Welcome to mirror list, hosted at ThFree Co, Russian Federation.

GCode.cpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 32a903105483d035530bb3c557dec2aabb42e008 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
#include "GCode.hpp"
#include "ExtrusionEntity.hpp"
#include "EdgeGrid.hpp"
#include <algorithm>
#include <cstdlib>
#include <math.h>

#include "SVG.hpp"

#if 0
// Enable debugging and asserts, even in the release build.
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif

#include <assert.h>

namespace Slic3r {

AvoidCrossingPerimeters::AvoidCrossingPerimeters()
    : use_external_mp(false), use_external_mp_once(false), disable_once(true),
        _external_mp(NULL), _layer_mp(NULL)
{
}

AvoidCrossingPerimeters::~AvoidCrossingPerimeters()
{
    if (this->_external_mp != NULL)
        delete this->_external_mp;
    
    if (this->_layer_mp != NULL)
        delete this->_layer_mp;
}

void
AvoidCrossingPerimeters::init_external_mp(const ExPolygons &islands)
{
    if (this->_external_mp != NULL)
        delete this->_external_mp;
    
    this->_external_mp = new MotionPlanner(islands);
}

void
AvoidCrossingPerimeters::init_layer_mp(const ExPolygons &islands)
{
    if (this->_layer_mp != NULL)
        delete this->_layer_mp;
    
    this->_layer_mp = new MotionPlanner(islands);
}

Polyline
AvoidCrossingPerimeters::travel_to(GCode &gcodegen, Point point)
{
    if (this->use_external_mp || this->use_external_mp_once) {
        // get current origin set in gcodegen
        // (the one that will be used to translate the G-code coordinates by)
        Point scaled_origin = Point::new_scale(gcodegen.origin.x, gcodegen.origin.y);
        
        // represent last_pos in absolute G-code coordinates
        Point last_pos = gcodegen.last_pos();
        last_pos.translate(scaled_origin);
        
        // represent point in absolute G-code coordinates
        point.translate(scaled_origin);
        
        // calculate path
        Polyline travel = this->_external_mp->shortest_path(last_pos, point);
        //exit(0);
        // translate the path back into the shifted coordinate system that gcodegen
        // is currently using for writing coordinates
        travel.translate(scaled_origin.negative());
        return travel;
    } else {
        return this->_layer_mp->shortest_path(gcodegen.last_pos(), point);
    }
}

OozePrevention::OozePrevention()
    : enable(false)
{
}

std::string
OozePrevention::pre_toolchange(GCode &gcodegen)
{
    std::string gcode;
    
    // move to the nearest standby point
    if (!this->standby_points.empty()) {
        // get current position in print coordinates
        Pointf3 writer_pos = gcodegen.writer.get_position();
        Point pos = Point::new_scale(writer_pos.x, writer_pos.y);
        
        // find standby point
        Point standby_point;
        pos.nearest_point(this->standby_points, &standby_point);
        
        /*  We don't call gcodegen.travel_to() because we don't need retraction (it was already
            triggered by the caller) nor avoid_crossing_perimeters and also because the coordinates
            of the destination point must not be transformed by origin nor current extruder offset.  */
        gcode += gcodegen.writer.travel_to_xy(Pointf::new_unscale(standby_point), 
            "move to standby position");
    }
    
    if (gcodegen.config.standby_temperature_delta.value != 0) {
        // we assume that heating is always slower than cooling, so no need to block
        gcode += gcodegen.writer.set_temperature
            (this->_get_temp(gcodegen) + gcodegen.config.standby_temperature_delta.value, false);
    }
    
    return gcode;
}

std::string
OozePrevention::post_toolchange(GCode &gcodegen)
{
    std::string gcode;
    
    if (gcodegen.config.standby_temperature_delta.value != 0) {
        gcode += gcodegen.writer.set_temperature(this->_get_temp(gcodegen), true);
    }
    
    return gcode;
}

int
OozePrevention::_get_temp(GCode &gcodegen)
{
    return (gcodegen.layer != NULL && gcodegen.layer->id() == 0)
        ? gcodegen.config.first_layer_temperature.get_at(gcodegen.writer.extruder()->id)
        : gcodegen.config.temperature.get_at(gcodegen.writer.extruder()->id);
}

Wipe::Wipe()
    : enable(false)
{
}

bool
Wipe::has_path()
{
    return !this->path.points.empty();
}

void
Wipe::reset_path()
{
    this->path = Polyline();
}

std::string
Wipe::wipe(GCode &gcodegen, bool toolchange)
{
    std::string gcode;
    
    /*  Reduce feedrate a bit; travel speed is often too high to move on existing material.
        Too fast = ripping of existing material; too slow = short wipe path, thus more blob.  */
    double wipe_speed = gcodegen.writer.config.travel_speed.value * 0.8;
    
    // get the retraction length
    double length = toolchange
        ? gcodegen.writer.extruder()->retract_length_toolchange()
        : gcodegen.writer.extruder()->retract_length();
    
    if (length > 0) {
        /*  Calculate how long we need to travel in order to consume the required
            amount of retraction. In other words, how far do we move in XY at wipe_speed
            for the time needed to consume retract_length at retract_speed?  */
        double wipe_dist = scale_(length / gcodegen.writer.extruder()->retract_speed() * wipe_speed);
    
