Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Point.hpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3119511750396ce9cdd35b5e0075b052c75027ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#ifndef slic3r_Point_hpp_
#define slic3r_Point_hpp_

#include "libslic3r.h"
#include <cstddef>
#include <vector>
#include <cmath>
#include <string>
#include <sstream>
#include <unordered_map>

#include <Eigen/Geometry> 

namespace Slic3r {

class Line;
class MultiPoint;
class Point;
class Point3;
class Pointf;
class Pointf3;
typedef Point                       Vector;
typedef Point3                      Vector3;
typedef Pointf                      Vectorf;
typedef Pointf3                     Vectorf3;
typedef std::vector<Point>          Points;
typedef std::vector<Point*>         PointPtrs;
typedef std::vector<const Point*>   PointConstPtrs;
typedef std::vector<Point3>         Points3;
typedef std::vector<Pointf>         Pointfs;
typedef std::vector<Pointf3>        Pointf3s;

// Eigen types, to replace the Slic3r's own types in the future.
// Vector types with a fixed point coordinate base type.
typedef Eigen::Matrix<coord_t,  2, 1, Eigen::DontAlign> Vec2crd;
typedef Eigen::Matrix<coord_t,  3, 1, Eigen::DontAlign> Vec3crd;
typedef Eigen::Matrix<int64_t,  2, 1, Eigen::DontAlign> Vec2i64;
typedef Eigen::Matrix<int64_t,  3, 1, Eigen::DontAlign> Vec3i64;

// Vector types with a double coordinate base type.
typedef Eigen::Matrix<float,    2, 1, Eigen::DontAlign> Vec2f;
typedef Eigen::Matrix<float,    3, 1, Eigen::DontAlign> Vec3f;
typedef Eigen::Matrix<double,   2, 1, Eigen::DontAlign> Vec2d;
typedef Eigen::Matrix<double,   3, 1, Eigen::DontAlign> Vec3d;

typedef Eigen::Transform<float,  2, Eigen::Affine, Eigen::DontAlign> Transform2f;
typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
typedef Eigen::Transform<float,  3, Eigen::Affine, Eigen::DontAlign> Transform3f;
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;

inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline float   cross2(const Vec2f   &v1, const Vec2f   &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline double  cross2(const Vec2d   &v1, const Vec2d   &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }

inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
inline std::string to_string(const Vec2d   &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
inline std::string to_string(const Vec3d   &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }

class Point : public Vec2crd
{
public:
    typedef coord_t coord_type;

    Point() : Vec2crd() { (*this)(0) = 0; (*this)(1) = 0; }
    Point(coord_t x, coord_t y) { (*this)(0) = x; (*this)(1) = y; }
    Point(int64_t x, int64_t y) { (*this)(0) = coord_t(x); (*this)(1) = coord_t(y); } // for Clipper
    Point(double x, double y) { (*this)(0) = coord_t(lrint(x)); (*this)(1) = coord_t(lrint(y)); }
    Point(const Point &rhs) { *this = rhs; }
    // This constructor allows you to construct Point from Eigen expressions
    template<typename OtherDerived>
    Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
    static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }

    // This method allows you to assign Eigen expressions to MyVectorType
    template<typename OtherDerived>
    Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
    {
        this->Vec2crd::operator=(other);
        return *this;
    }

    bool operator< (const Point& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }

    Point& operator+=(const Point& rhs) { (*this)(0) += rhs(0); (*this)(1) += rhs(1); return *this; }
    Point& operator-=(const Point& rhs) { (*this)(0) -= rhs(0); (*this)(1) -= rhs(1); return *this; }
    Point& operator*=(const double &rhs) { (*this)(0) *= rhs; (*this)(1) *= rhs;   return *this; }

    void   rotate(double angle);
    void   rotate(double angle, const Point &center);
    Point  rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
    Point  rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
    int    nearest_point_index(const Points &points) const;
    int    nearest_point_index(const PointConstPtrs &points) const;
    int    nearest_point_index(const PointPtrs &points) const;
    bool   nearest_point(const Points &points, Point* point) const;
    double ccw(const Point &p1, const Point &p2) const;
    double ccw(const Line &line) const;
    double ccw_angle(const Point &p1, const Point &p2) const;
    Point  projection_onto(const MultiPoint &poly) const;
    Point  projection_onto(const Line &line) const;
};

namespace int128 {
    // Exact orientation predicate,
    // returns +1: CCW, 0: collinear, -1: CW.
    int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
    // Exact orientation predicate,
    // returns +1: CCW, 0: collinear, -1: CW.
    int cross(const Vec2crd &v1, const Vec2crd &v2);
}

// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
    size_t operator()(const Vec2crd &pt) const {
        return std::hash<coord_t>()(pt(0)) ^ std::hash<coord_t>()(pt(1));
    }
};

