Welcome to mirror list, hosted at ThFree Co, Russian Federation.

GCode.cpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 478864e7445b8430143cb4c18baf300881203306 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
#include "GCode.hpp"
#include "ExtrusionEntity.hpp"
#include "EdgeGrid.hpp"
#include "Geometry.hpp"
#include "GCode/PrintExtents.hpp"
#include "GCode/WipeTowerPrusaMM.hpp"

#include <algorithm>
#include <cstdlib>
#include <math.h>

#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/find.hpp>
#include <boost/date_time/local_time/local_time.hpp>
#include <boost/foreach.hpp>

#include <boost/nowide/iostream.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/nowide/cstdlib.hpp>

#include "SVG.hpp"

#if 0
// Enable debugging and asserts, even in the release build.
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif

#include <assert.h>

namespace Slic3r {
    
// Plan a travel move while minimizing the number of perimeter crossings.
// point is in unscaled coordinates, in the coordinate system of the current active object
// (set by gcodegen.set_origin()).
Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point) 
{
    // If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
    // Otherwise perform the path planning in the coordinate system of the active object.
    bool  use_external  = this->use_external_mp || this->use_external_mp_once;
    Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin().x, gcodegen.origin().y) : Point(0, 0);
    Polyline result = (use_external ? m_external_mp.get() : m_layer_mp.get())->
        shortest_path(gcodegen.last_pos() + scaled_origin, point + scaled_origin);
    if (use_external)
        result.translate(scaled_origin.negative());
    return result;
}

std::string OozePrevention::pre_toolchange(GCode &gcodegen)
{
    std::string gcode;
    
    // move to the nearest standby point
    if (!this->standby_points.empty()) {
        // get current position in print coordinates
        Pointf3 writer_pos = gcodegen.writer().get_position();
        Point pos = Point::new_scale(writer_pos.x, writer_pos.y);
        
        // find standby point
        Point standby_point;
        pos.nearest_point(this->standby_points, &standby_point);
        
        /*  We don't call gcodegen.travel_to() because we don't need retraction (it was already
            triggered by the caller) nor avoid_crossing_perimeters and also because the coordinates
            of the destination point must not be transformed by origin nor current extruder offset.  */
        gcode += gcodegen.writer().travel_to_xy(Pointf::new_unscale(standby_point), 
            "move to standby position");
    }
    
    if (gcodegen.config().standby_temperature_delta.value != 0) {
        // we assume that heating is always slower than cooling, so no need to block
        gcode += gcodegen.writer().set_temperature
            (this->_get_temp(gcodegen) + gcodegen.config().standby_temperature_delta.value, false);
    }
    
    return gcode;
}

std::string OozePrevention::post_toolchange(GCode &gcodegen)
{
    return (gcodegen.config().standby_temperature_delta.value != 0) ?
        gcodegen.writer().set_temperature(this->_get_temp(gcodegen), true) :
        std::string();
}

int
OozePrevention::_get_temp(GCode &gcodegen)
{
    return (gcodegen.layer() != NULL && gcodegen.layer()->id() == 0)
        ? gcodegen.config().first_layer_temperature.get_at(gcodegen.writer().extruder()->id())
        : gcodegen.config().temperature.get_at(gcodegen.writer().extruder()->id());
}

std::string
Wipe::wipe(GCode &gcodegen, bool toolchange)
{
    std::string gcode;
    
    /*  Reduce feedrate a bit; travel speed is often too high to move on existing material.
        Too fast = ripping of existing material; too slow = short wipe path, thus more blob.  */
    double wipe_speed = gcodegen.writer().config.travel_speed.value * 0.8;
    
    // get the retraction length
    double length = toolchange
        ? gcodegen.writer().extruder()->retract_length_toolchange()
        : gcodegen.writer().extruder()->retract_length();
    // Shorten the retraction length by the amount already retracted before wipe.
    length *= (1. - gcodegen.writer().extruder()->retract_before_wipe());

    if (length > 0) {
        /*  Calculate how long we need to travel in order to consume the required
            amount of retraction. In other words, how far do we move in XY at wipe_speed
            for the time needed to consume retract_length at retract_speed?  */
        double wipe_dist = scale_(length / gcodegen.writer().extruder()->retract_speed() * wipe_speed);
    
        /*  Take the stored wipe path and replace first point with the current actual position
            (they might be different, for example, in case of loop clipping).  */
        Polyline wipe_path;
        wipe_path.append(gcodegen.last_pos());
        wipe_path.append(
            this->path.points.begin() + 1,
            this->path.points.end()
        );
        
        wipe_path.clip_end(wipe_path.length() - wipe_dist);
    
        // subdivide the retraction in segments
        for (const Line &line : wipe_path.lines()) {
            double segment_length = line.length();
            /*  Reduce retraction length a bit to avoid effective retraction speed to be greater than the configured one
                due to rounding (TODO: test and/or better math for this)  */
            double dE = length * (segment_length / wipe_dist) * 0.95;
            //FIXME one shall not generate the unnecessary G1 Fxxx commands, here wipe_speed is a constant inside this cycle.
            // Is it here for the cooling markers? Or should it be outside of the cycle?
            gcode += gcodegen.writer().set_speed(wipe_speed*60, "", gcodegen.enable_cooling_markers() ? ";_WIPE" : "");
            gcode += gcodegen.writer().extrude_to_xy(
                gcodegen.point_to_gcode(line.b),
                -dE,
                "wipe and retract"
            );
        }
        
        // prevent wiping again on same path
        this->reset_path();
    }
    
    return gcode;
}

static inline Point wipe_tower_point_to_object_point(GCode &gcodegen, const WipeTower::xy &wipe_tower_pt)
{
    return Point(scale_(wipe_tower_pt.x - gcodegen.origin().x), scale_(wipe_tower_pt.y - gcodegen.origin().y));
}

std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const
{
    std::string gcode;

    // Move over the wipe tower.
    // Retract for a tool change, using the toolchange retract value and setting the priming extra length.
    gcode += gcodegen.retract(true);
    gcodegen.m_avoid_crossing_perimeters.use_external_mp_once = true;
    gcode += gcodegen.travel_to(
        wipe_tower_point_to_object_point(gcodegen, tcr.start_pos),
        erMixed,
        "Travel to a Wipe Tower");
    gcode += gcodegen.unretract();

    // Let the tool change be executed by the wipe tower class.
    // Inform the G-code writer about the changes done behind its back.
    gcode += tcr.gcode;
    // Let the m_writer know the current extruder_id, but ignore the generated G-code.
	if (new_extruder_id >= 0 && gcodegen.writer().need_toolchange(new_extruder_id))
        gcodegen.writer().toolchange(new_extruder_id);
    // A phony move to the end position at the wipe tower.
    gcodegen.writer().travel_to_xy(Pointf(tcr.end_pos.x, tcr.end_pos.y));
    gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, tcr.end_pos));

    // Prepare a future wipe.
    gcodegen.m_wipe.path.points.clear();
    if (new_extruder_id >= 0) {
        // Start the wipe at the current position.
        gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, tcr.end_pos));
        // Wipe end point: Wipe direction away from the closer tower edge to the further tower edge.
        gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, 
            WipeTower::xy((std::abs(m_left - tcr.end_pos.x) < std::abs(m_right - tcr.end_pos.x)) ? m_right : m_left,
            tcr.end_pos.y)));
    }

    // Let the planner know we are traveling between objects.
    gcodegen.m_avoid_crossing_perimeters.use_external_mp_once = true;
    return gcode;
}

std::string WipeTowerIntegration::prime(GCode &gcodegen)
{
    assert(m_layer_idx == 0);
    std::string gcode;

    if (&m_priming != nullptr && ! m_priming.extrusions.empty()) {
        // Let the tool change be executed by the wipe tower class.
        // Inform the G-code writer about the changes done behind its back.
        gcode += m_priming.gcode;
        // Let the m_writer know the current extruder_id, but ignore the generated G-code.
        gcodegen.writer().toolchange(m_priming.extrusions.back().tool);
        // A phony move to the end position at the wipe tower.
        gcodegen.writer().travel_to_xy(Pointf(m_priming.end_pos.x, m_priming.end_pos.y));
        gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, m_priming.end_pos));

        // Prepare a future wipe.
        gcodegen.m_wipe.path.points.clear();
        // Start the wipe at the current position.
        gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, m_priming.end_pos));
        // Wipe end point: Wipe direction away from the closer tower edge to the further tower edge.
        gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, 
            WipeTower::xy((std::abs(m_left - m_priming.end_pos.x) < std::abs(m_right - m_priming.end_pos.x)) ? m_right : m_left,
            m_priming.end_pos.y)));
    }
    return gcode;
}

std::string WipeTowerIntegration::prime_single_color_print(const Print & /* print */, unsigned int initial_tool, GCode & /* gcodegen */)
{
    std::string gcode = "\
G1 Z0.250 F7200.000\n\
G1 X50.0 E80.0  F1000.0\n\
G1 X160.0 E20.0  F1000.0\n\
G1 Z0.200 F7200.000\n\
G1 X220.0 E13 F1000.0\n\
G1 X240.0 E0 F1000.0\n\
G1 E-4 F1000.0\n";
    return gcode;
}

std::string WipeTowerIntegration::tool_change(GCode &gcodegen, int extruder_id, bool finish_layer)
{
    std::string gcode;
	assert(m_layer_idx >= 0 && m_layer_idx <= m_tool_changes.size());
    if (! m_brim_done || gcodegen.writer().need_toolchange(extruder_id) || finish_layer) {
		if (m_layer_idx < m_tool_changes.size()) {
			assert(m_tool_change_idx < m_tool_changes[m_layer_idx].size());
			gcode += append_tcr(gcodegen, m_tool_changes[m_layer_idx][m_tool_change_idx++], extruder_id);
		}
        m_brim_done = true;
    }
    return gcode;
}

// Print is finished. Now it remains to unload the filament safely with ramming over the wipe tower.
std::string WipeTowerIntegration::finalize(GCode &gcodegen)
{
    std::string gcode;
    if (std::abs(gcodegen.writer().get_position().z - m_final_purge.print_z) > EPSILON)
        gcode += gcodegen.change_layer(m_final_purge.print_z);
    gcode += append_tcr(gcodegen, m_final_purge, -1);
    return gcode;
}

#define EXTRUDER_CONFIG(OPT) m_config.OPT.get_at(m_writer.extruder()->id())

inline void write(FILE *file, const std::string &what)
{
    fwrite(what.data(), 1, what.size(), file);
}

inline void writeln(FILE *file, const std::string &what)
{
    if (! what.empty()) {
        write(file, what);
        fprintf(file, "\n");
    }
}

// Collect pairs of object_layer + support_layer sorted by print_z.
// object_layer & support_layer are considered to be on the same print_z, if they are not further than EPSILON.
std::vector<GCode::LayerToPrint> GCode::collect_layers_to_print(const PrintObject &object)
{
    std::vector<GCode::LayerToPrint> layers_to_print;
    layers_to_print.reserve(object.layers.size() + object.support_layers.size());