        /*  Take the stored wipe path and replace first point with the current actual position
            (they might be different, for example, in case of loop clipping).  */
        Polyline wipe_path;
        wipe_path.append(gcodegen.last_pos());
        wipe_path.append(
            this->path.points.begin() + 1,
            this->path.points.end()
        );
        
        wipe_path.clip_end(wipe_path.length() - wipe_dist);
    
        // subdivide the retraction in segments
        double retracted = 0;
        Lines lines = wipe_path.lines();
        for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
            double segment_length = line->length();
            /*  Reduce retraction length a bit to avoid effective retraction speed to be greater than the configured one
                due to rounding (TODO: test and/or better math for this)  */
            double dE = length * (segment_length / wipe_dist) * 0.95;
            gcode += gcodegen.writer.set_speed(wipe_speed*60, "", gcodegen.enable_cooling_markers ? ";_WIPE" : "");
            gcode += gcodegen.writer.extrude_to_xy(
                gcodegen.point_to_gcode(line->b),
                -dE,
                "wipe and retract"
            );
            retracted += dE;
        }
        gcodegen.writer.extruder()->retracted += retracted;
        
        // prevent wiping again on same path
        this->reset_path();
    }
    
    return gcode;
}

#define EXTRUDER_CONFIG(OPT) this->config.OPT.get_at(this->writer.extruder()->id)

GCode::GCode()
    : placeholder_parser(NULL), enable_loop_clipping(true), 
        enable_cooling_markers(false), enable_extrusion_role_markers(false), enable_analyzer_markers(false),
        layer_count(0),
        layer_index(-1), layer(NULL), first_layer(false), elapsed_time(0.0), volumetric_speed(0),
        _last_pos_defined(false),
        _lower_layer_edge_grid(NULL),
        _last_extrusion_role(erNone)
{
}

GCode::~GCode()
{
    delete _lower_layer_edge_grid;
    _lower_layer_edge_grid = NULL;
}

const Point&
GCode::last_pos() const
{
    return this->_last_pos;
}

void
GCode::set_last_pos(const Point &pos)
{
    this->_last_pos = pos;
    this->_last_pos_defined = true;
}

bool
GCode::last_pos_defined() const
{
    return this->_last_pos_defined;
}

void
GCode::apply_print_config(const PrintConfig &print_config)
{
    this->writer.apply_print_config(print_config);
    this->config.apply(print_config);
}

void
GCode::set_extruders(const std::vector<unsigned int> &extruder_ids)
{
    this->writer.set_extruders(extruder_ids);
    
    // enable wipe path generation if any extruder has wipe enabled
    this->wipe.enable = false;
    for (std::vector<unsigned int>::const_iterator it = extruder_ids.begin();
        it != extruder_ids.end(); ++it) {
        if (this->config.wipe.get_at(*it)) {
            this->wipe.enable = true;
            break;
        }
    }
}

void
GCode::set_origin(const Pointf &pointf)
{    
    // if origin increases (goes towards right), last_pos decreases because it goes towards left
    const Point translate(
        scale_(this->origin.x - pointf.x),
        scale_(this->origin.y - pointf.y)
    );
    this->_last_pos.translate(translate);
    this->wipe.path.translate(translate);
    this->origin = pointf;
}

std::string
GCode::preamble()
{
    std::string gcode = this->writer.preamble();
    
    /*  Perform a *silent* move to z_offset: we need this to initialize the Z
        position of our writer object so that any initial lift taking place
        before the first layer change will raise the extruder from the correct
        initial Z instead of 0.  */
    this->writer.travel_to_z(this->config.z_offset.value);
    
    return gcode;
}

std::string
GCode::change_layer(const Layer &layer)
{
    this->layer = &layer;
    this->layer_index++;
    this->first_layer = (layer.id() == 0);
    delete this->_lower_layer_edge_grid;
    this->_lower_layer_edge_grid = NULL;

    std::string gcode;

    if (enable_analyzer_markers) {
        // Store the binary pointer to the layer object directly into the G-code to be accessed by the GCodeAnalyzer.
        char buf[64];
        sprintf(buf, ";_LAYEROBJ:%p\n", this->layer);
        gcode += buf;
    }
    
    // avoid computing islands and overhangs if they're not needed
    if (this->config.avoid_crossing_perimeters) {
        ExPolygons islands;
        union_(layer.slices, &islands, true);
        this->avoid_crossing_perimeters.init_layer_mp(islands);
    }
    
    if (this->layer_count > 0) {
        gcode += this->writer.update_progress(this->layer_index, this->layer_count);
    }
    
    coordf_t z = layer.print_z + this->config.z_offset.value;  // in unscaled coordinates
    if (EXTRUDER_CONFIG(retract_layer_change) && this->writer.will_move_z(z)) {
        gcode += this->retract();
    }
    {
        std::ostringstream comment;
        comment << "move to next layer (" << this->layer_index << ")";
        gcode += this->writer.travel_to_z(z, comment.str());
    }
    
