Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Geometry.cpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 827029aa075e77cb93a968629694a2e68fec6856 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#include "Geometry.hpp"
#include "ClipperUtils.hpp"
#include "ExPolygon.hpp"
#include "Line.hpp"
#include "PolylineCollection.hpp"
#include "clipper.hpp"
#include <algorithm>
#include <cmath>
#include <list>
#include <map>
#include <set>
#include <vector>

#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif

using namespace boost::polygon;  // provides also high() and low()

namespace Slic3r { namespace Geometry {

static bool
sort_points (Point a, Point b)
{
    return (a.x < b.x) || (a.x == b.x && a.y < b.y);
}

/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
Polygon
convex_hull(Points points)
{
    assert(points.size() >= 3);
    // sort input points
    std::sort(points.begin(), points.end(), sort_points);
    
    int n = points.size(), k = 0;
    Polygon hull;
    hull.points.resize(2*n);

    // Build lower hull
    for (int i = 0; i < n; i++) {
        while (k >= 2 && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--;
        hull.points[k++] = points[i];
    }

    // Build upper hull
    for (int i = n-2, t = k+1; i >= 0; i--) {
        while (k >= t && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--;
        hull.points[k++] = points[i];
    }

    hull.points.resize(k);
    
    assert( hull.points.front().coincides_with(hull.points.back()) );
    hull.points.pop_back();
    
    return hull;
}

Polygon
convex_hull(const Polygons &polygons)
{
    Points pp;
    for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
        pp.insert(pp.end(), p->points.begin(), p->points.end());
    }
    return convex_hull(pp);
}

/* accepts an arrayref of points and returns a list of indices
   according to a nearest-neighbor walk */
void
chained_path(const Points &points, std::vector<Points::size_type> &retval, Point start_near)
{
    PointConstPtrs my_points;
    std::map<const Point*,Points::size_type> indices;
    my_points.reserve(points.size());
    for (Points::const_iterator it = points.begin(); it != points.end(); ++it) {
        my_points.push_back(&*it);
        indices[&*it] = it - points.begin();
    }
    
    retval.reserve(points.size());
    while (!my_points.empty()) {
        Points::size_type idx = start_near.nearest_point_index(my_points);
        start_near = *my_points[idx];
        retval.push_back(indices[ my_points[idx] ]);
        my_points.erase(my_points.begin() + idx);
    }
}

void
chained_path(const Points &points, std::vector<Points::size_type> &retval)
{
    if (points.empty()) return;  // can't call front() on empty vector
    chained_path(points, retval, points.front());
}

/* retval and items must be different containers */
template<class T>
void
chained_path_items(Points &points, T &items, T &retval)
{
    std::vector<Points::size_type> indices;
    chained_path(points, indices);
    for (std::vector<Points::size_type>::const_iterator it = indices.begin(); it != indices.end(); ++it)
        retval.push_back(items[*it]);
}
template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);

bool
directions_parallel(double angle1, double angle2, double max_diff)
{
    double diff = fabs(angle1 - angle2);
    max_diff += EPSILON;
    return diff < max_diff || fabs(diff - PI) < max_diff;
}

template<class T>
bool
contains(const std::vector<T> &vector, const Point &point)
{
    for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
        if (it->contains(point)) return true;
    }
    return false;
}
template bool contains(const ExPolygons &vector, const Point &point);

double
rad2deg(double angle)
{
    return angle / PI * 180.0;
}

double
rad2deg_dir(double angle)
{
    angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0);
    if (angle < 0) angle += PI;
    return rad2deg(angle);
}

double
deg2rad(double angle)
{
    return PI * angle / 180.0;
}

void
simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
{
    Polygons pp;
    for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) {
        Polygon p = *it;
        p.points.push_back(p.points.front());
        p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
        p.points.pop_back();
        pp.push_back(p);
    }
    Slic3r::simplify_polygons(pp, retval);
}

double
linint(double value, double oldmin, double oldmax, double newmin, double newmax)
{
    return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
}

