Welcome to mirror list, hosted at ThFree Co, Russian Federation.

imap.h « etl « lib - github.com/thirdpin/pastilda.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ecf4ddbb52638d72300ba21a8e81ab51e69d69b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
///\file

/******************************************************************************
The MIT License(MIT)

Embedded Template Library.
https://github.com/ETLCPP/etl
http://www.etlcpp.com

Copyright(c) 2014 jwellbelove, rlindeman

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
******************************************************************************/

#ifndef __ETL_IMAP__
#define __ETL_IMAP__
#define __ETL_IN_IMAP_H__

#include <iterator>
#include <algorithm>
#include <functional>
#include <stddef.h>

#include "nullptr.h"
#include "private/map_base.h"
#include "type_traits.h"
#include "parameter_type.h"
#include "pool.h"
#include "platform.h"

#ifdef ETL_COMPILER_MICROSOFT
#undef min
#endif

namespace etl
{
  //***************************************************************************
  /// A templated base for all etl::map types.
  ///\ingroup map
  //***************************************************************************
  template <typename TKey, typename TMapped, typename TKeyCompare>
  class imap : public map_base
  {
  public:

    typedef TKey                           key_type;
    typedef std::pair<const TKey, TMapped> value_type;
    typedef TMapped                        mapped_type;
    typedef TKeyCompare                    key_compare;
    typedef value_type&                    reference;
    typedef const value_type&              const_reference;
    typedef value_type*                    pointer;
    typedef const value_type*              const_pointer;
    typedef size_t                         size_type;

    //*************************************************************************
    /// How to compare two key elements.
    //*************************************************************************
    struct key_comp
    {
      bool operator ()(const key_type& key1, const key_type& key2) const
      {
        return key_compare()(key1, key2);
      }
    };

    //*************************************************************************
    /// How to compare two value elements.
    //*************************************************************************
    struct value_comp
    {
      bool operator ()(const value_type& value1, const value_type& value2) const
      {
        return key_compare()(value1.first, value2.first);
      }
    };

  protected:

    //*************************************************************************
    /// The data node element in the map.
    //*************************************************************************
    struct Data_Node : public Node
    {
      explicit Data_Node(value_type value)
        : value(value)
      {
      }

      value_type value;
    };

    /// Defines the key value parameter type
    typedef typename parameter_type<TKey>::type key_value_parameter_t;

    //*************************************************************************
    /// How to compare node elements.
    //*************************************************************************
    bool node_comp(const Data_Node& node1, const Data_Node& node2) const
    {
      return key_compare()(node1.value.first, node2.value.first);
    }
    bool node_comp(const Data_Node& node, const key_value_parameter_t& key) const
    {
      return key_compare()(node.value.first, key);
    }
    bool node_comp(const key_value_parameter_t& key, const Data_Node& node) const
    {
      return key_compare()(key, node.value.first);
    }

  private:

    /// The pool of data nodes used in the map.
    ipool<Data_Node>* p_node_pool;

    //*************************************************************************
    /// Downcast a Node* to a Data_Node*
    //*************************************************************************
    static Data_Node* data_cast(Node* p_node)
    {
      return static_cast<Data_Node*>(p_node);
    }

    //*************************************************************************
    /// Downcast a Node& to a Data_Node&
    //*************************************************************************
    static Data_Node& data_cast(Node& node)
    {
      return static_cast<Data_Node&>(node);
    }

    //*************************************************************************
    /// Downcast a const Node* to a const Data_Node*
    //*************************************************************************
    static const Data_Node* data_cast(const Node* p_node)
    {
      return static_cast<const Data_Node*>(p_node);
    }

    //*************************************************************************
    /// Downcast a const Node& to a const Data_Node&
    //*************************************************************************
    static const Data_Node& data_cast(const Node& node)
    {
      return static_cast<const Data_Node&>(node);
    }

  public:

    //*************************************************************************
    /// iterator.
    //*************************************************************************
    class iterator : public std::iterator<std::bidirectional_iterator_tag, value_type>
    {
    public:

      friend class imap;

      iterator()
        : p_map(nullptr)
        , p_node(nullptr)
      {
      }

      iterator(imap& map)
        : p_map(&map)
        , p_node(nullptr)
      {
      }

      iterator(imap& map, Node* node)
        : p_map(&map)
        , p_node(node)
      {
      }

      iterator(const iterator& other)
        : p_map(other.p_map)
        , p_node(other.p_node)
      {
      }