    // forget last wiping path as wiping after raising Z is pointless
    this->wipe.reset_path();
    
    return gcode;
}

static inline const char* ExtrusionRole2String(const ExtrusionRole role)
{
    switch (role) {
    case erNone:                        return "erNone";
    case erPerimeter:                   return "erPerimeter";
    case erExternalPerimeter:           return "erExternalPerimeter";
    case erOverhangPerimeter:           return "erOverhangPerimeter";
    case erInternalInfill:              return "erInternalInfill";
    case erSolidInfill:                 return "erSolidInfill";
    case erTopSolidInfill:              return "erTopSolidInfill";
    case erBridgeInfill:                return "erBridgeInfill";
    case erGapFill:                     return "erGapFill";
    case erSkirt:                       return "erSkirt";
    case erSupportMaterial:             return "erSupportMaterial";
    case erSupportMaterialInterface:    return "erSupportMaterialInterface";
    default:                            return "erInvalid";
    };
}

static inline const char* ExtrusionLoopRole2String(const ExtrusionLoopRole role)
{
    switch (role) {
    case elrDefault:                    return "elrDefault";
    case elrContourInternalPerimeter:   return "elrContourInternalPerimeter";
    case elrSkirt:                      return "elrSkirt";
    default:                            return "elrInvalid";
    }
};

// Return a value in <0, 1> of a cubic B-spline kernel centered around zero.
// The B-spline is re-scaled so it has value 1 at zero.
static inline float bspline_kernel(float x)
{
    x = std::abs(x);
	if (x < 1.f) {
		return 1.f - (3. / 2.) * x * x + (3.f / 4.f) * x * x * x;
	}
	else if (x < 2.f) {
		x -= 1.f;
		float x2 = x * x;
		float x3 = x2 * x;
		return (1.f / 4.f) - (3.f / 4.f) * x + (3.f / 4.f) * x2 - (1.f / 4.f) * x3;
	}
	else
        return 0;
}

static float extrudate_overlap_penalty(float nozzle_r, float weight_zero, float overlap_distance)
{
    // The extrudate is not fully supported by the lower layer. Fit a polynomial penalty curve.
    // Solved by sympy package:
/*
from sympy import *
(x,a,b,c,d,r,z)=symbols('x a b c d r z')
p = a + b*x + c*x*x + d*x*x*x
p2 = p.subs(solve([p.subs(x, -r), p.diff(x).subs(x, -r), p.diff(x,x).subs(x, -r), p.subs(x, 0)-z], [a, b, c, d]))
from sympy.plotting import plot
plot(p2.subs(r,0.2).subs(z,1.), (x, -1, 3), adaptive=False, nb_of_points=400)
*/
    if (overlap_distance < - nozzle_r) {
        // The extrudate is fully supported by the lower layer. This is the ideal case, therefore zero penalty.
        return 0.f;
    } else {
        float x  = overlap_distance / nozzle_r;
        float x2 = x * x;
        float x3 = x2 * x;
        return weight_zero * (1.f + 3.f * x + 3.f * x2 + x3);
    }
}

static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, const Point &pt, double eps)
{
    assert(polygon.points.size() >= 2);
    if (polygon.points.size() <= 1)
    if (polygon.points.size() == 1)
        return polygon.points.begin();

    Point  pt_min;
    double d_min = std::numeric_limits<double>::max();
    size_t i_min = size_t(-1);

    for (size_t i = 0; i < polygon.points.size(); ++ i) {
        size_t j = i + 1;
        if (j == polygon.points.size())
            j = 0;
        const Point &p1 = polygon.points[i];
        const Point &p2 = polygon.points[j];
        const Slic3r::Point v_seg = p1.vector_to(p2);
        const Slic3r::Point v_pt  = p1.vector_to(pt);
        const int64_t l2_seg = int64_t(v_seg.x) * int64_t(v_seg.x) + int64_t(v_seg.y) * int64_t(v_seg.y);
        int64_t t_pt = int64_t(v_seg.x) * int64_t(v_pt.x) + int64_t(v_seg.y) * int64_t(v_pt.y);
        if (t_pt < 0) {
            // Closest to p1.
            double dabs = sqrt(int64_t(v_pt.x) * int64_t(v_pt.x) + int64_t(v_pt.y) * int64_t(v_pt.y));
            if (dabs < d_min) {
                d_min  = dabs;
                i_min  = i;
                pt_min = p1;
            }
        }
        else if (t_pt > l2_seg) {
            // Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the next step.
            continue;
        } else {
            // Closest to the segment.
            assert(t_pt >= 0 && t_pt <= l2_seg);
            int64_t d_seg = int64_t(v_seg.y) * int64_t(v_pt.x) - int64_t(v_seg.x) * int64_t(v_pt.y);
            double d = double(d_seg) / sqrt(double(l2_seg));
            double dabs = std::abs(d);
            if (dabs < d_min) {
                d_min  = dabs;
                i_min  = i;
                // Evaluate the foot point.
                pt_min = p1;
                double linv = double(d_seg) / double(l2_seg);
                pt_min.x = pt.x - coord_t(floor(double(v_seg.y) * linv + 0.5));
				pt_min.y = pt.y + coord_t(floor(double(v_seg.x) * linv + 0.5));
				assert(Line(p1, p2).distance_to(pt_min) < scale_(1e-5));
            }
        }
    }

