Welcome to mirror list, hosted at ThFree Co, Russian Federation.

RammingChart.cpp « GUI « slic3r « src - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: dbd6bfad6a727b863b2951d3a94ac9dae1e49005 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#include <algorithm>
#include <wx/dcbuffer.h>

#include "RammingChart.hpp"
#include "GUI.hpp"
#include "I18N.hpp"

wxDEFINE_EVENT(EVT_WIPE_TOWER_CHART_CHANGED, wxCommandEvent);


void Chart::draw() {
    wxAutoBufferedPaintDC dc(this); // unbuffered DC caused flickering on win

    dc.SetBrush(GetBackgroundColour());
    dc.SetPen(GetBackgroundColour());
    dc.DrawRectangle(GetClientRect());  // otherwise the background would end up black on windows

    dc.SetPen(*wxBLACK_PEN);
    dc.SetBrush(*wxWHITE_BRUSH);
    dc.DrawRectangle(m_rect);
    
    if (visible_area.m_width < 0.499) {
        dc.DrawText(_(L("NO RAMMING AT ALL")),wxPoint(m_rect.GetLeft()+m_rect.GetWidth()/2-legend_side,m_rect.GetBottom()-m_rect.GetHeight()/2));
        return;
    }
    
    
    if (!m_line_to_draw.empty()) {
        for (unsigned int i=0;i<m_line_to_draw.size()-2;++i) {
            int color = 510*((m_rect.GetBottom()-(m_line_to_draw)[i])/double(m_rect.GetHeight()));
            dc.SetPen( wxPen( wxColor(std::min(255,color),255-std::max(color-255,0),0), 1 ) );
            dc.DrawLine(m_rect.GetLeft()+1+i,(m_line_to_draw)[i],m_rect.GetLeft()+1+i,m_rect.GetBottom());        
        }
        dc.SetPen( wxPen( wxColor(0,0,0), 1 ) );
        for (unsigned int i=0;i<m_line_to_draw.size()-2;++i) {
            if (splines)
                dc.DrawLine(m_rect.GetLeft()+i,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i+1]);
            else {
                dc.DrawLine(m_rect.GetLeft()+i,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i]);
                dc.DrawLine(m_rect.GetLeft()+i+1,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i+1]);
            }
        }
    }
    
    // draw draggable buttons
    dc.SetBrush(*wxBLUE_BRUSH);
    dc.SetPen( wxPen( wxColor(0,0,0), 1 ) );
    for (auto& button : m_buttons)
        //dc.DrawRectangle(math_to_screen(button.get_pos())-wxPoint(side/2.,side/2.), wxSize(side,side));
        dc.DrawCircle(math_to_screen(button.get_pos()),side/2.);
        //dc.DrawRectangle(math_to_screen(button.get_pos()-wxPoint2DDouble(0.125,0))-wxPoint(0,5),wxSize(50,10));

    // draw x-axis:
    float last_mark = -10000;
    for (float math_x=int(visible_area.m_x*10)/10 ; math_x < (visible_area.m_x+visible_area.m_width) ; math_x+=0.1f) {
        int x = math_to_screen(wxPoint2DDouble(math_x,visible_area.m_y)).x;
        int y = m_rect.GetBottom();
        if (x-last_mark < legend_side) continue;
        dc.DrawLine(x,y+3,x,y-3);
        dc.DrawText(wxString().Format(wxT("%.1f"), math_x),wxPoint(x-scale_unit,y+0.5*scale_unit));
        last_mark = x;
    }
    
    // draw y-axis:
    last_mark=10000;
    for (int math_y=visible_area.m_y ; math_y < (visible_area.m_y+visible_area.m_height) ; math_y+=1) {
        int y = math_to_screen(wxPoint2DDouble(visible_area.m_x,math_y)).y;
        int x = m_rect.GetLeft();
        if (last_mark-y < legend_side) continue;    
        dc.DrawLine(x-3,y,x+3,y);
        dc.DrawText(wxString()<<math_y,wxPoint(x-2*scale_unit,y-0.5*scale_unit));
        last_mark = y;
    }
    