    // Pair the object layers with the support layers by z.
    size_t idx_object_layer  = 0;
    size_t idx_support_layer = 0;
    while (idx_object_layer < object.layers.size() || idx_support_layer < object.support_layers.size()) {
        LayerToPrint layer_to_print;
        layer_to_print.object_layer  = (idx_object_layer < object.layers.size()) ? object.layers[idx_object_layer ++] : nullptr;
        layer_to_print.support_layer = (idx_support_layer < object.support_layers.size()) ? object.support_layers[idx_support_layer ++] : nullptr;
        if (layer_to_print.object_layer && layer_to_print.support_layer) {
            if (layer_to_print.object_layer->print_z < layer_to_print.support_layer->print_z - EPSILON) {
                layer_to_print.support_layer = nullptr;
                -- idx_support_layer;
            } else if (layer_to_print.support_layer->print_z < layer_to_print.object_layer->print_z - EPSILON) {
                layer_to_print.object_layer = nullptr;
                -- idx_object_layer;
            }
        }
        layers_to_print.emplace_back(layer_to_print);
    }

    return layers_to_print;
}

// Prepare for non-sequential printing of multiple objects: Support resp. object layers with nearly identical print_z 
// will be printed for  all objects at once.
// Return a list of <print_z, per object LayerToPrint> items.
std::vector<std::pair<coordf_t, std::vector<GCode::LayerToPrint>>> GCode::collect_layers_to_print(const Print &print)
{
    struct OrderingItem {
        coordf_t    print_z;
        size_t      object_idx;
        size_t      layer_idx;
    };
    std::vector<std::vector<LayerToPrint>>  per_object(print.objects.size(), std::vector<LayerToPrint>());
    std::vector<OrderingItem>               ordering;
    for (size_t i = 0; i < print.objects.size(); ++ i) {
        per_object[i] = collect_layers_to_print(*print.objects[i]);
        OrderingItem ordering_item;
        ordering_item.object_idx = i;
        ordering.reserve(ordering.size() + per_object[i].size());
        const LayerToPrint &front = per_object[i].front();
        for (const LayerToPrint &ltp : per_object[i]) {
            ordering_item.print_z   = ltp.print_z();
            ordering_item.layer_idx = &ltp - &front;
            ordering.emplace_back(ordering_item);
        }
    }

    std::sort(ordering.begin(), ordering.end(), [](const OrderingItem &oi1, const OrderingItem &oi2) { return oi1.print_z < oi2.print_z; });

    std::vector<std::pair<coordf_t, std::vector<LayerToPrint>>> layers_to_print;
    // Merge numerically very close Z values.
    for (size_t i = 0; i < ordering.size();) {
        // Find the last layer with roughly the same print_z.
        size_t j = i + 1;
        coordf_t zmax = ordering[i].print_z + EPSILON;
        for (; j < ordering.size() && ordering[j].print_z <= zmax; ++ j) ;
        // Merge into layers_to_print.
        std::pair<coordf_t, std::vector<LayerToPrint>> merged;
        // Assign an average print_z to the set of layers with nearly equal print_z.
        merged.first = 0.5 * (ordering[i].print_z + ordering[j-1].print_z);
        merged.second.assign(print.objects.size(), LayerToPrint());
        for (; i < j; ++ i) {
            const OrderingItem &oi = ordering[i];
            assert(merged.second[oi.object_idx].layer() == nullptr);
            merged.second[oi.object_idx] = std::move(per_object[oi.object_idx][oi.layer_idx]);
        }
        layers_to_print.emplace_back(std::move(merged));
    }

    return layers_to_print;
}

bool GCode::do_export(Print *print, const char *path)
{
    // Remove the old g-code if it exists.
    boost::nowide::remove(path);

    std::string path_tmp(path);
    path_tmp += ".tmp";

    FILE *file = boost::nowide::fopen(path_tmp.c_str(), "wb");
    if (file == nullptr)
        return false;

    bool result = this->_do_export(*print, file);
    fclose(file);

    if (result && boost::nowide::rename(path_tmp.c_str(), path) != 0) {
        boost::nowide::cerr << "Failed to remove the output G-code file from " << path_tmp << " to " << path
            << ". Is " << path_tmp << " locked?" << std::endl;
        result = false;
    }

    if (! result)
        boost::nowide::remove(path_tmp.c_str());
    return result;
}

bool GCode::_do_export(Print &print, FILE *file)
{
    // How many times will be change_layer() called?
    // change_layer() in turn increments the progress bar status.
    m_layer_count = 0;
    if (print.config.complete_objects.value) {
        // Add each of the object's layers separately.
        for (auto object : print.objects) {
            std::vector<coordf_t> zs;
            zs.reserve(object->layers.size() + object->support_layers.size());
            for (auto layer : object->layers)
                zs.push_back(layer->print_z);
            for (auto layer : object->support_layers)
                zs.push_back(layer->print_z);
            std::sort(zs.begin(), zs.end());
            m_layer_count += (unsigned int)(object->copies().size() * (std::unique(zs.begin(), zs.end()) - zs.begin()));
        }
    } else {
        // Print all objects with the same print_z together.
        std::vector<coordf_t> zs;
        for (auto object : print.objects) {
            zs.reserve(zs.size() + object->layers.size() + object->support_layers.size());
            for (auto layer : object->layers)
                zs.push_back(layer->print_z);
            for (auto layer : object->support_layers)
                zs.push_back(layer->print_z);
        }
        std::sort(zs.begin(), zs.end());
        m_layer_count = (unsigned int)(std::unique(zs.begin(), zs.end()) - zs.begin());
    }

    m_enable_cooling_markers = true;
    this->apply_print_config(print.config);
    this->set_extruders(print.extruders());
    
    // Initialize autospeed.
    {
        // get the minimum cross-section used in the print
        std::vector<double> mm3_per_mm;
        for (auto object : print.objects) {
            for (size_t region_id = 0; region_id < print.regions.size(); ++ region_id) {
                auto region = print.regions[region_id];
                for (auto layer : object->layers) {
                    auto layerm = layer->regions[region_id];
                    if (region->config.get_abs_value("perimeter_speed"          ) == 0 || 
                        region->config.get_abs_value("small_perimeter_speed"    ) == 0 || 
                        region->config.get_abs_value("external_perimeter_speed" ) == 0 || 
                        region->config.get_abs_value("bridge_speed"             ) == 0)
                        mm3_per_mm.push_back(layerm->perimeters.min_mm3_per_mm());
                    if (region->config.get_abs_value("infill_speed"             ) == 0 || 
                        region->config.get_abs_value("solid_infill_speed"       ) == 0 || 
                        region->config.get_abs_value("top_solid_infill_speed"   ) == 0 || 
                        region->config.get_abs_value("bridge_speed"             ) == 0)
                        mm3_per_mm.push_back(layerm->fills.min_mm3_per_mm());
                }
            }
            if (object->config.get_abs_value("support_material_speed"           ) == 0 || 
                object->config.get_abs_value("support_material_interface_speed" ) == 0)
                for (auto layer : object->support_layers)
                    mm3_per_mm.push_back(layer->support_fills.min_mm3_per_mm());
        }
        // filter out 0-width segments
        mm3_per_mm.erase(std::remove_if(mm3_per_mm.begin(), mm3_per_mm.end(), [](double v) { return v < 0.000001; }), mm3_per_mm.end());
        if (! mm3_per_mm.empty()) {
            // In order to honor max_print_speed we need to find a target volumetric
            // speed that we can use throughout the print. So we define this target 
            // volumetric speed as the volumetric speed produced by printing the 
            // smallest cross-section at the maximum speed: any larger cross-section
            // will need slower feedrates.
            m_volumetric_speed = *std::min_element(mm3_per_mm.begin(), mm3_per_mm.end()) * print.config.max_print_speed.value;
            // limit such volumetric speed with max_volumetric_speed if set
            if (print.config.max_volumetric_speed.value > 0)
                m_volumetric_speed = std::min(m_volumetric_speed, print.config.max_volumetric_speed.value);
        }
    }
    
    m_cooling_buffer = make_unique<CoolingBuffer>(*this);
    if (print.config.spiral_vase.value)
        m_spiral_vase = make_unique<SpiralVase>(print.config);
    if (print.config.max_volumetric_extrusion_rate_slope_positive.value > 0 ||
        print.config.max_volumetric_extrusion_rate_slope_negative.value > 0)
        m_pressure_equalizer = make_unique<PressureEqualizer>(&print.config);
    m_enable_extrusion_role_markers = (bool)m_pressure_equalizer;

    // Write information on the generator.
    {
        const auto now = boost::posix_time::second_clock::local_time();
        const auto date = now.date();
        fprintf(file, "; generated by Slic3r %s on %04d-%02d-%02d at %02d:%02d:%02d\n\n",
            SLIC3R_VERSION,
            // Local date in an ANSII format.
            int(now.date().year()), int(now.date().month()), int(now.date().day()),
            int(now.time_of_day().hours()), int(now.time_of_day().minutes()), int(now.time_of_day().seconds()));
    }
    // Write notes (content of the Print Settings tab -> Notes)
    {
        std::list<std::string> lines;
        boost::split(lines, print.config.notes.value, boost::is_any_of("\n"), boost::token_compress_off);
        for (auto line : lines) {
            // Remove the trailing '\r' from the '\r\n' sequence.
            if (! line.empty() && line.back() == '\r')
                line.pop_back();
            fprintf(file, "; %s\n", line.c_str());
        }
        if (! lines.empty())
            fprintf(file, "\n");
    }
    // Write some terse information on the slicing parameters.
    {
        const PrintObject *first_object = print.objects.front();
        const double       layer_height = first_object->config.layer_height.value;
        for (size_t region_id = 0; region_id < print.regions.size(); ++ region_id) {
            auto region = print.regions[region_id];
            fprintf(file, "; external perimeters extrusion width = %.2fmm\n", region->flow(frExternalPerimeter, layer_height, false, false, -1., *first_object).width);
            fprintf(file, "; perimeters extrusion width = %.2fmm\n",          region->flow(frPerimeter,         layer_height, false, false, -1., *first_object).width);
            fprintf(file, "; infill extrusion width = %.2fmm\n",              region->flow(frInfill,            layer_height, false, false, -1., *first_object).width);
            fprintf(file, "; solid infill extrusion width = %.2fmm\n",        region->flow(frSolidInfill,       layer_height, false, false, -1., *first_object).width);
            fprintf(file, "; top infill extrusion width = %.2fmm\n",          region->flow(frTopSolidInfill,    layer_height, false, false, -1., *first_object).width);
            if (print.has_support_material())
                fprintf(file, "; support material extrusion width = %.2fmm\n", support_material_flow(first_object).width);
            if (print.config.first_layer_extrusion_width.value > 0)
                fprintf(file, "; first layer extrusion width = %.2fmm\n",   region->flow(frPerimeter, layer_height, false, true, -1., *first_object).width);
            fprintf(file, "\n");
        }
    }
    
    // Prepare the helper object for replacing placeholders in custom G-code and output filename.
    m_placeholder_parser = print.placeholder_parser;
    m_placeholder_parser.update_timestamp();

    // Get optimal tool ordering to minimize tool switches of a multi-exruder print.
    // For a print by objects, find the 1st printing object.
    ToolOrdering tool_ordering;
    unsigned int initial_extruder_id = (unsigned int)-1;
    unsigned int final_extruder_id   = (unsigned int)-1;
    size_t       initial_print_object_id = 0;
    if (print.config.complete_objects.value) {
		// Find the 1st printing object, find its tool ordering and the initial extruder ID.
		for (; initial_print_object_id < print.objects.size(); ++initial_print_object_id) {
			tool_ordering = ToolOrdering(*print.objects[initial_print_object_id], initial_extruder_id);
			if ((initial_extruder_id = tool_ordering.first_extruder()) != (unsigned int)-1)
				break;
		}
	} else {
		// Find tool ordering for all the objects at once, and the initial extruder ID.
        // If the tool ordering has been pre-calculated by Print class for wipe tower already, reuse it.
		tool_ordering = print.m_tool_ordering.empty() ?
            ToolOrdering(print, initial_extruder_id) :
            print.m_tool_ordering;
		initial_extruder_id = tool_ordering.first_extruder();
    }
    if (initial_extruder_id == (unsigned int)-1) {
        // Nothing to print!
        initial_extruder_id = 0;
        final_extruder_id   = 0;
    } else {
        final_extruder_id = tool_ordering.last_extruder();
        assert(final_extruder_id != (unsigned int)-1);
    }

    m_cooling_buffer->set_current_extruder(initial_extruder_id);

    // Disable fan.
    if (! print.config.cooling.get_at(initial_extruder_id) || print.config.disable_fan_first_layers.get_at(initial_extruder_id))
        write(file, m_writer.set_fan(0, true));
    
    // Set bed temperature if the start G-code does not contain any bed temp control G-codes.
    {
        // Always call m_writer.set_bed_temperature() so it will set the internal "current" state of the bed temp as if
        // the custom start G-code emited these.
        //FIXME Should one parse the custom G-code to initialize the "current" bed temp state at m_writer?
        std::string gcode = m_writer.set_bed_temperature(print.config.first_layer_bed_temperature.get_at(initial_extruder_id), true);
        if (boost::ifind_first(print.config.start_gcode.value, std::string("M140")).empty() &&
            boost::ifind_first(print.config.start_gcode.value, std::string("M190")).empty())
            write(file, gcode);
    }