	assert(i_min != size_t(-1));
    if (pt_min.distance_to(polygon.points[i_min]) > eps) {
        // Insert a new point on the segment i_min, i_min+1.
        return polygon.points.insert(polygon.points.begin() + (i_min + 1), pt_min);
    }
    return polygon.points.begin() + i_min;
}

std::vector<float> polygon_parameter_by_length(const Polygon &polygon)
{
    // Parametrize the polygon by its length.
    std::vector<float> lengths(polygon.points.size()+1, 0.);
    for (size_t i = 1; i < polygon.points.size(); ++ i)
        lengths[i] = lengths[i-1] + polygon.points[i].distance_to(polygon.points[i-1]);
    lengths.back() = lengths[lengths.size()-2] + polygon.points.front().distance_to(polygon.points.back());
    return lengths;
}

std::vector<float> polygon_angles_at_vertices(const Polygon &polygon, const std::vector<float> &lengths, float min_arm_length)
{
    assert(polygon.points.size() + 1 == lengths.size());
    if (min_arm_length > 0.25f * lengths.back())
        min_arm_length = 0.25f * lengths.back();

    // Find the initial prev / next point span.
    size_t idx_prev = polygon.points.size();
    size_t idx_curr = 0;
    size_t idx_next = 1;
    while (idx_prev > idx_curr && lengths.back() - lengths[idx_prev] < min_arm_length)
        -- idx_prev;
    while (idx_next < idx_prev && lengths[idx_next] < min_arm_length)
        ++ idx_next;

    std::vector<float> angles(polygon.points.size(), 0.f);
    for (; idx_curr < polygon.points.size(); ++ idx_curr) {
        // Move idx_prev up until the distance between idx_prev and idx_curr is lower than min_arm_length.
        if (idx_prev >= idx_curr) {
            while (idx_prev < polygon.points.size() && lengths.back() - lengths[idx_prev] + lengths[idx_curr] > min_arm_length)
                ++ idx_prev;
            if (idx_prev == polygon.points.size())
                idx_prev = 0;
        }
        while (idx_prev < idx_curr && lengths[idx_curr] - lengths[idx_prev] > min_arm_length)
            ++ idx_prev;
        // Move idx_prev one step back.
        if (idx_prev == 0)
            idx_prev = polygon.points.size() - 1;
        else
            -- idx_prev;
        // Move idx_next up until the distance between idx_curr and idx_next is greater than min_arm_length.
        if (idx_curr <= idx_next) {
            while (idx_next < polygon.points.size() && lengths[idx_next] - lengths[idx_curr] < min_arm_length)
                ++ idx_next;
            if (idx_next == polygon.points.size())
                idx_next = 0;
        }
        while (idx_next < idx_curr && lengths.back() - lengths[idx_curr] + lengths[idx_next] < min_arm_length)
            ++ idx_next;
        // Calculate angle between idx_prev, idx_curr, idx_next.
        const Point &p0 = polygon.points[idx_prev];
        const Point &p1 = polygon.points[idx_curr];
        const Point &p2 = polygon.points[idx_next];
        const Point  v1 = p0.vector_to(p1);
        const Point  v2 = p1.vector_to(p2);
		int64_t dot   = int64_t(v1.x)*int64_t(v2.x) + int64_t(v1.y)*int64_t(v2.y);
		int64_t cross = int64_t(v1.x)*int64_t(v2.y) - int64_t(v1.y)*int64_t(v2.x);
		float angle = float(atan2(double(cross), double(dot)));
        angles[idx_curr] = angle;
    }

    return angles;
}

std::string
GCode::extrude(ExtrusionLoop loop, std::string description, double speed)
{
    // get a copy; don't modify the orientation of the original loop object otherwise
    // next copies (if any) would not detect the correct orientation

    if (this->layer->lower_layer != NULL) {
        if (this->_lower_layer_edge_grid == NULL) {
            // Create the distance field for a layer below.
            const coord_t distance_field_resolution = scale_(1.f);
            this->_lower_layer_edge_grid = new EdgeGrid::Grid();
            this->_lower_layer_edge_grid->create(this->layer->lower_layer->slices, distance_field_resolution);
            this->_lower_layer_edge_grid->calculate_sdf();
            #if 0
            {
                static int iRun = 0;
                char path[2048];
                sprintf(path, "out\\GCode_extrude_loop_edge_grid-%d.png", iRun++);
                BoundingBox bbox = this->_lower_layer_edge_grid->bbox();
                bbox.min.x -= scale_(5.f);
                bbox.min.y -= scale_(5.f);
                bbox.max.x += scale_(5.f);
                bbox.max.y += scale_(5.f);
                EdgeGrid::save_png(*this->_lower_layer_edge_grid, bbox, scale_(0.1f), path);
            }
            #endif
        }
    }
  
    // extrude all loops ccw
    bool was_clockwise = loop.make_counter_clockwise();
    
    SeamPosition seam_position = this->config.seam_position;
    if (loop.role == elrSkirt) seam_position = spNearest;
    