Pointfs
arrange(size_t total_parts, Pointf part, coordf_t dist, const BoundingBoxf &bb)
{
    // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
    part.x += dist;
    part.y += dist;
    
    Pointf area;
    if (bb.defined) {
        area = bb.size();
    } else {
        // bogus area size, large enough not to trigger the error below
        area.x = part.x * total_parts;
        area.y = part.y * total_parts;
    }
    
    // this is how many cells we have available into which to put parts
    size_t cellw = floor((area.x + dist) / part.x);
    size_t cellh = floor((area.x + dist) / part.x);
    
    if (total_parts > (cellw * cellh))
        CONFESS("%zu parts won't fit in your print area!\n", total_parts);
    
    // total space used by cells
    Pointf cells(cellw * part.x, cellh * part.y);
    
    // bounding box of total space used by cells
    BoundingBoxf cells_bb;
    cells_bb.merge(Pointf(0,0)); // min
    cells_bb.merge(cells);  // max
    
    // center bounding box to area
    cells_bb.translate(
        -(area.x - cells.x) / 2,
        -(area.y - cells.y) / 2
    );
    
    // list of cells, sorted by distance from center
    std::vector<ArrangeItemIndex> cellsorder;
    
    // work out distance for all cells, sort into list
    for (size_t i = 0; i <= cellw-1; ++i) {
        for (size_t j = 0; j <= cellh-1; ++j) {
            coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x, cells_bb.max.x);
            coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.max.y, cells_bb.min.y);
            
            coordf_t xd = fabs((area.x / 2) - cx);
            coordf_t yd = fabs((area.y / 2) - cy);
            
            ArrangeItem c;
            c.pos.x = cx;
            c.pos.y = cy;
            c.index_x = i;
            c.index_y = j;
            c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
            
            // binary insertion sort
            {
                coordf_t index = c.dist;
                size_t low = 0;
                size_t high = cellsorder.size();
                while (low < high) {
                    size_t mid = (low + ((high - low) / 2)) | 0;
                    coordf_t midval = cellsorder[mid].index;
                    
                    if (midval < index) {
                        low = mid + 1;
                    } else if (midval > index) {
                        high = mid;
                    } else {
                        cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
                        goto ENDSORT;
                    }
                }
                cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
            }
            ENDSORT: true;
        }
    }
    
    // the extents of cells actually used by objects
    coordf_t lx = 0;
    coordf_t ty = 0;
    coordf_t rx = 0;
    coordf_t by = 0;

    // now find cells actually used by objects, map out the extents so we can position correctly
    for (size_t i = 1; i <= total_parts; ++i) {
        ArrangeItemIndex c = cellsorder[i - 1];
        coordf_t cx = c.item.index_x;
        coordf_t cy = c.item.index_y;
        if (i == 1) {
            lx = rx = cx;
            ty = by = cy;
        } else {
            if (cx > rx) rx = cx;
            if (cx < lx) lx = cx;
            if (cy > by) by = cy;
            if (cy < ty) ty = cy;
        }
    }
    // now we actually place objects into cells, positioned such that the left and bottom borders are at 0
    Pointfs positions;
    for (size_t i = 1; i <= total_parts; ++i) {
        ArrangeItemIndex c = cellsorder.front();
        cellsorder.erase(cellsorder.begin());
        coordf_t cx = c.item.index_x - lx;
        coordf_t cy = c.item.index_y - ty;
        
        positions.push_back(Pointf(cx * part.x, cy * part.y));
    }
    
    if (bb.defined) {
        for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
            p->x += bb.min.x;
            p->y += bb.min.y;
        }
    }
    return positions;
}