    // Set extruder(s) temperature before and after start G-code.
    this->_print_first_layer_extruder_temperatures(file, print, initial_extruder_id, false);
    // Let the start-up script prime the 1st printing tool.
    m_placeholder_parser.set("initial_tool", initial_extruder_id);
    m_placeholder_parser.set("initial_extruder", initial_extruder_id);
    m_placeholder_parser.set("current_extruder", initial_extruder_id);
    writeln(file, m_placeholder_parser.process(print.config.start_gcode.value, initial_extruder_id));
    // Process filament-specific gcode in extruder order.
    for (const std::string &start_gcode : print.config.start_filament_gcode.values)
        writeln(file, m_placeholder_parser.process(start_gcode, (unsigned int)(&start_gcode - &print.config.start_filament_gcode.values.front())));
    this->_print_first_layer_extruder_temperatures(file, print, initial_extruder_id, true);
    
    // Set other general things.
    write(file, this->preamble());
    
    // Initialize a motion planner for object-to-object travel moves.
    if (print.config.avoid_crossing_perimeters.value) {
        // Collect outer contours of all objects over all layers.
        // Discard objects only containing thin walls (offset would fail on an empty polygon).
        Polygons islands;
        for (const PrintObject *object : print.objects)
            for (const Layer *layer : object->layers)
                for (const ExPolygon &expoly : layer->slices.expolygons)
                    for (const Point &copy : object->_shifted_copies) {
                        islands.emplace_back(expoly.contour);
                        islands.back().translate(copy);
                    }
        //FIXME Mege the islands in parallel.
        m_avoid_crossing_perimeters.init_external_mp(union_ex(islands));
    }
    
    // Calculate wiping points if needed
    if (print.config.ooze_prevention.value && ! print.config.single_extruder_multi_material) {
        Points skirt_points;
        for (const ExtrusionEntity *ee : print.skirt.entities)
            for (const ExtrusionPath &path : dynamic_cast<const ExtrusionLoop*>(ee)->paths)
                append(skirt_points, path.polyline.points);
        if (! skirt_points.empty()) {
            Polygon outer_skirt = Slic3r::Geometry::convex_hull(skirt_points);
            Polygons skirts;
            for (unsigned int extruder_id : print.extruders()) {
                const Pointf &extruder_offset = print.config.extruder_offset.get_at(extruder_id);
                Polygon s(outer_skirt);
                s.translate(-scale_(extruder_offset.x), -scale_(extruder_offset.y));
                skirts.emplace_back(std::move(s));
            }
            m_ooze_prevention.enable = true;
            m_ooze_prevention.standby_points =
                offset(Slic3r::Geometry::convex_hull(skirts), scale_(3.f)).front().equally_spaced_points(scale_(10.));
#if 0
                require "Slic3r/SVG.pm";
                Slic3r::SVG::output(
                    "ooze_prevention.svg",
                    red_polygons    => \@skirts,
                    polygons        => [$outer_skirt],
                    points          => $gcodegen->ooze_prevention->standby_points,
                );
#endif
        }
    }
    
    // Set initial extruder only after custom start G-code.
    write(file, this->set_extruder(initial_extruder_id));

    // Do all objects for each layer.
    if (print.config.complete_objects.value) {
        // Print objects from the smallest to the tallest to avoid collisions
        // when moving onto next object starting point.
        std::vector<PrintObject*> objects(print.objects);
        std::sort(objects.begin(), objects.end(), [](const PrintObject* po1, const PrintObject* po2) { return po1->size.z < po2->size.z; });        
        size_t finished_objects = 0;
        for (size_t object_id = initial_print_object_id; object_id < objects.size(); ++ object_id) {
            const PrintObject &object = *objects[object_id];
            for (const Point &copy : object._shifted_copies) {
                // Get optimal tool ordering to minimize tool switches of a multi-exruder print.
                if (object_id != initial_print_object_id || &copy != object._shifted_copies.data()) {
                    // Don't initialize for the first object and first copy.
                    tool_ordering = ToolOrdering(object, final_extruder_id);
                    unsigned int new_extruder_id = tool_ordering.first_extruder();
                    if (new_extruder_id == (unsigned int)-1)
                        // Skip this object.
                        continue;
                    initial_extruder_id = new_extruder_id;
                    final_extruder_id   = tool_ordering.last_extruder();
                    assert(final_extruder_id != (unsigned int)-1);
                }
                this->set_origin(unscale(copy.x), unscale(copy.y));
                if (finished_objects > 0) {
                    // Move to the origin position for the copy we're going to print.
                    // This happens before Z goes down to layer 0 again, so that no collision happens hopefully.
                    m_enable_cooling_markers = false; // we're not filtering these moves through CoolingBuffer
                    m_avoid_crossing_perimeters.use_external_mp_once = true;
                    write(file, this->retract());
                    write(file, this->travel_to(Point(0, 0), erNone, "move to origin position for next object"));
                    m_enable_cooling_markers = true;
                    // Disable motion planner when traveling to first object point.
                    m_avoid_crossing_perimeters.disable_once = true;
                    // Ff we are printing the bottom layer of an object, and we have already finished
                    // another one, set first layer temperatures. This happens before the Z move
                    // is triggered, so machine has more time to reach such temperatures.
                    write(file, m_writer.set_bed_temperature(print.config.first_layer_bed_temperature.get_at(initial_extruder_id)));
                    // Set first layer extruder.
                    this->_print_first_layer_extruder_temperatures(file, print, initial_extruder_id, false);
                }
                // Reset the cooling buffer internal state (the current position, feed rate, accelerations).
                m_cooling_buffer->reset();
                m_cooling_buffer->set_current_extruder(initial_extruder_id);
                // Pair the object layers with the support layers by z, extrude them.
                std::vector<LayerToPrint> layers_to_print = collect_layers_to_print(object);
                for (const LayerToPrint &ltp : layers_to_print) {
                    std::vector<LayerToPrint> lrs;
                    lrs.emplace_back(std::move(ltp));
                    this->process_layer(file, print, lrs, tool_ordering.tools_for_layer(ltp.print_z()), &copy - object._shifted_copies.data());
                }
                if (m_pressure_equalizer)
                    write(file, m_pressure_equalizer->process("", true));
                ++ finished_objects;
                // Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed.
                // Reset it when starting another object from 1st layer.
                m_second_layer_things_done = false;
            }
        }
    } else {
        // Order objects using a nearest neighbor search.
        std::vector<size_t> object_indices;
        Points object_reference_points;
        for (PrintObject *object : print.objects)
            object_reference_points.push_back(object->_shifted_copies.front());
        Slic3r::Geometry::chained_path(object_reference_points, object_indices);
        // Sort layers by Z.
        // All extrusion moves with the same top layer height are extruded uninterrupted.
        std::vector<std::pair<coordf_t, std::vector<LayerToPrint>>> layers_to_print = collect_layers_to_print(print);
        // Prusa Multi-Material wipe tower.
        if (print.has_wipe_tower() && ! layers_to_print.empty()) {
            if (tool_ordering.has_wipe_tower()) {
                m_wipe_tower.reset(new WipeTowerIntegration(print.config, *print.m_wipe_tower_priming.get(), print.m_wipe_tower_tool_changes, *print.m_wipe_tower_final_purge.get()));
			    write(file, m_wipe_tower->prime(*this));
                // Verify, whether the print overaps the priming extrusions.
                BoundingBoxf bbox_print(get_print_extrusions_extents(print));
                coordf_t twolayers_printz = ((layers_to_print.size() == 1) ? layers_to_print.front() : layers_to_print[1]).first + EPSILON;
                for (const PrintObject *print_object : print.objects)
                    bbox_print.merge(get_print_object_extrusions_extents(*print_object, twolayers_printz));
                bbox_print.merge(get_wipe_tower_extrusions_extents(print, twolayers_printz));
                BoundingBoxf bbox_prime(get_wipe_tower_priming_extrusions_extents(print));
                bbox_prime.offset(0.5f);
                // Beep for 500ms, tone 800Hz. Yet better, play some Morse.
                write(file, this->retract());
                fprintf(file, "M300 S800 P500\n");
                if (bbox_prime.overlap(bbox_print)) {
                    // Wait for the user to remove the priming extrusions, otherwise they would
                    // get covered by the print.
                    fprintf(file, "M1 Remove priming towers and click button.\nM117 Printing\n");
                } else {
                    // Just wait for a bit to let the user check, that the priming succeeded.
                    fprintf(file, "M117 Verify extruder priming\nM0 S10\nM117 Printing\n");
                }
                write(file, this->unretract());
            } else
                write(file, WipeTowerIntegration::prime_single_color_print(print, initial_extruder_id, *this));
        }
        // Extrude the layers.
        for (auto &layer : layers_to_print) {
            const ToolOrdering::LayerTools &layer_tools = tool_ordering.tools_for_layer(layer.first);
            if (m_wipe_tower && layer_tools.has_wipe_tower)
                m_wipe_tower->next_layer();
            this->process_layer(file, print, layer.second, layer_tools, size_t(-1));
        }
        if (m_pressure_equalizer)
            write(file, m_pressure_equalizer->process("", true));
        if (m_wipe_tower)
            // Purge the extruder, pull out the active filament.
            write(file, m_wipe_tower->finalize(*this));
    }

    // Write end commands to file.
    write(file, this->retract());
    write(file, m_writer.set_fan(false));
    // Process filament-specific gcode in extruder order.
    for (const std::string &end_gcode : print.config.end_filament_gcode.values)
        writeln(file, m_placeholder_parser.process(end_gcode, (unsigned int)(&end_gcode - &print.config.end_filament_gcode.values.front())));
    writeln(file, m_placeholder_parser.process(print.config.end_gcode, m_writer.extruder()->id()));
    write(file, m_writer.update_progress(m_layer_count, m_layer_count, true)); // 100%
    write(file, m_writer.postamble());

    // Get filament stats.
    print.filament_stats.clear();
    print.total_used_filament    = 0.;
    print.total_extruded_volume  = 0.;
    print.total_weight           = 0.;
    print.total_cost             = 0.;
    for (const Extruder &extruder : m_writer.extruders()) {
        double used_filament   = extruder.used_filament();
        double extruded_volume = extruder.extruded_volume();
        double filament_weight = extruded_volume * extruder.filament_density() * 0.001;
        double filament_cost   = filament_weight * extruder.filament_cost()    * 0.001;
        print.filament_stats.insert(std::pair<size_t,float>(extruder.id(), used_filament));
        fprintf(file, "; filament used = %.1lfmm (%.1lfcm3)\n", used_filament, extruded_volume * 0.001);
        if (filament_weight > 0.) {
            print.total_weight = print.total_weight + filament_weight;
            fprintf(file, "; filament used = %.1lf\n", filament_weight);
            if (filament_cost > 0.) {
                print.total_cost = print.total_cost + filament_cost;
                fprintf(file, "; filament cost = %.1lf\n", filament_cost);
            }
        }
        print.total_used_filament   = print.total_used_filament + used_filament;
        print.total_extruded_volume = print.total_extruded_volume + extruded_volume;
    }
    fprintf(file, "; total filament cost = %.1lf\n", print.total_cost);