    // find the point of the loop that is closest to the current extruder position
    // or randomize if requested
    Point last_pos = this->last_pos();
    if (this->config.spiral_vase) {
        loop.split_at(last_pos);
    } else if (seam_position == spNearest || seam_position == spAligned) {
        Polygon        polygon    = loop.polygon();
        const coordf_t nozzle_dmr = EXTRUDER_CONFIG(nozzle_diameter);
        const coord_t  nozzle_r   = scale_(0.5*nozzle_dmr);

        // Retrieve the last start position for this object.
        float last_pos_weight = 1.f;
        if (seam_position == spAligned && this->layer != NULL && this->_seam_position.count(this->layer->object()) > 0) {
            last_pos = this->_seam_position[this->layer->object()];
            last_pos_weight = 5.f;
        }

        // Insert a projection of last_pos into the polygon.
		size_t last_pos_proj_idx;
		{
			Points::iterator it = project_point_to_polygon_and_insert(polygon, last_pos, 0.1 * nozzle_r);
			last_pos_proj_idx = it - polygon.points.begin();
		}
        Point last_pos_proj = polygon.points[last_pos_proj_idx];
        // Parametrize the polygon by its length.
        std::vector<float> lengths = polygon_parameter_by_length(polygon);

        // For each polygon point, store a penalty.
        // First calculate the angles, store them as penalties. The angles are caluculated over a minimum arm length of nozzle_r.
        std::vector<float> penalties = polygon_angles_at_vertices(polygon, lengths, nozzle_r);
        // No penalty for reflex points, slight penalty for convex points, high penalty for flat surfaces.
        const float penaltyConvexVertex = 1.f;
        const float penaltyFlatSurface  = 5.f;
        const float penaltySeam         = 1.3f;
        const float penaltyOverhangHalf = 10.f;
        // Penalty for visible seams.
        for (size_t i = 0; i < polygon.points.size(); ++ i) {
            float ccwAngle = penalties[i];
            if (was_clockwise)
                ccwAngle = - ccwAngle;
            float penalty = 0;
//            if (ccwAngle <- float(PI/3.))
            if (ccwAngle <- float(0.6 * PI))
                // Sharp reflex vertex. We love that, it hides the seam perfectly.
                penalty = 0.f;
//            else if (ccwAngle > float(PI/3.))
            else if (ccwAngle > float(0.6 * PI))
                // Seams on sharp convex vertices are more visible than on reflex vertices.
                penalty = penaltyConvexVertex;
            else if (ccwAngle < 0.f) {
                // Interpolate penalty between maximum and zero.
                penalty = penaltyFlatSurface * bspline_kernel(ccwAngle * (PI * 2. / 3.));
            } else {
                assert(ccwAngle >= 0.f);
                // Interpolate penalty between maximum and the penalty for a convex vertex.
                penalty = penaltyConvexVertex + (penaltyFlatSurface - penaltyConvexVertex) * bspline_kernel(ccwAngle * (PI * 2. / 3.));
            }
            // Give a negative penalty for points close to the last point or the prefered seam location.
            //float dist_to_last_pos_proj = last_pos_proj.distance_to(polygon.points[i]);
            float dist_to_last_pos_proj = (i < last_pos_proj_idx) ? 
                std::min(lengths[last_pos_proj_idx] - lengths[i], lengths.back() - lengths[last_pos_proj_idx] + lengths[i]) : 
                std::min(lengths[i] - lengths[last_pos_proj_idx], lengths.back() - lengths[i] + lengths[last_pos_proj_idx]);
            float dist_max = 0.1f * lengths.back(); // 5.f * nozzle_dmr
            penalty -= last_pos_weight * bspline_kernel(dist_to_last_pos_proj / dist_max);
            penalties[i] = std::max(0.f, penalty);
        }

        // Penalty for overhangs.
        if (this->_lower_layer_edge_grid) {
            // Use the edge grid distance field structure over the lower layer to calculate overhangs.
            coord_t nozzle_r = scale_(0.5*nozzle_dmr);
            coord_t search_r = scale_(0.8*nozzle_dmr);
            for (size_t i = 0; i < polygon.points.size(); ++ i) {
                const Point &p = polygon.points[i];
                coordf_t dist;
                // Signed distance is positive outside the object, negative inside the object.
                // The point is considered at an overhang, if it is more than nozzle radius
                // outside of the lower layer contour.
                bool found = this->_lower_layer_edge_grid->signed_distance(p, search_r, dist);
                // If the approximate Signed Distance Field was initialized over this->_lower_layer_edge_grid,
                // then the signed distnace shall always be known.
                assert(found);
                penalties[i] += extrudate_overlap_penalty(nozzle_r, penaltyOverhangHalf, dist);
            }
        }

        // Find a point with a minimum penalty.
        size_t idx_min = std::min_element(penalties.begin(), penalties.end()) - penalties.begin();

