mesh so that the
    // last vertex of the pointing sphere (the pinpoint) will be at (0,0,0)
    for(auto& p : mesh.points) p.z() -= (h + r_small_mm - penetration_mm);
}

Pillar::Pillar(const Vec3d &jp, const Vec3d &endp, double radius, size_t st):
    r(radius), steps(st), endpt(endp), starts_from_head(false)
{
    assert(steps > 0);
    
    height = jp(Z) - endp(Z);
    if(height > EPSILON) { // Endpoint is below the starting point
        
        // We just create a bridge geometry with the pillar parameters and
        // move the data.
        Contour3D body = cylinder(radius, height, st, endp);
        mesh.points.swap(body.points);
        mesh.indices.swap(body.indices);
    }
}

Pillar &Pillar::add_base(double baseheight, double radius)
{
    if(baseheight <= 0) return *this;
    if(baseheight > height) baseheight = height;
    
    assert(steps >= 0);
    auto last = int(steps - 1);
    
    if(radius < r ) radius = r;
    
    double a = 2*PI/steps;
    double z = endpt(Z) + baseheight;
    
    for(size_t i = 0; i < steps; ++i) {
        double phi = i*a;
        double x = endpt(X) + r*std::cos(phi);
        double y = endpt(Y) + r*std::sin(phi);
        base.points.emplace_back(x, y, z);
    }
    
    for(size_t i = 0; i < steps; ++i) {
        double phi = i*a;
        double x = endpt(X) + radius*std::cos(phi);
        double y = endpt(Y) + radius*std::sin(phi);
        base.points.emplace_back(x, y, z - baseheight);
    }
    
    auto ep = endpt; ep(Z) += baseheight;
    base.points.emplace_back(endpt);
    base.points.emplace_back(ep);
    
    auto& indices = base.indices;
    auto hcenter = int(base.points.size() - 1);
    auto lcenter = int(base.points.size() - 2);
    auto offs = int(steps);
    for(int i = 0; i < last; ++i) {
        indices.emplace_back(i, i + offs, offs + i + 1);
        indices.emplace_back(i, offs + i + 1, i + 1);
        indices.emplace_back(i, i + 1, hcenter);
        indices.emplace_back(lcenter, offs + i + 1, offs + i);
    }
    
    indices.emplace_back(0, last, offs);
    indices.emplace_back(last, offs + last, offs);
    indices.emplace_back(hcenter, last, 0);
    indices.emplace_back(offs, offs + last, lcenter);
    return *this;
}

Bridge::Bridge(const Vec3d &j1, const Vec3d &j2, double r_mm, size_t steps):
    r(r_mm), startp(j1), endp(j2)
{
    using Quaternion = Eigen::Quaternion<double>;
    Vec3d dir = (j2 - j1).normalized();
    double d = distance(j2, j1);
    
    mesh = cylinder(r, d, steps);
    
    auto quater = Quaternion::FromTwoVectors(Vec3d{0,0,1}, dir);
    for(auto& p : mesh.points) p = quater * p + j1;
}

CompactBridge::CompactBridge(const Vec3d &sp,
                             const Vec3d &ep,
                             const Vec3d &n,
                             double       r,
                             bool         endball,
                             size_t       steps)
{
    Vec3d startp = sp + r * n;
    Vec3d dir = (ep - startp).normalized();
    Vec3d endp = ep - r * dir;
    
    Bridge br(startp, endp, r, steps);
    mesh.merge(br.mesh);
    
    // now add the pins
    double fa = 2*PI/steps;
    auto upperball = sphere(r, Portion{PI / 2 - fa, PI}, fa);
    for(auto& p : upperball.points) p += startp;
    
    if(endball) {
        auto lowerball = sphere(r, Portion{0, PI/2 + 2*fa}, fa);
        for(auto& p : lowerball.points) p += endp;
        mesh.merge(lowerball);
    }
    
    mesh.merge(upperball);
}

Pad::Pad(const TriangleMesh &support_mesh,
         const ExPolygons &  model_contours,
         double              ground_level,
         const PadConfig &   pcfg,
         ThrowOnCancel       thr)
    : cfg(pcfg)
    , zlevel(ground_level + pcfg.full_height() - pcfg.required_elevation())
{
    thr();
    
    ExPolygons sup_contours;
    
    float zstart = float(zlevel);
    float zend   = zstart + float(pcfg.full_height() + EPSILON);
    
    pad_blueprint(support_mesh, sup_contours, grid(zstart, zend, 0.1f), thr);
    create_pad(sup_contours, model_contours, tmesh, pcfg);
    
    tmesh.translate(0, 0, float(zlevel));
    if (!tmesh.empty()) tmesh.require_shared_vertices();
}

const TriangleMesh &SupportTreeBuilder::add_pad(const ExPolygons &modelbase,
                                                const PadConfig & cfg)
{
    m_pad = Pad{merged_mesh(), modelbase, ground_level, cfg, ctl().cancelfn};
    return m_pad.tmesh;
}