    // Append full config.
    fprintf(file, "\n");
    {
        StaticPrintConfig *configs[] = { &print.config, &print.default_object_config, &print.default_region_config };
        for (size_t i = 0; i < sizeof(configs) / sizeof(configs[0]); ++ i) {
            StaticPrintConfig *cfg = configs[i];
        for (const std::string &key : cfg->keys())
            fprintf(file, "; %s = %s\n", key.c_str(), cfg->serialize(key).c_str());
        }
    }

    return true;
}

// Write 1st layer extruder temperatures into the G-code.
// Only do that if the start G-code does not already contain any M-code controlling an extruder temperature.
// FIXME this does not work correctly for multi-extruder, single heater configuration as it emits multiple preheat commands for the same heater.
// M104 - Set Extruder Temperature
// M109 - Set Extruder Temperature and Wait
void GCode::_print_first_layer_extruder_temperatures(FILE *file, Print &print, unsigned int first_printing_extruder_id, bool wait)
{
    if (boost::ifind_first(print.config.start_gcode.value, std::string("M104")).empty() &&
        boost::ifind_first(print.config.start_gcode.value, std::string("M109")).empty()) {
        if (print.config.single_extruder_multi_material.value) {
            // Set temperature of the first printing extruder only.
            int temp = print.config.first_layer_temperature.get_at(first_printing_extruder_id);
            if (temp > 0)
                write(file, m_writer.set_temperature(temp, wait, first_printing_extruder_id));
        } else {
            // Set temperatures of all the printing extruders.
            for (unsigned int tool_id : print.extruders()) {
                int temp = print.config.first_layer_temperature.get_at(tool_id);
                if (print.config.ooze_prevention.value)
                    temp += print.config.standby_temperature_delta.value;
                if (temp > 0)
                    write(file, m_writer.set_temperature(temp, wait, tool_id));
            }
        }
    }
}

inline GCode::ObjectByExtruder& object_by_extruder(
    std::map<unsigned int, std::vector<GCode::ObjectByExtruder>> &by_extruder, 
    unsigned int                                                  extruder_id, 
    size_t                                                        object_idx, 
    size_t                                                        num_objects)
{
    std::vector<GCode::ObjectByExtruder> &objects_by_extruder = by_extruder[extruder_id];
    if (objects_by_extruder.empty())
        objects_by_extruder.assign(num_objects, GCode::ObjectByExtruder());
    return objects_by_extruder[object_idx];
}

inline std::vector<GCode::ObjectByExtruder::Island>& object_islands_by_extruder(
    std::map<unsigned int, std::vector<GCode::ObjectByExtruder>>  &by_extruder, 
    unsigned int                                                   extruder_id, 
    size_t                                                         object_idx, 
    size_t                                                         num_objects,
    size_t                                                         num_islands)
{
    std::vector<GCode::ObjectByExtruder::Island> &islands = object_by_extruder(by_extruder, extruder_id, object_idx, num_objects).islands;
    if (islands.empty())
        islands.assign(num_islands, GCode::ObjectByExtruder::Island());
    return islands;
}

// In sequential mode, process_layer is called once per each object and its copy, 
// therefore layers will contain a single entry and single_object_idx will point to the copy of the object.
// In non-sequential mode, process_layer is called per each print_z height with all object and support layers accumulated.
// For multi-material prints, this routine minimizes extruder switches by gathering extruder specific extrusion paths
// and performing the extruder specific extrusions together.
void GCode::process_layer(
    // Write into the output file.
    FILE                            *file,
    const Print                     &print,
    // Set of object & print layers of the same PrintObject and with the same print_z.
    const std::vector<LayerToPrint> &layers,
    const ToolOrdering::LayerTools  &layer_tools,
    // If set to size_t(-1), then print all copies of all objects.
    // Otherwise print a single copy of a single object.
    const size_t                     single_object_idx)
{
    assert(! layers.empty());
    assert(! layer_tools.extruders.empty());
    // Either printing all copies of all objects, or just a single copy of a single object.
    assert(single_object_idx == size_t(-1) || layers.size() == 1);

    if (layer_tools.extruders.empty())
        // Nothing to extrude.
        return;

    // Extract 1st object_layer and support_layer of this set of layers with an equal print_z.
    const Layer         *object_layer  = nullptr;
    const SupportLayer  *support_layer = nullptr;
    for (const LayerToPrint &l : layers) {
        if (l.object_layer != nullptr && object_layer == nullptr)
            object_layer = l.object_layer;
        if (l.support_layer != nullptr && support_layer == nullptr)
            support_layer = l.support_layer;
    }
    const Layer         &layer         = (object_layer != nullptr) ? *object_layer : *support_layer;    
    coordf_t             print_z       = layer.print_z;
    bool                 first_layer   = layer.id() == 0;
    unsigned int         first_extruder_id = layer_tools.extruders.front();

    // Initialize config with the 1st object to be printed at this layer.
    m_config.apply(layer.object()->config, true);

    // Check whether it is possible to apply the spiral vase logic for this layer.
    // Just a reminder: A spiral vase mode is allowed for a single object, single material print only.
    if (m_spiral_vase && layers.size() == 1 && support_layer == nullptr) {
        bool enable = (layer.id() > 0 || print.config.brim_width.value == 0.) && (layer.id() >= print.config.skirt_height.value && ! print.has_infinite_skirt());
        if (enable) {
            for (const LayerRegion *layer_region : layer.regions)
                if (layer_region->region()->config.bottom_solid_layers.value > layer.id() ||
                    layer_region->perimeters.items_count() > 1 ||
                    layer_region->fills.items_count() > 0) {
                    enable = false;
                    break;
                }
        }
        m_spiral_vase->enable = enable;
    }
    // If we're going to apply spiralvase to this layer, disable loop clipping
    m_enable_loop_clipping = ! m_spiral_vase || ! m_spiral_vase->enable;
    
    std::string gcode;

    // Set new layer - this will change Z and force a retraction if retract_layer_change is enabled.
    if (! print.config.before_layer_gcode.value.empty()) {
        PlaceholderParser pp(m_placeholder_parser);
        pp.set("layer_num", m_layer_index + 1);
        pp.set("layer_z",   print_z);
        gcode += pp.process(print.config.before_layer_gcode.value, m_writer.extruder()->id()) + "\n";
    }
    gcode += this->change_layer(print_z);  // this will increase m_layer_index
	m_layer = &layer;
    if (! print.config.layer_gcode.value.empty()) {
        PlaceholderParser pp(m_placeholder_parser);
        pp.set("layer_num", m_layer_index);
        pp.set("layer_z",   print_z);
        gcode += pp.process(print.config.layer_gcode.value, m_writer.extruder()->id()) + "\n";
    }

    if (! first_layer && ! m_second_layer_things_done) {
        // Transition from 1st to 2nd layer. Adjust nozzle temperatures as prescribed by the nozzle dependent
        // first_layer_temperature vs. temperature settings.
        for (const Extruder &extruder : m_writer.extruders()) {
            if (print.config.single_extruder_multi_material.value && extruder.id() != m_writer.extruder()->id())
                // In single extruder multi material mode, set the temperature for the current extruder only.
                continue;
            int temperature = print.config.temperature.get_at(extruder.id());
            if (temperature > 0 && temperature != print.config.first_layer_temperature.get_at(extruder.id()))
                gcode += m_writer.set_temperature(temperature, false, extruder.id());
        }
        gcode += m_writer.set_bed_temperature(print.config.bed_temperature.get_at(first_extruder_id));
        // Mark the temperature transition from 1st to 2nd layer to be finished.
        m_second_layer_things_done = true;
    }

    // Extrude skirt at the print_z of the raft layers and normal object layers
    // not at the print_z of the interlaced support material layers.
    bool extrude_skirt = 
		! print.skirt.entities.empty() &&
        // Not enough skirt layers printed yet.
        (m_skirt_done.size() < print.config.skirt_height.value || print.has_infinite_skirt()) &&
        // This print_z has not been extruded yet
		(m_skirt_done.empty() ? 0. : m_skirt_done.back()) < print_z - EPSILON &&
        // and this layer is the 1st layer, or it is an object layer, or it is a raft layer.
        (first_layer || object_layer != nullptr || support_layer->id() < m_config.raft_layers.value);
    std::map<unsigned int, std::pair<size_t, size_t>> skirt_loops_per_extruder;
    coordf_t                                          skirt_height = 0.;
    if (extrude_skirt) {
        // Fill in skirt_loops_per_extruder.
		skirt_height = print_z - (m_skirt_done.empty() ? 0. : m_skirt_done.back());
        m_skirt_done.push_back(print_z);
        if (first_layer) {
            // Prime the extruders over the skirt lines.
            std::vector<unsigned int> extruder_ids = m_writer.extruder_ids();
            // Reorder the extruders, so that the last used extruder is at the front.
            for (size_t i = 1; i < extruder_ids.size(); ++ i)
                if (extruder_ids[i] == first_extruder_id) {
                    // Move the last extruder to the front.
                    memmove(extruder_ids.data() + 1, extruder_ids.data(), i * sizeof(unsigned int));
                    extruder_ids.front() = first_extruder_id;
                    break;
                }
            size_t n_loops = print.skirt.entities.size();
			if (n_loops <= extruder_ids.size()) {
				for (size_t i = 0; i < n_loops; ++i)
                    skirt_loops_per_extruder[extruder_ids[i]] = std::pair<size_t, size_t>(i, i + 1);
            } else {
                // Assign skirt loops to the extruders.
                std::vector<unsigned int> extruder_loops(extruder_ids.size(), 1);
                n_loops -= extruder_loops.size();
                while (n_loops > 0) {
                    for (size_t i = 0; i < extruder_ids.size() && n_loops > 0; ++ i, -- n_loops)
                        ++ extruder_loops[i];
                }
                for (size_t i = 0; i < extruder_ids.size(); ++ i)
                    skirt_loops_per_extruder[extruder_ids[i]] = std::make_pair<size_t, size_t>(
                        (i == 0) ? 0 : extruder_loops[i - 1], 
                        ((i == 0) ? 0 : extruder_loops[i - 1]) + extruder_loops[i]);
            }
        } else
            // Extrude all skirts with the current extruder.
            skirt_loops_per_extruder[first_extruder_id] = std::pair<size_t, size_t>(0, print.config.skirts.value);
    }

    // Group extrusions by an extruder, then by an object, an island and a region.
    std::map<unsigned int, std::vector<ObjectByExtruder>> by_extruder;
    
    for (const LayerToPrint &layer_to_print : layers) {
        if (layer_to_print.support_layer != nullptr) {
            const SupportLayer &support_layer = *layer_to_print.support_layer;
            const PrintObject  &object = *support_layer.object();
            if (! support_layer.support_fills.entities.empty()) {
                ExtrusionRole   role               = support_layer.support_fills.role();
                bool            has_support        = role == erMixed || role == erSupportMaterial;
                bool            has_interface      = role == erMixed || role == erSupportMaterialInterface;
                // Extruder ID of the support base. -1 if "don't care".
                unsigned int    support_extruder   = object.config.support_material_extruder.value - 1;
                // Shall the support be printed with the active extruder, preferably with non-soluble, to avoid tool changes?
                bool            support_dontcare   = object.config.support_material_extruder.value == 0;
                // Extruder ID of the support interface. -1 if "don't care".
                unsigned int    interface_extruder = object.config.support_material_interface_extruder.value - 1;
                // Shall the support interface be printed with the active extruder, preferably with non-soluble, to avoid tool changes?
                bool            interface_dontcare = object.config.support_material_interface_extruder.value == 0;
                if (support_dontcare || interface_dontcare) {
                    // Some support will be printed with "don't care" material, preferably non-soluble.
                    // Is the current extruder assigned a soluble filament?
                    unsigned int dontcare_extruder = first_extruder_id;
                    if (print.config.filament_soluble.get_at(dontcare_extruder)) {
                        // The last extruder printed on the previous layer extrudes soluble filament.
                        // Try to find a non-soluble extruder on the same layer.
                        for (unsigned int extruder_id : layer_tools.extruders)
                            if (! print.config.filament_soluble.get_at(extruder_id)) {
                                dontcare_extruder = extruder_id;
                                break;
                            }
                    }
                    if (support_dontcare)
                        support_extruder = dontcare_extruder;
                    if (interface_dontcare)
                        interface_extruder = dontcare_extruder;
                }
                // Both the support and the support interface are printed with the same extruder, therefore
                // the interface may be interleaved with the support base.
                bool single_extruder = ! has_support || support_extruder == interface_extruder;
                // Assign an extruder to the base.
                ObjectByExtruder &obj = object_by_extruder(by_extruder, support_extruder, &layer_to_print - layers.data(), layers.size());
                obj.support = &support_layer.support_fills;
                obj.support_extrusion_role = single_extruder ? erMixed : erSupportMaterial;
                if (! single_extruder && has_interface) {
                    ObjectByExtruder &obj_interface = object_by_extruder(by_extruder, interface_extruder, &layer_to_print - layers.data(), layers.size());
                    obj_interface.support = &support_layer.support_fills;
                    obj_interface.support_extrusion_role = erSupportMaterialInterface;
                }
            }
        }
        if (layer_to_print.object_layer != nullptr) {
            const Layer &layer = *layer_to_print.object_layer;
            // We now define a strategy for building perimeters and fills. The separation 
            // between regions doesn't matter in terms of printing order, as we follow 
            // another logic instead:
            // - we group all extrusions by extruder so that we minimize toolchanges
            // - we start from the last used extruder
            // - for each extruder, we group extrusions by island
            // - for each island, we extrude perimeters first, unless user set the infill_first
            //   option
            // (Still, we have to keep track of regions because we need to apply their config)
            size_t n_slices = layer.slices.expolygons.size();
            std::vector<BoundingBox> layer_surface_bboxes;
            layer_surface_bboxes.reserve(n_slices);
            for (const ExPolygon &expoly : layer.slices.expolygons)
                layer_surface_bboxes.push_back(get_extents(expoly.contour));
            auto point_inside_surface = [&layer, &layer_surface_bboxes](const size_t i, const Point &point) { 
                const BoundingBox &bbox = layer_surface_bboxes[i];
                return point.x >= bbox.min.x && point.x < bbox.max.x &&
                       point.y >= bbox.min.y && point.y < bbox.max.y &&
                       layer.slices.expolygons[i].contour.contains(point);
            };

            for (size_t region_id = 0; region_id < print.regions.size(); ++ region_id) {
                const LayerRegion *layerm = layer.regions[region_id];
                if (layerm == nullptr)
                    continue;
                const PrintRegion &region = *print.regions[region_id];
                