Line
MedialAxis::edge_to_line(const VD::edge_type &edge) const
{
    Line line;
    line.a.x = edge.vertex0()->x();
    line.a.y = edge.vertex0()->y();
    line.b.x = edge.vertex1()->x();
    line.b.y = edge.vertex1()->y();
    return line;
}

void
MedialAxis::build(Polylines* polylines)
{
    /*
    // build bounding box (we use it for clipping infinite segments)
    // --> we have no infinite segments
    this->bb = BoundingBox(this->lines);
    */
    
    construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
    
    /*
    // DEBUG: dump all Voronoi edges
    {
        for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
            if (edge->is_infinite()) continue;
            
            Polyline polyline;
            polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
            polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
            polylines->push_back(polyline);
        }
        return;
    }
    */
    
    typedef const VD::vertex_type vert_t;
    typedef const VD::edge_type   edge_t;
    
    // collect valid edges (i.e. prune those not belonging to MAT)
    // note: this keeps twins, so it inserts twice the number of the valid edges
    this->edges.clear();
    for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
        // if we only process segments representing closed loops, none if the
        // infinite edges (if any) would be part of our MAT anyway
        if (edge->is_secondary() || edge->is_infinite()) continue;
        this->edges.insert(&*edge);
    }
    
    // count valid segments for each vertex
    std::map< vert_t*,std::set<edge_t*> > vertex_edges;  // collects edges connected for each vertex
    std::set<vert_t*> startpoints;                       // collects all vertices having a single starting edge
    for (VD::const_vertex_iterator it = this->vd.vertices().begin(); it != this->vd.vertices().end(); ++it) {
        vert_t* vertex = &*it;
        
        // loop through all edges originating from this vertex
        // starting from a random one
        edge_t* edge = vertex->incident_edge();
        do {
            // if this edge was not pruned by our filter above,
            // add it to vertex_edges
            if (this->edges.count(edge) > 0)
                vertex_edges[vertex].insert(edge);
            
            // continue looping next edge originating from this vertex
            edge = edge->rot_next();
        } while (edge != vertex->incident_edge());
        
        // if there's only one edge starting at this vertex then it's an endpoint
        if (vertex_edges[vertex].size() == 1) {
            startpoints.insert(vertex);
        }
    }
    
    // prune startpoints recursively if extreme segments are not valid
    while (!startpoints.empty()) {
        // get a random entry node
        vert_t* v = *startpoints.begin();
    
        // get edge starting from v
        assert(vertex_edges[v].size() == 1);
        edge_t* edge = *vertex_edges[v].begin();
        
        if (!this->is_valid_edge(*edge)) {
            // if edge is not valid, erase it and its twin from edge list
            (void)this->edges.erase(edge);
            (void)this->edges.erase(edge->twin());
            
            // decrement edge counters for the affected nodes
            vert_t* v1 = edge->vertex1();
            (void)vertex_edges[v].erase(edge);
            (void)vertex_edges[v1].erase(edge->twin());
            
            // also, check whether the end vertex is a new leaf
            if (vertex_edges[v1].size() == 1) {
                startpoints.insert(v1);
            } else if (vertex_edges[v1].empty()) {
                startpoints.erase(v1);
            }
        }
        
        // remove node from the set to prevent it from being visited again
        startpoints.erase(v);
    }
    
    // iterate through the valid edges to build polylines
    while (!this->edges.empty()) {
        edge_t &edge = **this->edges.begin();
        
        // start a polyline
        Polyline polyline;
        polyline.points.push_back(Point( edge.vertex0()->x(), edge.vertex0()->y() ));
        polyline.points.push_back(Point( edge.vertex1()->x(), edge.vertex1()->y() ));
        
        // remove this edge and its twin from the available edges
        (void)this->edges.erase(&edge);
        (void)this->edges.erase(edge.twin());
        
        // get next points
        this->process_edge_neighbors(edge, &polyline.points);
        
        // get previous points
        {
            Points pp;
            this->process_edge_neighbors(*edge.twin(), &pp);
            polyline.points.insert(polyline.points.begin(), pp.rbegin(), pp.rend());
        }
        