      ~iterator()
      {
      }

      iterator& operator ++()
      {
        p_map->next_node(p_node);
        return *this;
      }

      iterator operator ++(int)
      {
        iterator temp(*this);
        p_map->next_node(p_node);
        return temp;
      }

      iterator& operator --()
      {
        p_map->prev_node(p_node);
        return *this;
      }

      iterator operator --(int)
      {
        iterator temp(*this);
        p_map->prev_node(p_node);
        return temp;
      }

      iterator operator =(const iterator& other)
      {
        p_map = other.p_map;
        p_node = other.p_node;
        return *this;
      }

      reference operator *()
      {
        return imap::data_cast(p_node)->value;
      }

      const_reference operator *() const
      {
        return imap::data_cast(p_node)->value;
      }

      pointer operator &()
      {
        return &(imap::data_cast(p_node)->value);
      }

      const_pointer operator &() const
      {
        return &(imap::data_cast(p_node)->value);
      }

      pointer operator ->()
      {
        return &(imap::data_cast(p_node)->value);
      }

      const_pointer operator ->() const
      {
        return &(imap::data_cast(p_node)->value);
      }

      friend bool operator == (const iterator& lhs, const iterator& rhs)
      {
        return lhs.p_map == rhs.p_map && lhs.p_node == rhs.p_node;
      }

      friend bool operator != (const iterator& lhs, const iterator& rhs)
      {
        return !(lhs == rhs);
      }

    private:

      // Pointer to map associated with this iterator
      imap* p_map;

      // Pointer to the current node for this iterator
      Node* p_node;
    };

    friend class iterator;

    //*************************************************************************
    /// const_iterator
    //*************************************************************************
    class const_iterator : public std::iterator<std::bidirectional_iterator_tag, const value_type>
    {
    public:

      friend class imap;

      const_iterator()
        : p_map(nullptr)
        , p_node(nullptr)
      {
      }

      const_iterator(const imap& map)
        : p_map(&map)
        , p_node(nullptr)
      {
      }

      const_iterator(const imap& map, const Node* node)
        : p_map(&map)
        , p_node(node)
      {
      }

      const_iterator(const typename imap::iterator& other)
        : p_map(other.p_map)
        , p_node(other.p_node)
      {
      }

      const_iterator(const const_iterator& other)
        : p_map(other.p_map)
        , p_node(other.p_node)
      {
      }

      ~const_iterator()
      {
      }

      const_iterator& operator ++()
      {
        p_map->next_node(p_node);
        return *this;
      }

      const_iterator operator ++(int)
      {
        const_iterator temp(*this);
        p_map->next_node(p_node);
        return temp;
      }

      const_iterator& operator --()
      {
        p_map->prev_node(p_node);
        return *this;
      }

      const_iterator operator --(int)
      {
        const_iterator temp(*this);
        p_map->prev_node(p_node);
        return temp;
      }

      const_iterator operator =(const const_iterator& other)
      {
        p_map = other.p_map;
        p_node = other.p_node;
        return *this;
      }

      const_reference operator *() const
      {
        return imap::data_cast(p_node)->value;
      }

      const_pointer operator &() const
      {
        return imap::data_cast(p_node)->value;
      }

      const_pointer operator ->() const
      {
        return &(imap::data_cast(p_node)->value);
      }

      friend bool operator == (const const_iterator& lhs, const const_iterator& rhs)
      {
        return lhs.p_map == rhs.p_map && lhs.p_node == rhs.p_node;
      }

      friend bool operator != (const const_iterator& lhs, const const_iterator& rhs)
      {
        return !(lhs == rhs);
      }

    private:
      // Pointer to map associated with this iterator
      const imap* p_map;

      // Pointer to the current node for this iterator
      const Node* p_node;
    };

    friend class const_iterator;

    typedef typename std::iterator_traits<iterator>::difference_type difference_type;

    typedef std::reverse_iterator<iterator>       reverse_iterator;
    typedef std::reverse_iterator<const_iterator> const_reverse_iterator;


    //*************************************************************************
    /// Gets the beginning of the map.
    //*************************************************************************
    iterator begin()
    {
      return iterator(*this, find_limit_node(root_node, kLeft));
    }

    //*************************************************************************
    /// Gets the beginning of the map.
    //*************************************************************************
    const_iterator begin() const
    {
      return const_iterator(*this, find_limit_node(root_node, kLeft));
    }

    //*************************************************************************
    /// Gets the end of the map.
    //*************************************************************************
    iterator end()
    {
      return iterator(*this);
    }

    //*************************************************************************
    /// Gets the end of the map.
    //*************************************************************************
    const_iterator end() const
    {
      return const_iterator(*this);
    }

    //*************************************************************************
    /// Gets the beginning of the map.
    //*************************************************************************
    const_iterator cbegin() const
    {
      return const_iterator(*this, find_limit_node(root_node, kLeft));
    }