                // process perimeters
                for (const ExtrusionEntity *ee : layerm->perimeters.entities) {
                    // perimeter_coll represents perimeter extrusions of a single island.
                    const auto *perimeter_coll = dynamic_cast<const ExtrusionEntityCollection*>(ee);
                    if (perimeter_coll->entities.empty())
                        // This shouldn't happen but first_point() would fail.
                        continue;
                    // Init by_extruder item only if we actually use the extruder.
                    std::vector<ObjectByExtruder::Island> &islands = object_islands_by_extruder(
                        by_extruder,
                        std::max<int>(region.config.perimeter_extruder.value - 1, 0),
                        &layer_to_print - layers.data(),
                        layers.size(), n_slices+1);
                    for (size_t i = 0; i <= n_slices; ++ i)
                        if (// perimeter_coll->first_point does not fit inside any slice
                            i == n_slices ||
                            // perimeter_coll->first_point fits inside ith slice
                            point_inside_surface(i, perimeter_coll->first_point())) {
                            if (islands[i].by_region.empty())
                                islands[i].by_region.assign(print.regions.size(), ObjectByExtruder::Island::Region());
                            islands[i].by_region[region_id].perimeters.append(perimeter_coll->entities);
                            break;
                        }
                }
                
                // process infill
                // layerm->fills is a collection of Slic3r::ExtrusionPath::Collection objects (C++ class ExtrusionEntityCollection), 
                // each one containing the ExtrusionPath objects of a certain infill "group" (also called "surface"
                // throughout the code). We can redefine the order of such Collections but we have to 
                // do each one completely at once.
                for (const ExtrusionEntity *ee : layerm->fills.entities) {
                    // fill represents infill extrusions of a single island.
                    const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
                    if (fill->entities.empty())
                        // This shouldn't happen but first_point() would fail.
                        continue;
                    // init by_extruder item only if we actually use the extruder
                    int extruder_id = std::max<int>(0, (is_solid_infill(fill->entities.front()->role()) ? region.config.solid_infill_extruder : region.config.infill_extruder) - 1);
                    // Init by_extruder item only if we actually use the extruder.
                    std::vector<ObjectByExtruder::Island> &islands = object_islands_by_extruder(
                        by_extruder,
                        extruder_id,
                        &layer_to_print - layers.data(),
                        layers.size(), n_slices+1);
                    for (size_t i = 0; i <= n_slices; ++i)
                        if (// fill->first_point does not fit inside any slice
                            i == n_slices ||
                            // fill->first_point fits inside ith slice
                            point_inside_surface(i, fill->first_point())) {
                            if (islands[i].by_region.empty())
                                islands[i].by_region.assign(print.regions.size(), ObjectByExtruder::Island::Region());
                            islands[i].by_region[region_id].infills.append(fill->entities);
                            break;
                        }
                }
            } // for regions
        }
    } // for objects

    // Extrude the skirt, brim, support, perimeters, infill ordered by the extruders.
    std::vector<std::unique_ptr<EdgeGrid::Grid>> lower_layer_edge_grids(layers.size());
    for (unsigned int extruder_id : layer_tools.extruders)
    {   
        gcode += (layer_tools.has_wipe_tower && m_wipe_tower) ?
            m_wipe_tower->tool_change(*this, extruder_id, extruder_id == layer_tools.extruders.back()) :
            this->set_extruder(extruder_id);

        if (extrude_skirt) {
            auto loops_it = skirt_loops_per_extruder.find(extruder_id);
            if (loops_it != skirt_loops_per_extruder.end()) {
                const std::pair<size_t, size_t> loops = loops_it->second;
                this->set_origin(0.,0.);
                m_avoid_crossing_perimeters.use_external_mp = true;
                Flow skirt_flow = print.skirt_flow();
                for (size_t i = loops.first; i < loops.second; ++ i) {
                    // Adjust flow according to this layer's layer height.
                    ExtrusionLoop loop = *dynamic_cast<const ExtrusionLoop*>(print.skirt.entities[i]);
                    Flow layer_skirt_flow(skirt_flow);
                    layer_skirt_flow.height = (float)skirt_height;
                    double mm3_per_mm = layer_skirt_flow.mm3_per_mm();
                    for (ExtrusionPath &path : loop.paths) {
                        path.height     = (float)layer.height;
                        path.mm3_per_mm = mm3_per_mm;
                    }                
                    gcode += this->extrude_loop(loop, "skirt", m_config.support_material_speed.value);
                }
                m_avoid_crossing_perimeters.use_external_mp = false;
                // Allow a straight travel move to the first object point if this is the first layer (but don't in next layers).
                if (first_layer && loops.first == 0)
                    m_avoid_crossing_perimeters.disable_once = true;
            }
        }
        
        // Extrude brim with the extruder of the 1st region.
        if (! m_brim_done) {
            this->set_origin(0., 0.);
            m_avoid_crossing_perimeters.use_external_mp = true;
            for (const ExtrusionEntity *ee : print.brim.entities)
                gcode += this->extrude_loop(*dynamic_cast<const ExtrusionLoop*>(ee), "brim", m_config.support_material_speed.value);
            m_brim_done = true;
            m_avoid_crossing_perimeters.use_external_mp = false;
            // Allow a straight travel move to the first object point.
            m_avoid_crossing_perimeters.disable_once = true;
        }

        auto objects_by_extruder_it = by_extruder.find(extruder_id);
        if (objects_by_extruder_it == by_extruder.end())
            continue;
        for (const ObjectByExtruder &object_by_extruder : objects_by_extruder_it->second) {
            const size_t       layer_id     = &object_by_extruder - objects_by_extruder_it->second.data();
            const PrintObject *print_object = layers[layer_id].object();
			if (print_object == nullptr)
				// This layer is empty for this particular object, it has neither object extrusions nor support extrusions at this print_z.
				continue;
            if (m_enable_analyzer_markers) {
                // Store the binary pointer to the layer object directly into the G-code to be accessed by the GCodeAnalyzer.
                char buf[64];
                sprintf(buf, ";_LAYEROBJ:%p\n", m_layer);
                gcode += buf;
            }
            m_config.apply(print_object->config, true);
            m_layer = layers[layer_id].layer();
            if (m_config.avoid_crossing_perimeters)
                m_avoid_crossing_perimeters.init_layer_mp(union_ex(m_layer->slices, true));
            Points copies;
            if (single_object_idx == size_t(-1)) 
                copies = print_object->_shifted_copies;
            else
                copies.push_back(print_object->_shifted_copies[single_object_idx]);
            // Sort the copies by the closest point starting with the current print position.
            
            for (const Point &copy : copies) {
                // When starting a new object, use the external motion planner for the first travel move.
                std::pair<const PrintObject*, Point> this_object_copy(print_object, copy);
                if (m_last_obj_copy != this_object_copy)
                    m_avoid_crossing_perimeters.use_external_mp_once = true;
                m_last_obj_copy = this_object_copy;
                this->set_origin(unscale(copy.x), unscale(copy.y));
                if (object_by_extruder.support != nullptr) {
                    m_layer = layers[layer_id].support_layer;
                    gcode += this->extrude_support(
                        // support_extrusion_role is erSupportMaterial, erSupportMaterialInterface or erMixed for all extrusion paths.
                        object_by_extruder.support->chained_path_from(m_last_pos, false, object_by_extruder.support_extrusion_role));
                    m_layer = layers[layer_id].layer();
                }
                for (const ObjectByExtruder::Island &island : object_by_extruder.islands) {
                    if (print.config.infill_first) {
                        gcode += this->extrude_infill(print, island.by_region);
                        gcode += this->extrude_perimeters(print, island.by_region, lower_layer_edge_grids[layer_id]);
                    } else {
                        gcode += this->extrude_perimeters(print, island.by_region, lower_layer_edge_grids[layer_id]);
                        gcode += this->extrude_infill(print, island.by_region);
                    }
                }
            }
        }
    }

    // Apply spiral vase post-processing if this layer contains suitable geometry
    // (we must feed all the G-code into the post-processor, including the first 
    // bottom non-spiral layers otherwise it will mess with positions)
    // we apply spiral vase at this stage because it requires a full layer.
    // Just a reminder: A spiral vase mode is allowed for a single object per layer, single material print only.
    if (m_spiral_vase)
        gcode = m_spiral_vase->process_layer(gcode);

    // Apply cooling logic; this may alter speeds.
    if (m_cooling_buffer)
        gcode = m_cooling_buffer->process_layer(gcode, layer.id());

    // Apply pressure equalization if enabled;
    // printf("G-code before filter:\n%s\n", gcode.c_str());
    if (m_pressure_equalizer)
        gcode = m_pressure_equalizer->process(gcode.c_str(), false);
    // printf("G-code after filter:\n%s\n", out.c_str());

    write(file, gcode);
}

void GCode::apply_print_config(const PrintConfig &print_config)
{
    m_writer.apply_print_config(print_config);
    m_config.apply(print_config);
}

void GCode::set_extruders(const std::vector<unsigned int> &extruder_ids)
{
    m_writer.set_extruders(extruder_ids);
    
    // enable wipe path generation if any extruder has wipe enabled
    m_wipe.enable = false;
    for (auto id : extruder_ids)
        if (m_config.wipe.get_at(id)) {
            m_wipe.enable = true;
            break;
        }
}

void GCode::set_origin(const Pointf &pointf)
{    
    // if origin increases (goes towards right), last_pos decreases because it goes towards left
    const Point translate(
        scale_(m_origin.x - pointf.x),
        scale_(m_origin.y - pointf.y)
    );
    m_last_pos.translate(translate);
    m_wipe.path.translate(translate);
    m_origin = pointf;
}

std::string GCode::preamble()
{
    std::string gcode = m_writer.preamble();
    
    /*  Perform a *silent* move to z_offset: we need this to initialize the Z
        position of our writer object so that any initial lift taking place
        before the first layer change will raise the extruder from the correct
        initial Z instead of 0.  */
    m_writer.travel_to_z(m_config.z_offset.value);
    
    return gcode;
}

// called by GCode::process_layer()
std::string GCode::change_layer(coordf_t print_z)
{
    std::string gcode;
    if (m_layer_count > 0)
        // Increment a progress bar indicator.
        gcode += m_writer.update_progress(++ m_layer_index, m_layer_count);
    coordf_t z = print_z + m_config.z_offset.value;  // in unscaled coordinates
    if (EXTRUDER_CONFIG(retract_layer_change) && m_writer.will_move_z(z))
        gcode += this->retract();

    {
        std::ostringstream comment;
        comment << "move to next layer (" << m_layer_index << ")";
        gcode += m_writer.travel_to_z(z, comment.str());
    }
    