        // Export the contour into a SVG file.
        #if 0
        {
            static int iRun = 0;
            char path[2048];
            sprintf(path, "out\\GCode_extrude_loop-%d.svg", iRun ++);
            SVG svg(path);
			if (this->layer->lower_layer != NULL)
				svg.draw(this->layer->lower_layer->slices.expolygons);
            for (size_t i = 0; i < loop.paths.size(); ++ i)
                svg.draw(loop.paths[i].as_polyline(), "red");
            Polylines polylines;
            for (size_t i = 0; i < loop.paths.size(); ++ i)
                polylines.push_back(loop.paths[i].as_polyline());
            Slic3r::Polygons polygons;
            coordf_t nozzle_dmr = EXTRUDER_CONFIG(nozzle_diameter);
            coord_t delta = scale_(0.5*nozzle_dmr);
            Slic3r::offset(polylines, &polygons, delta);
//            for (size_t i = 0; i < polygons.size(); ++ i) svg.draw((Polyline)polygons[i], "blue");
			svg.draw(last_pos, "green", 3);
			svg.draw(polygon.points[idx_min], "yellow", 3);
			svg.Close();
        }
        #endif

        // Split the loop at the point with a minium penalty.
        if (!loop.split_at_vertex(polygon.points[idx_min]))
            // The point is not in the original loop. Insert it.
            loop.split_at(polygon.points[idx_min]);

    } else if (seam_position == spRandom) {
        if (loop.role == elrContourInternalPerimeter) {
            // This loop does not contain any other loop. Set a random position.
            // The other loops will get a seam close to the random point chosen
            // on the inner most contour.
            //FIXME This works correctly for inner contours first only.
            //FIXME Better parametrize the loop by its length.
            Polygon polygon = loop.polygon();
            Point centroid = polygon.centroid();
            last_pos = Point(polygon.bounding_box().max.x, centroid.y);
            last_pos.rotate(fmod((float)rand()/16.0, 2.0*PI), centroid);
        }
        loop.split_at(last_pos);
    }
    
    // clip the path to avoid the extruder to get exactly on the first point of the loop;
    // if polyline was shorter than the clipping distance we'd get a null polyline, so
    // we discard it in that case
    double clip_length = this->enable_loop_clipping
        ? scale_(EXTRUDER_CONFIG(nozzle_diameter)) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER
        : 0;
    
    // get paths
    ExtrusionPaths paths;
    loop.clip_end(clip_length, &paths);
    if (paths.empty()) return "";
    
    // apply the small perimeter speed
    if (paths.front().is_perimeter() && loop.length() <= SMALL_PERIMETER_LENGTH) {
        if (speed == -1) speed = this->config.get_abs_value("small_perimeter_speed");
    }
    
    // extrude along the path
    std::string gcode;
    for (ExtrusionPaths::const_iterator path = paths.begin(); path != paths.end(); ++path)
//    description += ExtrusionLoopRole2String(loop.role);
//    description += ExtrusionRole2String(path->role);
        gcode += this->_extrude(*path, description, speed);
    
    // reset acceleration
    gcode += this->writer.set_acceleration(this->config.default_acceleration.value);
    
    if (this->wipe.enable)
        this->wipe.path = paths.front().polyline;  // TODO: don't limit wipe to last path
    
    // make a little move inwards before leaving loop
    if (paths.back().role == erExternalPerimeter && this->layer != NULL && this->config.perimeters > 1) {
        // detect angle between last and first segment
        // the side depends on the original winding order of the polygon (left for contours, right for holes)
        Point a = paths.front().polyline.points[1];  // second point
        Point b = *(paths.back().polyline.points.end()-3);       // second to last point
        if (was_clockwise) {
            // swap points
            Point c = a; a = b; b = c;
        }
        
        double angle = paths.front().first_point().ccw_angle(a, b) / 3;
        
        // turn left if contour, turn right if hole
        if (was_clockwise) angle *= -1;
        
        // create the destination point along the first segment and rotate it
        // we make sure we don't exceed the segment length because we don't know
        // the rotation of the second segment so we might cross the object boundary
        Line first_segment(
            paths.front().polyline.points[0],
            paths.front().polyline.points[1]
        );
        double distance = std::min(
            scale_(EXTRUDER_CONFIG(nozzle_diameter)),
            first_segment.length()
        );
        Point point = first_segment.point_at(distance);
        point.rotate(angle, first_segment.a);
        
        // generate the travel move
        gcode += this->writer.travel_to_xy(this->point_to_gcode(point), "move inwards before travel");
    }
    
    return gcode;
}

std::string
GCode::extrude(const ExtrusionEntity &entity, std::string description, double speed)
{
    if (const ExtrusionPath* path = dynamic_cast<const ExtrusionPath*>(&entity)) {
        return this->extrude(*path, description, speed);
    } else if (const ExtrusionLoop* loop = dynamic_cast<const ExtrusionLoop*>(&entity)) {
        return this->extrude(*loop, description, speed);
    } else {
        CONFESS("Invalid argument supplied to extrude()");
        return "";
    }
}

std::string
GCode::extrude(const ExtrusionPath &path, std::string description, double speed)
{
//    description += ExtrusionRole2String(path.role);
    std::string gcode = this->_extrude(path, description, speed);
    
    // reset acceleration
    gcode += this->writer.set_acceleration(this->config.default_acceleration.value);
    
    return gcode;
}

std::string
GCode::_extrude(ExtrusionPath path, std::string description, double speed)
{
    path.simplify(SCALED_RESOLUTION);
    
    std::string gcode;
    