    //*************************************************************************
    /// Gets the end of the map.
    //*************************************************************************
    const_iterator cend() const
    {
      return const_iterator(*this);
    }

    //*************************************************************************
    /// Gets the reverse beginning of the list.
    //*************************************************************************
    reverse_iterator rbegin()
    {
      return reverse_iterator(iterator(*this));
    }

    //*************************************************************************
    /// Gets the reverse beginning of the list.
    //*************************************************************************
    const_reverse_iterator rbegin() const
    {
      return const_reverse_iterator(const_iterator(*this));
    }

    //*************************************************************************
    /// Gets the reverse end of the list.
    //*************************************************************************
    reverse_iterator rend()
    {
      return reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
    }

    //*************************************************************************
    /// Gets the reverse end of the list.
    //*************************************************************************
    const_reverse_iterator rend() const
    {
      return const_reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
    }

    //*************************************************************************
    /// Gets the reverse beginning of the list.
    //*************************************************************************
    const_reverse_iterator crbegin() const
    {
      return const_reverse_iterator(const_iterator(*this));
    }

    //*************************************************************************
    /// Gets the reverse end of the list.
    //*************************************************************************
    const_reverse_iterator crend() const
    {
      return const_reverse_iterator(const_iterator(*this, find_limit_node(root_node, kLeft)));
    }

    //*********************************************************************
    /// Returns a reference to the value at index 'key'
    ///\param i The index.
    ///\return A reference to the value at index 'key'
    //*********************************************************************
    mapped_type& operator [](const key_value_parameter_t& key)
    {
      iterator i_element = find(key);

      if (!i_element.p_node)
      {
        // Doesn't exist, so create a new one.
        i_element = insert(std::make_pair(key, mapped_type())).first;
      }

      return i_element->second;
    }

    //*********************************************************************
    /// Returns a reference to the value at index 'key'
    /// If asserts or exceptions are enabled, emits an etl::lookup_out_of_bounds if the key is not in the range.
    ///\param i The index.
    ///\return A reference to the value at index 'key'
    //*********************************************************************
    mapped_type& at(const key_value_parameter_t& key)
    {
      iterator i_element = find(key);

      ETL_ASSERT(i_element.p_node != nullptr, ETL_ERROR(map_out_of_bounds));

      return i_element->second;
    }

    //*********************************************************************
    /// Returns a const reference to the value at index 'key'
    /// If asserts or exceptions are enabled, emits an etl::lookup_out_of_bounds if the key is not in the range.
    ///\param i The index.
    ///\return A const reference to the value at index 'key'
    //*********************************************************************
    const mapped_type& at(const key_value_parameter_t& key) const
    {
      const_iterator i_element = find(key);

      ETL_ASSERT(i_element.p_node != nullptr, ETL_ERROR(map_out_of_bounds));

      return i_element->second;
    }

    //*********************************************************************
    /// Assigns values to the map.
    /// If asserts or exceptions are enabled, emits map_full if the map does not have enough free space.
    /// If asserts or exceptions are enabled, emits map_iterator if the iterators are reversed.
    ///\param first The iterator to the first element.
    ///\param last  The iterator to the last element + 1.
    //*********************************************************************
    template <typename TIterator>
    void assign(TIterator first, TIterator last)
    {
      initialise();
      insert(first, last);
    }

    //*************************************************************************
    /// Clears the map.
    //*************************************************************************
    void clear()
    {
      initialise();
    }

    //*********************************************************************
    /// Counts the number of elements that contain the key specified.
    ///\param key The key to search for.
    ///\return 1 if element was found, 0 otherwise.
    //*********************************************************************
    size_type count(const key_value_parameter_t& key) const
    {
      return find_node(root_node, key) ? 1 : 0;
    }

    //*************************************************************************
    /// Returns two iterators with bounding (lower bound, upper bound) the key
    /// provided
    //*************************************************************************
    std::pair<iterator, iterator> equal_range(const key_value_parameter_t& key)
    {
      return std::make_pair<iterator, iterator>(
        iterator(*this, find_lower_node(root_node, key)),
        iterator(*this, find_upper_node(root_node, key)));
    }

    //*************************************************************************
    /// Returns two const iterators with bounding (lower bound, upper bound)
    /// the key provided.
    //*************************************************************************
    std::pair<const_iterator, const_iterator> equal_range(const key_value_parameter_t& key) const
    {
      return std::make_pair<const_iterator, const_iterator>(
        const_iterator(*this, find_lower_node(root_node, key)),
        const_iterator(*this, find_upper_node(root_node, key)));
    }