    // forget last wiping path as wiping after raising Z is pointless
    m_wipe.reset_path();
    
    return gcode;
}

static inline const char* ExtrusionRole2String(const ExtrusionRole role)
{
    switch (role) {
    case erNone:                        return "erNone";
    case erPerimeter:                   return "erPerimeter";
    case erExternalPerimeter:           return "erExternalPerimeter";
    case erOverhangPerimeter:           return "erOverhangPerimeter";
    case erInternalInfill:              return "erInternalInfill";
    case erSolidInfill:                 return "erSolidInfill";
    case erTopSolidInfill:              return "erTopSolidInfill";
    case erBridgeInfill:                return "erBridgeInfill";
    case erGapFill:                     return "erGapFill";
    case erSkirt:                       return "erSkirt";
    case erSupportMaterial:             return "erSupportMaterial";
    case erSupportMaterialInterface:    return "erSupportMaterialInterface";
    case erMixed:                       return "erMixed";
    default:                            return "erInvalid";
    };
}

static inline const char* ExtrusionLoopRole2String(const ExtrusionLoopRole role)
{
    switch (role) {
    case elrDefault:                    return "elrDefault";
    case elrContourInternalPerimeter:   return "elrContourInternalPerimeter";
    case elrSkirt:                      return "elrSkirt";
    default:                            return "elrInvalid";
    }
};

// Return a value in <0, 1> of a cubic B-spline kernel centered around zero.
// The B-spline is re-scaled so it has value 1 at zero.
static inline float bspline_kernel(float x)
{
    x = std::abs(x);
	if (x < 1.f) {
		return 1.f - (3.f / 2.f) * x * x + (3.f / 4.f) * x * x * x;
	}
	else if (x < 2.f) {
		x -= 1.f;
		float x2 = x * x;
		float x3 = x2 * x;
		return (1.f / 4.f) - (3.f / 4.f) * x + (3.f / 4.f) * x2 - (1.f / 4.f) * x3;
	}
	else
        return 0;
}

static float extrudate_overlap_penalty(float nozzle_r, float weight_zero, float overlap_distance)
{
    // The extrudate is not fully supported by the lower layer. Fit a polynomial penalty curve.
    // Solved by sympy package:
/*
from sympy import *
(x,a,b,c,d,r,z)=symbols('x a b c d r z')
p = a + b*x + c*x*x + d*x*x*x
p2 = p.subs(solve([p.subs(x, -r), p.diff(x).subs(x, -r), p.diff(x,x).subs(x, -r), p.subs(x, 0)-z], [a, b, c, d]))
from sympy.plotting import plot
plot(p2.subs(r,0.2).subs(z,1.), (x, -1, 3), adaptive=False, nb_of_points=400)
*/
    if (overlap_distance < - nozzle_r) {
        // The extrudate is fully supported by the lower layer. This is the ideal case, therefore zero penalty.
        return 0.f;
    } else {
        float x  = overlap_distance / nozzle_r;
        float x2 = x * x;
        float x3 = x2 * x;
        return weight_zero * (1.f + 3.f * x + 3.f * x2 + x3);
    }
}

static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, const Point &pt, double eps)
{
    assert(polygon.points.size() >= 2);
    if (polygon.points.size() <= 1)
    if (polygon.points.size() == 1)
        return polygon.points.begin();

    Point  pt_min;
    double d_min = std::numeric_limits<double>::max();
    size_t i_min = size_t(-1);

    for (size_t i = 0; i < polygon.points.size(); ++ i) {
        size_t j = i + 1;
        if (j == polygon.points.size())
            j = 0;
        const Point &p1 = polygon.points[i];
        const Point &p2 = polygon.points[j];
        const Slic3r::Point v_seg = p1.vector_to(p2);
        const Slic3r::Point v_pt  = p1.vector_to(pt);
        const int64_t l2_seg = int64_t(v_seg.x) * int64_t(v_seg.x) + int64_t(v_seg.y) * int64_t(v_seg.y);
        int64_t t_pt = int64_t(v_seg.x) * int64_t(v_pt.x) + int64_t(v_seg.y) * int64_t(v_pt.y);
        if (t_pt < 0) {
            // Closest to p1.
            double dabs = sqrt(int64_t(v_pt.x) * int64_t(v_pt.x) + int64_t(v_pt.y) * int64_t(v_pt.y));
            if (dabs < d_min) {
                d_min  = dabs;
                i_min  = i;
                pt_min = p1;
            }
        }
        else if (t_pt > l2_seg) {
            // Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the next step.
            continue;
        } else {
            // Closest to the segment.
            assert(t_pt >= 0 && t_pt <= l2_seg);
            int64_t d_seg = int64_t(v_seg.y) * int64_t(v_pt.x) - int64_t(v_seg.x) * int64_t(v_pt.y);
            double d = double(d_seg) / sqrt(double(l2_seg));
            double dabs = std::abs(d);
            if (dabs < d_min) {
                d_min  = dabs;
                i_min  = i;
                // Evaluate the foot point.
                pt_min = p1;
                double linv = double(d_seg) / double(l2_seg);
                pt_min.x = pt.x - coord_t(floor(double(v_seg.y) * linv + 0.5));
				pt_min.y = pt.y + coord_t(floor(double(v_seg.x) * linv + 0.5));
				assert(Line(p1, p2).distance_to(pt_min) < scale_(1e-5));
            }
        }
    }

	assert(i_min != size_t(-1));
    if (pt_min.distance_to(polygon.points[i_min]) > eps) {
        // Insert a new point on the segment i_min, i_min+1.
        return polygon.points.insert(polygon.points.begin() + (i_min + 1), pt_min);
    }
    return polygon.points.begin() + i_min;
}

std::vector<float> polygon_parameter_by_length(const Polygon &polygon)
{
    // Parametrize the polygon by its length.
    std::vector<float> lengths(polygon.points.size()+1, 0.);
    for (size_t i = 1; i < polygon.points.size(); ++ i)
        lengths[i] = lengths[i-1] + float(polygon.points[i].distance_to(polygon.points[i-1]));
    lengths.back() = lengths[lengths.size()-2] + float(polygon.points.front().distance_to(polygon.points.back()));
    return lengths;
}

std::vector<float> polygon_angles_at_vertices(const Polygon &polygon, const std::vector<float> &lengths, float min_arm_length)
{
    assert(polygon.points.size() + 1 == lengths.size());
    if (min_arm_length > 0.25f * lengths.back())
        min_arm_length = 0.25f * lengths.back();

    // Find the initial prev / next point span.
    size_t idx_prev = polygon.points.size();
    size_t idx_curr = 0;
    size_t idx_next = 1;
    while (idx_prev > idx_curr && lengths.back() - lengths[idx_prev] < min_arm_length)
        -- idx_prev;
    while (idx_next < idx_prev && lengths[idx_next] < min_arm_length)
        ++ idx_next;

    std::vector<float> angles(polygon.points.size(), 0.f);
    for (; idx_curr < polygon.points.size(); ++ idx_curr) {
        // Move idx_prev up until the distance between idx_prev and idx_curr is lower than min_arm_length.
        if (idx_prev >= idx_curr) {
            while (idx_prev < polygon.points.size() && lengths.back() - lengths[idx_prev] + lengths[idx_curr] > min_arm_length)
                ++ idx_prev;
            if (idx_prev == polygon.points.size())
                idx_prev = 0;
        }
        while (idx_prev < idx_curr && lengths[idx_curr] - lengths[idx_prev] > min_arm_length)
            ++ idx_prev;
        // Move idx_prev one step back.
        if (idx_prev == 0)
            idx_prev = polygon.points.size() - 1;
        else
            -- idx_prev;
        // Move idx_next up until the distance between idx_curr and idx_next is greater than min_arm_length.
        if (idx_curr <= idx_next) {
            while (idx_next < polygon.points.size() && lengths[idx_next] - lengths[idx_curr] < min_arm_length)
                ++ idx_next;
            if (idx_next == polygon.points.size())
                idx_next = 0;
        }
        while (idx_next < idx_curr && lengths.back() - lengths[idx_curr] + lengths[idx_next] < min_arm_length)
            ++ idx_next;
        // Calculate angle between idx_prev, idx_curr, idx_next.
        const Point &p0 = polygon.points[idx_prev];
        const Point &p1 = polygon.points[idx_curr];
        const Point &p2 = polygon.points[idx_next];
        const Point  v1 = p0.vector_to(p1);
        const Point  v2 = p1.vector_to(p2);
		int64_t dot   = int64_t(v1.x)*int64_t(v2.x) + int64_t(v1.y)*int64_t(v2.y);
		int64_t cross = int64_t(v1.x)*int64_t(v2.y) - int64_t(v1.y)*int64_t(v2.x);
		float angle = float(atan2(double(cross), double(dot)));
        angles[idx_curr] = angle;
    }

    return angles;
}

std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, double speed, std::unique_ptr<EdgeGrid::Grid> *lower_layer_edge_grid)
{
    // get a copy; don't modify the orientation of the original loop object otherwise
    // next copies (if any) would not detect the correct orientation

    if (m_layer->lower_layer != nullptr && lower_layer_edge_grid != nullptr) {
        if (! *lower_layer_edge_grid) {
            // Create the distance field for a layer below.
            const coord_t distance_field_resolution = coord_t(scale_(1.) + 0.5);
            *lower_layer_edge_grid = make_unique<EdgeGrid::Grid>();
            (*lower_layer_edge_grid)->create(m_layer->lower_layer->slices, distance_field_resolution);
            (*lower_layer_edge_grid)->calculate_sdf();
            #if 0
            {
                static int iRun = 0;
                BoundingBox bbox = (*lower_layer_edge_grid)->bbox();
                bbox.min.x -= scale_(5.f);
                bbox.min.y -= scale_(5.f);
                bbox.max.x += scale_(5.f);
                bbox.max.y += scale_(5.f);
                EdgeGrid::save_png(*(*lower_layer_edge_grid), bbox, scale_(0.1f), debug_out_path("GCode_extrude_loop_edge_grid-%d.png", iRun++));
            }
            #endif
        }
    }
  
    // extrude all loops ccw
    bool was_clockwise = loop.make_counter_clockwise();
    
    SeamPosition seam_position = m_config.seam_position;
    if (loop.loop_role() == elrSkirt) 
        seam_position = spNearest;
    
    // find the point of the loop that is closest to the current extruder position
    // or randomize if requested
    Point last_pos = this->last_pos();
    if (m_config.spiral_vase) {
        loop.split_at(last_pos, false);
    } else if (seam_position == spNearest || seam_position == spAligned || seam_position == spRear) {
        Polygon        polygon    = loop.polygon();
        const coordf_t nozzle_dmr = EXTRUDER_CONFIG(nozzle_diameter);
        const coord_t  nozzle_r   = coord_t(scale_(0.5 * nozzle_dmr) + 0.5);

        // Retrieve the last start position for this object.
        float last_pos_weight = 1.f;
        switch (seam_position) {
        case spAligned:
            // Seam is aligned to the seam at the preceding layer.
            if (m_layer != NULL && m_seam_position.count(m_layer->object()) > 0) {
                last_pos = m_seam_position[m_layer->object()];
                last_pos_weight = 1.f;
            }
            break;
        case spRear:
            last_pos = m_layer->object()->bounding_box().center();
            last_pos.y += coord_t(3. * m_layer->object()->bounding_box().radius());
            last_pos_weight = 5.f;
            break;
        }

        // Insert a projection of last_pos into the polygon.
        size_t last_pos_proj_idx;
        {
            Points::iterator it = project_point_to_polygon_and_insert(polygon, last_pos, 0.1 * nozzle_r);
            last_pos_proj_idx = it - polygon.points.begin();
        }
        Point last_pos_proj = polygon.points[last_pos_proj_idx];
        // Parametrize the polygon by its length.
        std::vector<float> lengths = polygon_parameter_by_length(polygon);