    // axis labels:
    wxString label = _(L("Time")) + " ("+_(L("s"))+")";
    int text_width = 0;
    int text_height = 0;
    dc.GetTextExtent(label,&text_width,&text_height);
    dc.DrawText(label,wxPoint(0.5*(m_rect.GetRight()+m_rect.GetLeft())-text_width/2.f, m_rect.GetBottom()+0.5*legend_side));
    label = _(L("Volumetric speed")) + " (" + _(L("mm³/s")) + ")";
    dc.GetTextExtent(label,&text_width,&text_height);
    dc.DrawRotatedText(label,wxPoint(0,0.5*(m_rect.GetBottom()+m_rect.GetTop())+text_width/2.f),90);
}

void Chart::mouse_right_button_clicked(wxMouseEvent& event) {
    if (!manual_points_manipulation)
        return;
    wxPoint point = event.GetPosition();
    int button_index = which_button_is_clicked(point);
    if (button_index != -1 && m_buttons.size()>2) {
        m_buttons.erase(m_buttons.begin()+button_index);
        recalculate_line();
    }
}
    


void Chart::mouse_clicked(wxMouseEvent& event) {
    wxPoint point = event.GetPosition();
    int button_index = which_button_is_clicked(point);
    if ( button_index != -1) {
        m_dragged = &m_buttons[button_index];
        m_previous_mouse = point;            
    }
}
    
    
    
void Chart::mouse_moved(wxMouseEvent& event) {
    if (!event.Dragging() || !m_dragged) return;
    wxPoint pos = event.GetPosition();    
    wxRect rect = m_rect;
    rect.Deflate(side/2.);
    if (!(rect.Contains(pos))) {  // the mouse left chart area
        mouse_left_window(event);
        return;
    }    
    int delta_x = pos.x - m_previous_mouse.x;
    int delta_y = pos.y - m_previous_mouse.y;
    m_dragged->move(fixed_x?0:double(delta_x)/m_rect.GetWidth() * visible_area.m_width,-double(delta_y)/m_rect.GetHeight() * visible_area.m_height); 
    m_previous_mouse = pos;
    recalculate_line();
}



void Chart::mouse_double_clicked(wxMouseEvent& event) {
    if (!manual_points_manipulation)
        return;
    wxPoint point = event.GetPosition();
    if (!m_rect.Contains(point))     // the click is outside the chart
        return;
    m_buttons.push_back(screen_to_math(point));
    std::sort(m_buttons.begin(),m_buttons.end());
    recalculate_line();
    return;
}




void Chart::recalculate_line() {
    m_line_to_draw.clear();
    m_total_volume = 0.f;

    std::vector<wxPoint> points;
    for (auto& but : m_buttons) {
        points.push_back(wxPoint(math_to_screen(but.get_pos())));
        if (points.size()>1 && points.back().x==points[points.size()-2].x) points.pop_back();
        if (points.size()>1 && points.back().x > m_rect.GetRight()) {
            points.pop_back();
            break;
        }
    }

    // The calculation wouldn't work in case the ramming is to be turned off completely.
    if (points.size()>1) {
        std::sort(points.begin(),points.end(),[](wxPoint& a,wxPoint& b) { return a.x < b.x; });

        // Cubic spline interpolation: see https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation#Methods
        const bool boundary_first_derivative = true; // true - first derivative is 0 at the leftmost and rightmost point
                                                     // false - second ---- || -------
        const int N = points.size()-1; // last point can be accessed as N, we have N+1 total points
        std::vector<float> diag(N+1);
        std::vector<float> mu(N+1);
        std::vector<float> lambda(N+1);
        std::vector<float> h(N+1);
        std::vector<float> rhs(N+1);
        
        // let's fill in inner equations
        for (int i=1;i<=N;++i) h[i] = points[i].x-points[i-1].x;
        std::fill(diag.begin(),diag.end(),2.f);
        for (int i=1;i<=N-1;++i) {
            mu[i] = h[i]/(h[i]+h[i+1]);
            lambda[i] = 1.f - mu[i];
            rhs[i] = 6 * ( float(points[i+1].y-points[i].y  )/(h[i+1]*(points[i+1].x-points[i-1].x)) -
                           float(points[i].y  -points[i-1].y)/(h[i]  *(points[i+1].x-points[i-1].x))   );
        }