        // append polyline to result
        polylines->push_back(polyline);
    }
}

void
MedialAxis::process_edge_neighbors(const VD::edge_type& edge, Points* points)
{
    // Since rot_next() works on the edge starting point but we want
    // to find neighbors on the ending point, we just swap edge with
    // its twin.
    const VD::edge_type& twin = *edge.twin();
    
    // count neighbors for this edge
    std::vector<const VD::edge_type*> neighbors;
    for (const VD::edge_type* neighbor = twin.rot_next(); neighbor != &twin; neighbor = neighbor->rot_next()) {
        if (this->edges.count(neighbor) > 0) neighbors.push_back(neighbor);
    }
    
    // if we have a single neighbor then we can continue recursively
    if (neighbors.size() == 1) {
        const VD::edge_type& neighbor = *neighbors.front();
        points->push_back(Point( neighbor.vertex1()->x(), neighbor.vertex1()->y() ));
        (void)this->edges.erase(&neighbor);
        (void)this->edges.erase(neighbor.twin());
        this->process_edge_neighbors(neighbor, points);
    }
}

bool
MedialAxis::is_valid_edge(const VD::edge_type& edge) const
{
    /* If the cells sharing this edge have a common vertex, we're not interested
       in this edge. Why? Because it means that the edge lies on the bisector of
       two contiguous input lines and it was included in the Voronoi graph because
       it's the locus of centers of circles tangent to both vertices. Due to the 
       "thin" nature of our input, these edges will be very short and not part of
       our wanted output. */
    
    // retrieve the original line segments which generated the edge we're checking
    const VD::cell_type &cell1 = *edge.cell();
    const VD::cell_type &cell2 = *edge.twin()->cell();
    if (!cell1.contains_segment() || !cell2.contains_segment()) return false;
    const Line &segment1 = this->retrieve_segment(cell1);
    const Line &segment2 = this->retrieve_segment(cell2);
    
    // calculate the relative angle between the two boundary segments
    double angle = fabs(segment2.orientation() - segment1.orientation());
    
    // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
    // we're interested only in segments close to the second case (facing segments)
    // so we allow some tolerance.
    // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
    if (fabs(angle - PI) > PI/5) {
        return false;
    }
    
    // each edge vertex is equidistant to both cell segments
    // but such distance might differ between the two vertices;
    // in this case it means the shape is getting narrow (like a corner)
    // and we might need to skip the edge since it's not really part of
    // our skeleton
    
    // get perpendicular distance of each edge vertex to the segment(s)
    double dist0 = segment1.a.distance_to(segment2.b);
    double dist1 = segment1.b.distance_to(segment2.a);
    
    /*
    Line line = this->edge_to_line(edge);
    double diff = fabs(dist1 - dist0);
    double dist_between_segments1 = segment1.a.distance_to(segment2);
    double dist_between_segments2 = segment1.b.distance_to(segment2);
    printf("w = %f/%f, dist0 = %f, dist1 = %f, diff = %f, seg1len = %f, seg2len = %f, edgelen = %f, s2s = %f / %f\n",
        unscale(this->max_width), unscale(this->min_width),
        unscale(dist0), unscale(dist1), unscale(diff),
        unscale(segment1.length()), unscale(segment2.length()),
        unscale(line.length()),
        unscale(dist_between_segments1), unscale(dist_between_segments2)
        );
    */

    // if this edge is the centerline for a very thin area, we might want to skip it
    // in case the area is too thin
    if (dist0 < this->min_width && dist1 < this->min_width) {
        //printf(" => too thin, skipping\n");
        return false;
    }
    
    return true;
}

const Line&
MedialAxis::retrieve_segment(const VD::cell_type& cell) const
{
    VD::cell_type::source_index_type index = cell.source_index() - this->points.size();
    return this->lines[index];
}

} }