        // For each polygon point, store a penalty.
        // First calculate the angles, store them as penalties. The angles are caluculated over a minimum arm length of nozzle_r.
        std::vector<float> penalties = polygon_angles_at_vertices(polygon, lengths, float(nozzle_r));
        // No penalty for reflex points, slight penalty for convex points, high penalty for flat surfaces.
        const float penaltyConvexVertex = 1.f;
        const float penaltyFlatSurface  = 5.f;
        const float penaltySeam         = 1.3f;
        const float penaltyOverhangHalf = 10.f;
        // Penalty for visible seams.
        for (size_t i = 0; i < polygon.points.size(); ++ i) {
            float ccwAngle = penalties[i];
            if (was_clockwise)
                ccwAngle = - ccwAngle;
            float penalty = 0;
//            if (ccwAngle <- float(PI/3.))
            if (ccwAngle <- float(0.6 * PI))
                // Sharp reflex vertex. We love that, it hides the seam perfectly.
                penalty = 0.f;
//            else if (ccwAngle > float(PI/3.))
            else if (ccwAngle > float(0.6 * PI))
                // Seams on sharp convex vertices are more visible than on reflex vertices.
                penalty = penaltyConvexVertex;
            else if (ccwAngle < 0.f) {
                // Interpolate penalty between maximum and zero.
                penalty = penaltyFlatSurface * bspline_kernel(ccwAngle * float(PI * 2. / 3.));
            } else {
                assert(ccwAngle >= 0.f);
                // Interpolate penalty between maximum and the penalty for a convex vertex.
                penalty = penaltyConvexVertex + (penaltyFlatSurface - penaltyConvexVertex) * bspline_kernel(ccwAngle * float(PI * 2. / 3.));
            }
            // Give a negative penalty for points close to the last point or the prefered seam location.
            //float dist_to_last_pos_proj = last_pos_proj.distance_to(polygon.points[i]);
            float dist_to_last_pos_proj = (i < last_pos_proj_idx) ? 
                std::min(lengths[last_pos_proj_idx] - lengths[i], lengths.back() - lengths[last_pos_proj_idx] + lengths[i]) : 
                std::min(lengths[i] - lengths[last_pos_proj_idx], lengths.back() - lengths[i] + lengths[last_pos_proj_idx]);
            float dist_max = 0.1f * lengths.back(); // 5.f * nozzle_dmr
            penalty -= last_pos_weight * bspline_kernel(dist_to_last_pos_proj / dist_max);
            penalties[i] = std::max(0.f, penalty);
        }

        // Penalty for overhangs.
        if (lower_layer_edge_grid && (*lower_layer_edge_grid)) {
            // Use the edge grid distance field structure over the lower layer to calculate overhangs.
            coord_t nozzle_r = coord_t(floor(scale_(0.5 * nozzle_dmr) + 0.5));
            coord_t search_r = coord_t(floor(scale_(0.8 * nozzle_dmr) + 0.5));
            for (size_t i = 0; i < polygon.points.size(); ++ i) {
                const Point &p = polygon.points[i];
                coordf_t dist;
                // Signed distance is positive outside the object, negative inside the object.
                // The point is considered at an overhang, if it is more than nozzle radius
                // outside of the lower layer contour.
                bool found = (*lower_layer_edge_grid)->signed_distance(p, search_r, dist);
                // If the approximate Signed Distance Field was initialized over lower_layer_edge_grid,
                // then the signed distnace shall always be known.
                assert(found);
                penalties[i] += extrudate_overlap_penalty(float(nozzle_r), penaltyOverhangHalf, float(dist));
            }
        }

        // Find a point with a minimum penalty.
        size_t idx_min = std::min_element(penalties.begin(), penalties.end()) - penalties.begin();

        // if (seam_position == spAligned)
        // For all (aligned, nearest, rear) seams:
        {
            // Very likely the weight of idx_min is very close to the weight of last_pos_proj_idx.
            // In that case use last_pos_proj_idx instead.
            float penalty_aligned  = penalties[last_pos_proj_idx];
            float penalty_min      = penalties[idx_min];
            float penalty_diff_abs = std::abs(penalty_min - penalty_aligned);
            float penalty_max      = std::max(penalty_min, penalty_aligned);
            float penalty_diff_rel = (penalty_max == 0.f) ? 0.f : penalty_diff_abs / penalty_max;
            // printf("Align seams, penalty aligned: %f, min: %f, diff abs: %f, diff rel: %f\n", penalty_aligned, penalty_min, penalty_diff_abs, penalty_diff_rel);
            if (penalty_diff_rel < 0.05) {
                // Penalty of the aligned point is very close to the minimum penalty.
                // Align the seams as accurately as possible.
                idx_min = last_pos_proj_idx;
            }
            m_seam_position[m_layer->object()] = polygon.points[idx_min];
        }

        // Export the contour into a SVG file.
        #if 0
        {
            static int iRun = 0;
            SVG svg(debug_out_path("GCode_extrude_loop-%d.svg", iRun ++));
            if (m_layer->lower_layer != NULL)
                svg.draw(m_layer->lower_layer->slices.expolygons);
            for (size_t i = 0; i < loop.paths.size(); ++ i)
                svg.draw(loop.paths[i].as_polyline(), "red");
            Polylines polylines;
            for (size_t i = 0; i < loop.paths.size(); ++ i)
                polylines.push_back(loop.paths[i].as_polyline());
            Slic3r::Polygons polygons;
            coordf_t nozzle_dmr = EXTRUDER_CONFIG(nozzle_diameter);
            coord_t delta = scale_(0.5*nozzle_dmr);
            Slic3r::offset(polylines, &polygons, delta);
//            for (size_t i = 0; i < polygons.size(); ++ i) svg.draw((Polyline)polygons[i], "blue");
            svg.draw(last_pos, "green", 3);
            svg.draw(polygon.points[idx_min], "yellow", 3);
            svg.Close();
        }
        #endif

        // Split the loop at the point with a minium penalty.
        if (!loop.split_at_vertex(polygon.points[idx_min]))
            // The point is not in the original loop. Insert it.
            loop.split_at(polygon.points[idx_min], true);

    } else if (seam_position == spRandom) {
        if (loop.loop_role() == elrContourInternalPerimeter) {
            // This loop does not contain any other loop. Set a random position.
            // The other loops will get a seam close to the random point chosen
            // on the inner most contour.
            //FIXME This works correctly for inner contours first only.
            //FIXME Better parametrize the loop by its length.
            Polygon polygon = loop.polygon();
            Point centroid = polygon.centroid();
            last_pos = Point(polygon.bounding_box().max.x, centroid.y);
            last_pos.rotate(fmod((float)rand()/16.0, 2.0*PI), centroid);
        }
        // Find the closest point, avoid overhangs.
        loop.split_at(last_pos, true);
    }
    
    // clip the path to avoid the extruder to get exactly on the first point of the loop;
    // if polyline was shorter than the clipping distance we'd get a null polyline, so
    // we discard it in that case
    double clip_length = m_enable_loop_clipping ? 
        scale_(EXTRUDER_CONFIG(nozzle_diameter)) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER : 
        0;

    // get paths
    ExtrusionPaths paths;
    loop.clip_end(clip_length, &paths);
    if (paths.empty()) return "";
    
    // apply the small perimeter speed
    if (is_perimeter(paths.front().role()) && loop.length() <= SMALL_PERIMETER_LENGTH && speed == -1)
        speed = m_config.small_perimeter_speed.get_abs_value(m_config.perimeter_speed);
    
    // extrude along the path
    std::string gcode;
    for (ExtrusionPaths::iterator path = paths.begin(); path != paths.end(); ++path) {
//    description += ExtrusionLoopRole2String(loop.loop_role());
//    description += ExtrusionRole2String(path->role);
        path->simplify(SCALED_RESOLUTION);
        gcode += this->_extrude(*path, description, speed);
    }
    
    // reset acceleration
    gcode += m_writer.set_acceleration((unsigned int)(m_config.default_acceleration.value + 0.5));
    
    if (m_wipe.enable)
        m_wipe.path = paths.front().polyline;  // TODO: don't limit wipe to last path
    
    // make a little move inwards before leaving loop
    if (paths.back().role() == erExternalPerimeter && m_layer != NULL && m_config.perimeters.value > 1) {
        // detect angle between last and first segment
        // the side depends on the original winding order of the polygon (left for contours, right for holes)
        Point a = paths.front().polyline.points[1];  // second point
        Point b = *(paths.back().polyline.points.end()-3);       // second to last point
        if (was_clockwise) {
            // swap points
            Point c = a; a = b; b = c;
        }
        
        double angle = paths.front().first_point().ccw_angle(a, b) / 3;
        
        // turn left if contour, turn right if hole
        if (was_clockwise) angle *= -1;
        
        // create the destination point along the first segment and rotate it
        // we make sure we don't exceed the segment length because we don't know
        // the rotation of the second segment so we might cross the object boundary
        Line first_segment(
            paths.front().polyline.points[0],
            paths.front().polyline.points[1]
        );
        double distance = std::min<double>(
            scale_(EXTRUDER_CONFIG(nozzle_diameter)),
            first_segment.length()
        );
        Point point = first_segment.point_at(distance);
        point.rotate(angle, first_segment.a);
        
        // generate the travel move
        gcode += m_writer.travel_to_xy(this->point_to_gcode(point), "move inwards before travel");
    }
    
    return gcode;
}

std::string GCode::extrude_multi_path(ExtrusionMultiPath multipath, std::string description, double speed)
{
    // extrude along the path
    std::string gcode;
    for (ExtrusionPath path : multipath.paths) {
//    description += ExtrusionLoopRole2String(loop.loop_role());
//    description += ExtrusionRole2String(path->role);
        path.simplify(SCALED_RESOLUTION);
        gcode += this->_extrude(path, description, speed);
    }
    if (m_wipe.enable) {
        m_wipe.path = std::move(multipath.paths.back().polyline);  // TODO: don't limit wipe to last path
        m_wipe.path.reverse();
    }
    // reset acceleration
    gcode += m_writer.set_acceleration((unsigned int)floor(m_config.default_acceleration.value + 0.5));
    return gcode;
}

std::string GCode::extrude_entity(const ExtrusionEntity &entity, std::string description, double speed, std::unique_ptr<EdgeGrid::Grid> *lower_layer_edge_grid)
{
    if (const ExtrusionPath* path = dynamic_cast<const ExtrusionPath*>(&entity))
        return this->extrude_path(*path, description, speed);
    else if (const ExtrusionMultiPath* multipath = dynamic_cast<const ExtrusionMultiPath*>(&entity))
        return this->extrude_multi_path(*multipath, description, speed);
    else if (const ExtrusionLoop* loop = dynamic_cast<const ExtrusionLoop*>(&entity))
        return this->extrude_loop(*loop, description, speed, lower_layer_edge_grid);
    else {
        CONFESS("Invalid argument supplied to extrude()");
        return "";
    }
}

std::string GCode::extrude_path(ExtrusionPath path, std::string description, double speed)
{
//    description += ExtrusionRole2String(path.role());
    path.simplify(SCALED_RESOLUTION);
    std::string gcode = this->_extrude(path, description, speed);
    if (m_wipe.enable) {
        m_wipe.path = std::move(path.polyline);
        m_wipe.path.reverse();
    }
    // reset acceleration
    gcode += m_writer.set_acceleration((unsigned int)floor(m_config.default_acceleration.value + 0.5));
    return gcode;
}

// Extrude perimeters: Decide where to put seams (hide or align seams).
std::string GCode::extrude_perimeters(const Print &print, const std::vector<ObjectByExtruder::Island::Region> &by_region, std::unique_ptr<EdgeGrid::Grid> &lower_layer_edge_grid)
{
    std::string gcode;
    for (const ObjectByExtruder::Island::Region &region : by_region) {
        m_config.apply(print.regions[&region - &by_region.front()]->config);
        for (ExtrusionEntity *ee : region.perimeters.entities)
            gcode += this->extrude_entity(*ee, "perimeter", -1., &lower_layer_edge_grid);
    }
    return gcode;
}