// A generic class to search for a closest Point in a given radius.
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
// The PointAccessor has to return const Point*.
// If a nullptr is returned, it is ignored by the query.
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
{
public:
    ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) : 
		m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
    {
        // Resolution of a grid, twice the search radius + some epsilon.
		coord_t gridres = 2 * m_search_radius + 4;
        m_grid_resolution = gridres;
        assert(m_grid_resolution > 0);
        assert(m_grid_resolution < (coord_t(1) << 30));
		// Compute m_grid_log2 = log2(m_grid_resolution)
		if (m_grid_resolution > 32767) {
			m_grid_resolution >>= 16;
			m_grid_log2 += 16;
		}
		if (m_grid_resolution > 127) {
			m_grid_resolution >>= 8;
			m_grid_log2 += 8;
		}
		if (m_grid_resolution > 7) {
			m_grid_resolution >>= 4;
			m_grid_log2 += 4;
		}
		if (m_grid_resolution > 1) {
			m_grid_resolution >>= 2;
			m_grid_log2 += 2;
		}
		if (m_grid_resolution > 0)
			++ m_grid_log2;
		m_grid_resolution = 1 << m_grid_log2;
		assert(m_grid_resolution >= gridres);
		assert(gridres > m_grid_resolution / 2);
    }

    void insert(const ValueType &value) {
        const Vec2crd *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
    }

    void insert(ValueType &&value) {
        const Vec2crd *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
    }

    // Return a pair of <ValueType*, distance_squared>
    std::pair<const ValueType*, double> find(const Vec2crd &pt) {
        // Iterate over 4 closest grid cells around pt,
        // find the closest start point inside these cells to pt.
        const ValueType *value_min = nullptr;
        double           dist_min = std::numeric_limits<double>::max();
        // Round pt to a closest grid_cell corner.
        Vec2crd            grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2);
        // For four neighbors of grid_corner:
        for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
            for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
                // Range of fragment starts around grid_corner, close to pt.
                auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y));
                // Find the map entry closest to pt.
                for (auto it = range.first; it != range.second; ++it) {
                    const ValueType &value = it->second;
                    const Vec2crd *pt2 = m_point_accessor(value);
                    if (pt2 != nullptr) {
                        const double d2 = (pt - *pt2).squaredNorm();
                        if (d2 < dist_min) {
                            dist_min = d2;
                            value_min = &value;
                        }
                    }
                }
            }
        }
        return (value_min != nullptr && dist_min < coordf_t(m_search_radius * m_search_radius)) ? 
            std::make_pair(value_min, dist_min) : 
            std::make_pair(nullptr, std::numeric_limits<double>::max());
    }

private:
    typedef typename std::unordered_multimap<Vec2crd, ValueType, PointHash> map_type;
    PointAccessor m_point_accessor;
    map_type m_map;
    coord_t  m_search_radius;
    coord_t  m_grid_resolution;
    coord_t  m_grid_log2;
};

class Point3 : public Vec3crd
{
public:
    typedef coord_t coord_type;

    explicit Point3() { (*this)(0) = (*this)(1) = (*this)(2) = 0; }
    explicit Point3(coord_t x, coord_t y, coord_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
    // This constructor allows you to construct Point3 from Eigen expressions
    template<typename OtherDerived>
    Point3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3crd(other) {}
    static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }

    // This method allows you to assign Eigen expressions to MyVectorType
    template<typename OtherDerived>
    Point3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
    {
        this->Vec3crd::operator=(other);
        return *this;
    }

    Point xy() const { return Point((*this)(0), (*this)(1)); }
};

std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);

class Pointf : public Vec2d
{
public:
    typedef coordf_t coord_type;

    explicit Pointf() { (*this)(0) = (*this)(1) = 0.; }
    explicit Pointf(coordf_t x, coordf_t y) { (*this)(0) = x; (*this)(1) = y; }
    // This constructor allows you to construct Pointf from Eigen expressions
    template<typename OtherDerived>
    Pointf(const Eigen::MatrixBase<OtherDerived> &other) : Vec2d(other) {}
    static Pointf new_unscale(coord_t x, coord_t y) { return Pointf(unscale(x), unscale(y)); }
    static Pointf new_unscale(const Point &p) { return Pointf(unscale(p(0)), unscale(p(1))); }

    // This method allows you to assign Eigen expressions to MyVectorType
    template<typename OtherDerived>
    Pointf& operator=(const Eigen::MatrixBase<OtherDerived> &other)
    {
        this->Vec2d::operator=(other);
        return *this;
    }

    void    rotate(double angle);
    void    rotate(double angle, const Pointf &center);

    bool operator< (const Pointf& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
};

class Pointf3 : public Vec3d
{
public:
    typedef coordf_t coord_type;

    explicit Pointf3() { (*this)(0) = (*this)(1) = (*this)(2) = 0.; }
    explicit Pointf3(coordf_t x, coordf_t y, coordf_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
    // This constructor allows you to construct Pointf from Eigen expressions
    template<typename OtherDerived>
    Pointf3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3d(other) {}
    static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) { return Pointf3(unscale(x), unscale(y), unscale(z)); }
    static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p(0)), unscale(p(1)), unscale(p(2))); }

    // This method allows you to assign Eigen expressions to MyVectorType
    template<typename OtherDerived>
    Pointf3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
    {
        this->Vec3d::operator=(other);
        return *this;
    }

    Pointf xy() const { return Pointf((*this)(0), (*this)(1)); }
};

} // namespace Slic3r

// start Boost
#include <boost/version.hpp>
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
    template <>
    struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
   
    template <>
    struct point_traits<Slic3r::Point> {
        typedef coord_t coordinate_type;
    
        static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
            return (orient == HORIZONTAL) ? (coordinate_type)point(0) : (coordinate_type)point(1);
        }
    };
    
    template <>
    struct point_mutable_traits<Slic3r::Point> {
        typedef coord_t coordinate_type;
        static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
            if (orient == HORIZONTAL)
                point(0) = value;
            else
                point(1) = value;
        }
        static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
            Slic3r::Point retval;
            retval(0) = x_value;
            retval(1) = y_value; 
            return retval;
        }
    };
} }
// end Boost

#endif