        // now fill in the first and last equations, according to boundary conditions:
        if (boundary_first_derivative) {
            const float endpoints_derivative = 0;
            lambda[0] = 1;
            mu[N]     = 1;
            rhs[0] = (6.f/h[1]) * (float(points[0].y-points[1].y)/(points[0].x-points[1].x) - endpoints_derivative);
            rhs[N] = (6.f/h[N]) * (endpoints_derivative - float(points[N-1].y-points[N].y)/(points[N-1].x-points[N].x));
        }
        else {
            lambda[0] = 0;
            mu[N]     = 0;
            rhs[0]    = 0;
            rhs[N]    = 0;
        }

        // the trilinear system is ready to be solved:
        for (int i=1;i<=N;++i) {
            float multiple = mu[i]/diag[i-1];    // let's subtract proper multiple of above equation
            diag[i]-= multiple * lambda[i-1];
            rhs[i] -= multiple * rhs[i-1];
        }
        // now the back substitution (vector mu contains invalid values from now on):
        rhs[N] = rhs[N]/diag[N];
        for (int i=N-1;i>=0;--i)
            rhs[i] = (rhs[i]-lambda[i]*rhs[i+1])/diag[i];

        unsigned int i=1;
        float y=0.f;
        for (int x=m_rect.GetLeft(); x<=m_rect.GetRight() ; ++x) {
            if (splines) {
                if (i<points.size()-1 && points[i].x < x ) {
                    ++i;
                }
                if (points[0].x > x)
                    y = points[0].y;
                else
                    if (points[N].x < x)
                        y = points[N].y;
                    else
                        y = (rhs[i-1]*pow(points[i].x-x,3)+rhs[i]*pow(x-points[i-1].x,3)) / (6*h[i]) +
                            (points[i-1].y-rhs[i-1]*h[i]*h[i]/6.f) * (points[i].x-x)/h[i] +
                            (points[i].y  -rhs[i]  *h[i]*h[i]/6.f) * (x-points[i-1].x)/h[i];
                m_line_to_draw.push_back(y);
            }
            else {
                float x_math = screen_to_math(wxPoint(x,0)).m_x;
                if (i+2<=points.size() && m_buttons[i+1].get_pos().m_x-0.125 < x_math)
                    ++i;
                m_line_to_draw.push_back(math_to_screen(wxPoint2DDouble(x_math,m_buttons[i].get_pos().m_y)).y);
            }

            m_line_to_draw.back() = std::max(m_line_to_draw.back(), m_rect.GetTop()-1);
            m_line_to_draw.back() = std::min(m_line_to_draw.back(), m_rect.GetBottom()-1);
            m_total_volume += (m_rect.GetBottom() - m_line_to_draw.back()) * (visible_area.m_width / m_rect.GetWidth()) * (visible_area.m_height / m_rect.GetHeight());
        }
    }

    wxPostEvent(this->GetParent(), wxCommandEvent(EVT_WIPE_TOWER_CHART_CHANGED));
    Refresh();
}



std::vector<float> Chart::get_ramming_speed(float sampling) const {
    std::vector<float> speeds_out;
    
    const int number_of_samples = std::round( visible_area.m_width / sampling);
    if (number_of_samples>0) {
        const int dx = (m_line_to_draw.size()-1) / number_of_samples;
        for (int j=0;j<number_of_samples;++j) {
            float left =  screen_to_math(wxPoint(0,m_line_to_draw[j*dx])).m_y;
            float right = screen_to_math(wxPoint(0,m_line_to_draw[(j+1)*dx])).m_y;
            speeds_out.push_back((left+right)/2.f);            
        }
    }
    return speeds_out;
}


std::vector<std::pair<float,float>> Chart::get_buttons() const {
    std::vector<std::pair<float, float>> buttons_out;
    for (const auto& button : m_buttons)
        buttons_out.push_back(std::make_pair(float(button.get_pos().m_x),float(button.get_pos().m_y)));
    return buttons_out;
}
    
    
    

BEGIN_EVENT_TABLE(Chart, wxWindow)
EVT_MOTION(Chart::mouse_moved)
EVT_LEFT_DOWN(Chart::mouse_clicked)
EVT_LEFT_UP(Chart::mouse_released)
EVT_LEFT_DCLICK(Chart::mouse_double_clicked)
EVT_RIGHT_DOWN(Chart::mouse_right_button_clicked)
EVT_LEAVE_WINDOW(Chart::mouse_left_window)
EVT_PAINT(Chart::paint_event)
END_EVENT_TABLE()