    // go to first point of extrusion path
    if (!this->_last_pos_defined || !this->_last_pos.coincides_with(path.first_point())) {
        gcode += this->travel_to(
            path.first_point(),
            path.role,
            "move to first " + description + " point"
        );
    }
    
    // compensate retraction
    gcode += this->unretract();
    
    // adjust acceleration
    {
        double acceleration;
        if (this->config.first_layer_acceleration.value > 0 && this->first_layer) {
            acceleration = this->config.first_layer_acceleration.value;
        } else if (this->config.perimeter_acceleration.value > 0 && path.is_perimeter()) {
            acceleration = this->config.perimeter_acceleration.value;
        } else if (this->config.bridge_acceleration.value > 0 && path.is_bridge()) {
            acceleration = this->config.bridge_acceleration.value;
        } else if (this->config.infill_acceleration.value > 0 && path.is_infill()) {
            acceleration = this->config.infill_acceleration.value;
        } else {
            acceleration = this->config.default_acceleration.value;
        }
        gcode += this->writer.set_acceleration(acceleration);
    }
    
    // calculate extrusion length per distance unit
    double e_per_mm = this->writer.extruder()->e_per_mm3 * path.mm3_per_mm;
    if (this->writer.extrusion_axis().empty()) e_per_mm = 0;
    
    // set speed
    if (speed == -1) {
        if (path.role == erPerimeter) {
            speed = this->config.get_abs_value("perimeter_speed");
        } else if (path.role == erExternalPerimeter) {
            speed = this->config.get_abs_value("external_perimeter_speed");
        } else if (path.role == erOverhangPerimeter || path.role == erBridgeInfill) {
            speed = this->config.get_abs_value("bridge_speed");
        } else if (path.role == erInternalInfill) {
            speed = this->config.get_abs_value("infill_speed");
        } else if (path.role == erSolidInfill) {
            speed = this->config.get_abs_value("solid_infill_speed");
        } else if (path.role == erTopSolidInfill) {
            speed = this->config.get_abs_value("top_solid_infill_speed");
        } else if (path.role == erGapFill) {
            speed = this->config.get_abs_value("gap_fill_speed");
        } else {
            CONFESS("Invalid speed");
        }
    }
    if (this->first_layer) {
        speed = this->config.get_abs_value("first_layer_speed", speed);
    }
    if (this->volumetric_speed != 0 && speed == 0) {
        speed = this->volumetric_speed / path.mm3_per_mm;
    }
    if (this->config.max_volumetric_speed.value > 0) {
        // cap speed with max_volumetric_speed anyway (even if user is not using autospeed)
        speed = std::min(
            speed,
            this->config.max_volumetric_speed.value / path.mm3_per_mm
        );
    }
    double F = speed * 60;  // convert mm/sec to mm/min
    
    // extrude arc or line
    if (this->enable_extrusion_role_markers || this->enable_analyzer_markers) {
        if (path.role != this->_last_extrusion_role) {
            this->_last_extrusion_role = path.role;
            char buf[32];
            sprintf(buf, ";_EXTRUSION_ROLE:%d\n", int(path.role));
            gcode += buf;
        }
    }
    if (path.is_bridge() && this->enable_cooling_markers)
        gcode += ";_BRIDGE_FAN_START\n";
    gcode += this->writer.set_speed(F, "", this->enable_cooling_markers ? ";_EXTRUDE_SET_SPEED" : "");
    double path_length = 0;
    {
        std::string comment = this->config.gcode_comments ? description : "";
        Lines lines = path.polyline.lines();
        for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
            const double line_length = line->length() * SCALING_FACTOR;
            path_length += line_length;
            
            gcode += this->writer.extrude_to_xy(
                this->point_to_gcode(line->b),
                e_per_mm * line_length,
                comment
            );
        }
    }
    if (this->wipe.enable) {
        this->wipe.path = path.polyline;
        this->wipe.path.reverse();
    }
    if (path.is_bridge() && this->enable_cooling_markers)
        gcode += ";_BRIDGE_FAN_END\n";
    
    this->set_last_pos(path.last_point());
    
    if (this->config.cooling)
        this->elapsed_time += path_length / F * 60;
    
    return gcode;
}

// This method accepts &point in print coordinates.
std::string
GCode::travel_to(const Point &point, ExtrusionRole role, std::string comment)
{    
    /*  Define the travel move as a line between current position and the taget point.
        This is expressed in print coordinates, so it will need to be translated by
        this->origin in order to get G-code coordinates.  */
    Polyline travel;
    travel.append(this->last_pos());
    travel.append(point);
    
    // check whether a straight travel move would need retraction
    bool needs_retraction = this->needs_retraction(travel, role);
    
    // if a retraction would be needed, try to use avoid_crossing_perimeters to plan a
    // multi-hop travel path inside the configuration space
    if (needs_retraction
        && this->config.avoid_crossing_perimeters
        && !this->avoid_crossing_perimeters.disable_once) {
        travel = this->avoid_crossing_perimeters.travel_to(*this, point);
        