// Chain the paths hierarchically by a greedy algorithm to minimize a travel distance.
std::string GCode::extrude_infill(const Print &print, const std::vector<ObjectByExtruder::Island::Region> &by_region)
{
    std::string gcode;
    for (const ObjectByExtruder::Island::Region &region : by_region) {
        m_config.apply(print.regions[&region - &by_region.front()]->config);
		ExtrusionEntityCollection chained = region.infills.chained_path_from(m_last_pos, false);
        for (ExtrusionEntity *fill : chained.entities) {
            auto *eec = dynamic_cast<ExtrusionEntityCollection*>(fill);
            if (eec) {
				ExtrusionEntityCollection chained2 = eec->chained_path_from(m_last_pos, false);
				for (ExtrusionEntity *ee : chained2.entities)
                    gcode += this->extrude_entity(*ee, "infill");
            } else
                gcode += this->extrude_entity(*fill, "infill");
        }
    }
    return gcode;
}

std::string GCode::extrude_support(const ExtrusionEntityCollection &support_fills)
{
    std::string gcode;
    if (! support_fills.entities.empty()) {
        const char   *support_label            = "support material";
        const char   *support_interface_label  = "support material interface";
        const double  support_speed            = m_config.support_material_speed.value;
        const double  support_interface_speed  = m_config.support_material_interface_speed.get_abs_value(support_speed);
        for (const ExtrusionEntity *ee : support_fills.entities) {
            ExtrusionRole role = ee->role();
            assert(role == erSupportMaterial || role == erSupportMaterialInterface);
            const char  *label = (role == erSupportMaterial) ? support_label : support_interface_label;
            const double speed = (role == erSupportMaterial) ? support_speed : support_interface_speed;
            const ExtrusionPath *path = dynamic_cast<const ExtrusionPath*>(ee);
            if (path)
                gcode += this->extrude_path(*path, label, speed);
            else {
                const ExtrusionMultiPath *multipath = dynamic_cast<const ExtrusionMultiPath*>(ee);
                assert(multipath != nullptr);
                if (multipath)
                    gcode += this->extrude_multi_path(*multipath, label, speed);
            }
        }
    }
    return gcode;
}

std::string GCode::_extrude(const ExtrusionPath &path, std::string description, double speed)
{
    std::string gcode;
    
    // go to first point of extrusion path
    if (!m_last_pos_defined || !m_last_pos.coincides_with(path.first_point())) {
        gcode += this->travel_to(
            path.first_point(),
            path.role(),
            "move to first " + description + " point"
        );
    }
    
    // compensate retraction
    gcode += this->unretract();
    
    // adjust acceleration
    {
        double acceleration;
        if (this->on_first_layer() && m_config.first_layer_acceleration.value > 0) {
            acceleration = m_config.first_layer_acceleration.value;
        } else if (m_config.perimeter_acceleration.value > 0 && is_perimeter(path.role())) {
            acceleration = m_config.perimeter_acceleration.value;
        } else if (m_config.bridge_acceleration.value > 0 && is_bridge(path.role())) {
            acceleration = m_config.bridge_acceleration.value;
        } else if (m_config.infill_acceleration.value > 0 && is_infill(path.role())) {
            acceleration = m_config.infill_acceleration.value;
        } else {
            acceleration = m_config.default_acceleration.value;
        }
        gcode += m_writer.set_acceleration((unsigned int)floor(acceleration + 0.5));
    }
    
    // calculate extrusion length per distance unit
    double e_per_mm = m_writer.extruder()->e_per_mm3() * path.mm3_per_mm;
    if (m_writer.extrusion_axis().empty()) e_per_mm = 0;
    
    // set speed
    if (speed == -1) {
        if (path.role() == erPerimeter) {
            speed = m_config.get_abs_value("perimeter_speed");
        } else if (path.role() == erExternalPerimeter) {
            speed = m_config.get_abs_value("external_perimeter_speed");
        } else if (path.role() == erOverhangPerimeter || path.role() == erBridgeInfill) {
            speed = m_config.get_abs_value("bridge_speed");
        } else if (path.role() == erInternalInfill) {
            speed = m_config.get_abs_value("infill_speed");
        } else if (path.role() == erSolidInfill) {
            speed = m_config.get_abs_value("solid_infill_speed");
        } else if (path.role() == erTopSolidInfill) {
            speed = m_config.get_abs_value("top_solid_infill_speed");
        } else if (path.role() == erGapFill) {
            speed = m_config.get_abs_value("gap_fill_speed");
        } else {
            CONFESS("Invalid speed");
        }
    }
    if (this->on_first_layer())
        speed = m_config.get_abs_value("first_layer_speed", speed);
    if (m_volumetric_speed != 0. && speed == 0)
        speed = m_volumetric_speed / path.mm3_per_mm;
    if (m_config.max_volumetric_speed.value > 0) {
        // cap speed with max_volumetric_speed anyway (even if user is not using autospeed)
        speed = std::min(
            speed,
            m_config.max_volumetric_speed.value / path.mm3_per_mm
        );
    }
    if (EXTRUDER_CONFIG(filament_max_volumetric_speed) > 0) {
        // cap speed with max_volumetric_speed anyway (even if user is not using autospeed)
        speed = std::min(
            speed,
            EXTRUDER_CONFIG(filament_max_volumetric_speed) / path.mm3_per_mm
        );
    }
    double F = speed * 60;  // convert mm/sec to mm/min
    
    // extrude arc or line
    if (m_enable_extrusion_role_markers || m_enable_analyzer_markers) {
        if (path.role() != m_last_extrusion_role) {
            m_last_extrusion_role = path.role();
            char buf[32];
            sprintf(buf, ";_EXTRUSION_ROLE:%d\n", int(path.role()));
            gcode += buf;
        }
    }
    std::string comment;
    if (m_enable_cooling_markers) {
        if (is_bridge(path.role()))
            gcode += ";_BRIDGE_FAN_START\n";
        else
            comment = ";_EXTRUDE_SET_SPEED";
        if (path.role() == erExternalPerimeter)
            comment += ";_EXTERNAL_PERIMETER";
    }
    // F is mm per minute.
    gcode += m_writer.set_speed(F, "", comment);
    double path_length = 0.;
    {
        std::string comment = m_config.gcode_comments ? description : "";
        for (const Line &line : path.polyline.lines()) {
            const double line_length = line.length() * SCALING_FACTOR;
            path_length += line_length;
            gcode += m_writer.extrude_to_xy(
                this->point_to_gcode(line.b),
                e_per_mm * line_length,
                comment);
        }
    }
    if (m_enable_cooling_markers)
        gcode += is_bridge(path.role()) ? ";_BRIDGE_FAN_END\n" : ";_EXTRUDE_END\n";
    
    this->set_last_pos(path.last_point());
    return gcode;
}

// This method accepts &point in print coordinates.
std::string GCode::travel_to(const Point &point, ExtrusionRole role, std::string comment)
{    
    /*  Define the travel move as a line between current position and the taget point.
        This is expressed in print coordinates, so it will need to be translated by
        this->origin in order to get G-code coordinates.  */
    Polyline travel;
    travel.append(this->last_pos());
    travel.append(point);
    
    // check whether a straight travel move would need retraction
    bool needs_retraction = this->needs_retraction(travel, role);
    
    // if a retraction would be needed, try to use avoid_crossing_perimeters to plan a
    // multi-hop travel path inside the configuration space
    if (needs_retraction
        && m_config.avoid_crossing_perimeters
        && ! m_avoid_crossing_perimeters.disable_once) {
        travel = m_avoid_crossing_perimeters.travel_to(*this, point);
        
        // check again whether the new travel path still needs a retraction
        needs_retraction = this->needs_retraction(travel, role);
        //if (needs_retraction && m_layer_index > 1) exit(0);
    }
    
    // Re-allow avoid_crossing_perimeters for the next travel moves
    m_avoid_crossing_perimeters.disable_once = false;
    m_avoid_crossing_perimeters.use_external_mp_once = false;
    
    // generate G-code for the travel move
    std::string gcode;
    if (needs_retraction)
        gcode += this->retract();
    else
        // Reset the wipe path when traveling, so one would not wipe along an old path.
        m_wipe.reset_path();
    
    // use G1 because we rely on paths being straight (G0 may make round paths)
    Lines lines = travel.lines();
    for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line)
	    gcode += m_writer.travel_to_xy(this->point_to_gcode(line->b), comment);
    
    return gcode;
}

bool GCode::needs_retraction(const Polyline &travel, ExtrusionRole role)
{
    if (travel.length() < scale_(EXTRUDER_CONFIG(retract_before_travel))) {
        // skip retraction if the move is shorter than the configured threshold
        return false;
    }
    
    if (role == erSupportMaterial) {
        const SupportLayer* support_layer = dynamic_cast<const SupportLayer*>(m_layer);
        //FIXME support_layer->support_islands.contains should use some search structure!
        if (support_layer != NULL && support_layer->support_islands.contains(travel))
            // skip retraction if this is a travel move inside a support material island
            //FIXME not retracting over a long path may cause oozing, which in turn may result in missing material
            // at the end of the extrusion path!
            return false;
    }

    if (m_config.only_retract_when_crossing_perimeters && m_layer != nullptr &&
        m_config.fill_density.value > 0 && m_layer->any_internal_region_slice_contains(travel))
        // Skip retraction if travel is contained in an internal slice *and*
        // internal infill is enabled (so that stringing is entirely not visible).
        //FIXME any_internal_region_slice_contains() is potentionally very slow, it shall test for the bounding boxes first.
        return false;
    
    // retract if only_retract_when_crossing_perimeters is disabled or doesn't apply
    return true;
}

std::string
GCode::retract(bool toolchange)
{
    std::string gcode;
    
    if (m_writer.extruder() == nullptr)
        return gcode;
    
    // wipe (if it's enabled for this extruder and we have a stored wipe path)
    if (EXTRUDER_CONFIG(wipe) && m_wipe.has_path()) {
        gcode += toolchange ? m_writer.retract_for_toolchange(true) : m_writer.retract(true);
        gcode += m_wipe.wipe(*this, toolchange);
    }
    
    /*  The parent class will decide whether we need to perform an actual retraction
        (the extruder might be already retracted fully or partially). We call these 
        methods even if we performed wipe, since this will ensure the entire retraction
        length is honored in case wipe path was too short.  */
    gcode += toolchange ? m_writer.retract_for_toolchange() : m_writer.retract();
    
    gcode += m_writer.reset_e();
    if (m_writer.extruder()->retract_length() > 0 || m_config.use_firmware_retraction)
        gcode += m_writer.lift();
    
    return gcode;
}

std::string GCode::set_extruder(unsigned int extruder_id)
{
    m_placeholder_parser.set("current_extruder", extruder_id);
    if (!m_writer.need_toolchange(extruder_id))
        return "";
    
    // if we are running a single-extruder setup, just set the extruder and return nothing
    if (!m_writer.multiple_extruders)
        return m_writer.toolchange(extruder_id);
    
    // prepend retraction on the current extruder
    std::string gcode = this->retract(true);

    // Always reset the extrusion path, even if the tool change retract is set to zero.
    m_wipe.reset_path();
    
    // append custom toolchange G-code
    if (m_writer.extruder() != nullptr && !m_config.toolchange_gcode.value.empty()) {
        PlaceholderParser pp = m_placeholder_parser;
        pp.set("previous_extruder", m_writer.extruder()->id());
        pp.set("next_extruder",     extruder_id);
        gcode += pp.process(m_config.toolchange_gcode.value, extruder_id) + '\n';
    }
    
    // if ooze prevention is enabled, park current extruder in the nearest
    // standby point and set it to the standby temperature
    if (m_ooze_prevention.enable && m_writer.extruder() != nullptr)
        gcode += m_ooze_prevention.pre_toolchange(*this);
    // append the toolchange command
    gcode += m_writer.toolchange(extruder_id);
    // set the new extruder to the operating temperature
    if (m_ooze_prevention.enable)
        gcode += m_ooze_prevention.post_toolchange(*this);
    
    return gcode;
}

// convert a model-space scaled point into G-code coordinates
Pointf GCode::point_to_gcode(const Point &point) const
{
    Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
    return Pointf(
        unscale(point.x) + m_origin.x - extruder_offset.x,
        unscale(point.y) + m_origin.y - extruder_offset.y);
}

// convert a model-space scaled point into G-code coordinates
Point GCode::gcode_to_point(const Pointf &point) const
{
    Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
    return Point(
        scale_(point.x - m_origin.x + extruder_offset.x),
        scale_(point.y - m_origin.y + extruder_offset.y));
}

}