SupportTreeBuilder::SupportTreeBuilder(SupportTreeBuilder &&o)
    : m_heads(std::move(o.m_heads))
    , m_head_indices{std::move(o.m_head_indices)}
    , m_pillars{std::move(o.m_pillars)}
    , m_bridges{std::move(o.m_bridges)}
    , m_crossbridges{std::move(o.m_crossbridges)}
    , m_compact_bridges{std::move(o.m_compact_bridges)}
    , m_pad{std::move(o.m_pad)}
    , m_meshcache{std::move(o.m_meshcache)}
    , m_meshcache_valid{o.m_meshcache_valid}
    , m_model_height{o.m_model_height}
    , ground_level{o.ground_level}
{}

SupportTreeBuilder::SupportTreeBuilder(const SupportTreeBuilder &o)
    : m_heads(o.m_heads)
    , m_head_indices{o.m_head_indices}
    , m_pillars{o.m_pillars}
    , m_bridges{o.m_bridges}
    , m_crossbridges{o.m_crossbridges}
    , m_compact_bridges{o.m_compact_bridges}
    , m_pad{o.m_pad}
    , m_meshcache{o.m_meshcache}
    , m_meshcache_valid{o.m_meshcache_valid}
    , m_model_height{o.m_model_height}
    , ground_level{o.ground_level}
{}

SupportTreeBuilder &SupportTreeBuilder::operator=(SupportTreeBuilder &&o)
{
    m_heads = std::move(o.m_heads);
    m_head_indices = std::move(o.m_head_indices);
    m_pillars = std::move(o.m_pillars);
    m_bridges = std::move(o.m_bridges);
    m_crossbridges = std::move(o.m_crossbridges);
    m_compact_bridges = std::move(o.m_compact_bridges);
    m_pad = std::move(o.m_pad);
    m_meshcache = std::move(o.m_meshcache);
    m_meshcache_valid = o.m_meshcache_valid;
    m_model_height = o.m_model_height;
    ground_level = o.ground_level;
    return *this;
}

SupportTreeBuilder &SupportTreeBuilder::operator=(const SupportTreeBuilder &o)
{
    m_heads = o.m_heads;
    m_head_indices = o.m_head_indices;
    m_pillars = o.m_pillars;
    m_bridges = o.m_bridges;
    m_crossbridges = o.m_crossbridges;
    m_compact_bridges = o.m_compact_bridges;
    m_pad = o.m_pad;
    m_meshcache = o.m_meshcache;
    m_meshcache_valid = o.m_meshcache_valid;
    m_model_height = o.m_model_height;
    ground_level = o.ground_level;
    return *this;
}

const TriangleMesh &SupportTreeBuilder::merged_mesh() const
{
    if (m_meshcache_valid) return m_meshcache;
    
    Contour3D merged;
    
    for (auto &head : m_heads) {
        if (ctl().stopcondition()) break;
        if (head.is_valid()) merged.merge(head.mesh);
    }
    
    for (auto &stick : m_pillars) {
        if (ctl().stopcondition()) break;
        merged.merge(stick.mesh);
        merged.merge(stick.base);
    }
    
    for (auto &j : m_junctions) {
        if (ctl().stopcondition()) break;
        merged.merge(j.mesh);
    }
    
    for (auto &cb : m_compact_bridges) {
        if (ctl().stopcondition()) break;
        merged.merge(cb.mesh);
    }
    
    for (auto &bs : m_bridges) {
        if (ctl().stopcondition()) break;
        merged.merge(bs.mesh);
    }
    
    for (auto &bs : m_crossbridges) {
        if (ctl().stopcondition()) break;
        merged.merge(bs.mesh);
    }
    
    if (ctl().stopcondition()) {
        // In case of failure we have to return an empty mesh
        m_meshcache = TriangleMesh();
        return m_meshcache;
    }
    
    m_meshcache = mesh(merged);
    
    // The mesh will be passed by const-pointer to TriangleMeshSlicer,
    // which will need this.
    if (!m_meshcache.empty()) m_meshcache.require_shared_vertices();
    
    BoundingBoxf3 &&bb = m_meshcache.bounding_box();
    m_model_height       = bb.max(Z) - bb.min(Z);
    
    m_meshcache_valid = true;
    return m_meshcache;
}

double SupportTreeBuilder::full_height() const
{
    if (merged_mesh().empty() && !pad().empty())
        return pad().cfg.full_height();
    
    double h = mesh_height();
    if (!pad().empty()) h += pad().cfg.required_elevation();
    return h;
}

const TriangleMesh &SupportTreeBuilder::merge_and_cleanup()
{
    // in case the mesh is not generated, it should be...
    auto &ret = merged_mesh(); 
    
    // Doing clear() does not garantee to release the memory.
    m_heads = {};
    m_head_indices = {};
    m_pillars = {};
    m_junctions = {};
    m_bridges = {};
    m_compact_bridges = {};
    
    return ret;
}

const TriangleMesh &SupportTreeBuilder::retrieve_mesh(MeshType meshtype) const
{
    switch(meshtype) {
    case MeshType::Support: return merged_mesh();
    case MeshType::Pad:     return pad().tmesh;
    }
    
    return m_meshcache;
}

bool SupportTreeBuilder::build(const SupportableMesh &sm)
{
    ground_level = sm.emesh.ground_level() - sm.cfg.object_elevation_mm;
    return SupportTreeBuildsteps::execute(*this, sm);
}

}
}