        // check again whether the new travel path still needs a retraction
        needs_retraction = this->needs_retraction(travel, role);
        //if (needs_retraction && this->layer_index > 1) exit(0);
    }
    
    // Re-allow avoid_crossing_perimeters for the next travel moves
    this->avoid_crossing_perimeters.disable_once = false;
    this->avoid_crossing_perimeters.use_external_mp_once = false;
    
    // generate G-code for the travel move
    std::string gcode;
    if (needs_retraction) gcode += this->retract();
    
    // use G1 because we rely on paths being straight (G0 may make round paths)
    Lines lines = travel.lines();
    double path_length = 0;
    for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
	    const double line_length = line->length() * SCALING_FACTOR;
	    path_length += line_length;

	    gcode += this->writer.travel_to_xy(this->point_to_gcode(line->b), comment);
    }

    if (this->config.cooling)
        this->elapsed_time += path_length / this->config.get_abs_value("travel_speed");

    return gcode;
}

bool
GCode::needs_retraction(const Polyline &travel, ExtrusionRole role)
{
    if (travel.length() < scale_(EXTRUDER_CONFIG(retract_before_travel))) {
        // skip retraction if the move is shorter than the configured threshold
        return false;
    }
    
    if (role == erSupportMaterial) {
        const SupportLayer* support_layer = dynamic_cast<const SupportLayer*>(this->layer);
        if (support_layer != NULL && support_layer->support_islands.contains(travel)) {
            // skip retraction if this is a travel move inside a support material island
            return false;
        }
    }
    
    if (this->config.only_retract_when_crossing_perimeters && this->layer != NULL) {
        if (this->config.fill_density.value > 0
            && this->layer->any_internal_region_slice_contains(travel)) {
            /*  skip retraction if travel is contained in an internal slice *and*
                internal infill is enabled (so that stringing is entirely not visible)  */
            return false;
        } else if (this->layer->any_bottom_region_slice_contains(travel)
            && this->layer->upper_layer != NULL
            && this->layer->upper_layer->slices.contains(travel)
            && (this->config.bottom_solid_layers.value >= 2 || this->config.fill_density.value > 0)) {
            /*  skip retraction if travel is contained in an *infilled* bottom slice
                but only if it's also covered by an *infilled* upper layer's slice
                so that it's not visible from above (a bottom surface might not have an
                upper slice in case of a thin membrane)  */
            return false;
        }
    }
    
    // retract if only_retract_when_crossing_perimeters is disabled or doesn't apply
    return true;
}

std::string
GCode::retract(bool toolchange)
{
    std::string gcode;
    
    if (this->writer.extruder() == NULL)
        return gcode;
    
    // wipe (if it's enabled for this extruder and we have a stored wipe path)
    if (EXTRUDER_CONFIG(wipe) && this->wipe.has_path()) {
        gcode += this->wipe.wipe(*this, toolchange);
    }
    
    /*  The parent class will decide whether we need to perform an actual retraction
        (the extruder might be already retracted fully or partially). We call these 
        methods even if we performed wipe, since this will ensure the entire retraction
        length is honored in case wipe path was too short.  */
    gcode += toolchange ? this->writer.retract_for_toolchange() : this->writer.retract();
    
    gcode += this->writer.reset_e();
    if (this->writer.extruder()->retract_length() > 0 || this->config.use_firmware_retraction)
        gcode += this->writer.lift();
    
    return gcode;
}

std::string
GCode::unretract()
{
    std::string gcode;
    gcode += this->writer.unlift();
    gcode += this->writer.unretract();
    return gcode;
}

std::string
GCode::set_extruder(unsigned int extruder_id)
{
    this->placeholder_parser->set("current_extruder", extruder_id);
    if (!this->writer.need_toolchange(extruder_id))
        return "";
    
    // if we are running a single-extruder setup, just set the extruder and return nothing
    if (!this->writer.multiple_extruders) {
        return this->writer.toolchange(extruder_id);
    }
    
    // prepend retraction on the current extruder
    std::string gcode = this->retract(true);
    
    // append custom toolchange G-code
    if (this->writer.extruder() != NULL && !this->config.toolchange_gcode.value.empty()) {
        PlaceholderParser pp = *this->placeholder_parser;
        pp.set("previous_extruder", this->writer.extruder()->id);
        pp.set("next_extruder",     extruder_id);
        gcode += pp.process(this->config.toolchange_gcode.value) + '\n';
    }
    
    // if ooze prevention is enabled, park current extruder in the nearest
    // standby point and set it to the standby temperature
    if (this->ooze_prevention.enable && this->writer.extruder() != NULL)
        gcode += this->ooze_prevention.pre_toolchange(*this);
    
    // append the toolchange command
    gcode += this->writer.toolchange(extruder_id);
    
    // set the new extruder to the operating temperature
    if (this->ooze_prevention.enable)
        gcode += this->ooze_prevention.post_toolchange(*this);
    
    return gcode;
}

// convert a model-space scaled point into G-code coordinates
Pointf
GCode::point_to_gcode(const Point &point)
{
    Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
    return Pointf(
        unscale(point.x) + this->origin.x - extruder_offset.x,
        unscale(point.y) + this->origin.y - extruder_offset.y
    );
}

}