    //*************************************************************************
    /// Erases the value at the specified position.
    //*************************************************************************
    void erase(iterator position)
    {
      // Remove the node by its key
      erase((*position).first);
    }

    //*************************************************************************
    /// Erases the value at the specified position.
    //*************************************************************************
    iterator erase(const_iterator position)
    {
      // Find the parent node to be removed
      Node*& reference_node = find_node(root_node, position.p_node);
      iterator next(*this, reference_node);
      ++next;

      remove_node(root_node, (*position).first);

      return next;
    }

    //*************************************************************************
    // Erase the key specified.
    //*************************************************************************
    size_type erase(const key_value_parameter_t& key)
    {
      // Return 1 if key value was found and removed
      return remove_node(root_node, key) ? 1 : 0;
    }

    //*************************************************************************
    /// Erases a range of elements.
    //*************************************************************************
    iterator erase(iterator first, iterator last)
    {
      iterator next;
      while (first != last)
      {
        next = erase(const_iterator(first++));
      }

      return next;
    }

    //*************************************************************************
    /// Erases a range of elements.
    //*************************************************************************
    iterator erase(const_iterator first, const_iterator last)
    {
      iterator next;
      while (first != last)
      {
        next = erase(first++);
      }

      return next;
    }

    //*********************************************************************
    /// Finds an element.
    ///\param key The key to search for.
    ///\return An iterator pointing to the element or end() if not found.
    //*********************************************************************
    iterator find(const key_value_parameter_t& key)
    {
      return iterator(*this, find_node(root_node, key));
    }

    //*********************************************************************
    /// Finds an element.
    ///\param key The key to search for.
    ///\return An iterator pointing to the element or end() if not found.
    //*********************************************************************
    const_iterator find(const key_value_parameter_t& key) const
    {
      return const_iterator(*this, find_node(root_node, key));
    }

    //*********************************************************************
    /// Inserts a value to the map.
    /// If asserts or exceptions are enabled, emits map_full if the map is already full.
    ///\param value    The value to insert.
    //*********************************************************************
    std::pair<iterator, bool> insert(const value_type& value)
    {
      // Default to no inserted node
      Node* inserted_node = nullptr;
      bool inserted = false;

      ETL_ASSERT(!full(), ETL_ERROR(map_full));

      // Get next available free node
      Data_Node& node = allocate_data_node(value);

      // Obtain the inserted node (might be nullptr if node was a duplicate)
      inserted_node = insert_node(root_node, node);
      inserted = inserted_node == &node;

      // Insert node into tree and return iterator to new node location in tree
      return std::make_pair(iterator(*this, inserted_node), inserted);
    }

    //*********************************************************************
    /// Inserts a value to the map starting at the position recommended.
    /// If asserts or exceptions are enabled, emits map_full if the map is already full.
    ///\param position The position that would precede the value to insert.
    ///\param value    The value to insert.
    //*********************************************************************
    iterator insert(iterator, const value_type& value)
    {
      // Default to no inserted node
      Node* inserted_node = nullptr;

      ETL_ASSERT(!full(), ETL_ERROR(map_full));

      // Get next available free node
      Data_Node& node = allocate_data_node(value);

      // Obtain the inserted node (might be nullptr if node was a duplicate)
      inserted_node = insert_node(root_node, node);

      // Insert node into tree and return iterator to new node location in tree
      return iterator(*this, inserted_node);
    }

    //*********************************************************************
    /// Inserts a value to the map starting at the position recommended.
    /// If asserts or exceptions are enabled, emits map_full if the map is already full.
    ///\param position The position that would precede the value to insert.
    ///\param value    The value to insert.
    //*********************************************************************
    iterator insert(const_iterator, const value_type& value)
    {
      // Default to no inserted node
      Node* inserted_node = nullptr;

      ETL_ASSERT(!full(), ETL_ERROR(map_full));

      // Get next available free node
      Data_Node& node = allocate_data_node(value);

      // Obtain the inserted node (might be nullptr if node was a duplicate)
      inserted_node = insert_node(root_node, node);

      // Insert node into tree and return iterator to new node location in tree
      return iterator(*this, inserted_node);
    }

    //*********************************************************************
    /// Inserts a range of values to the map.
    /// If asserts or exceptions are enabled, emits map_full if the map does not have enough free space.
    ///\param position The position to insert at.
    ///\param first    The first element to add.
    ///\param last     The last + 1 element to add.
    //*********************************************************************
    template <class TIterator>
    void insert(TIterator first, TIterator last)
    {
      while (first != last)
      {
        insert(*first++);
      }
    }

    //*********************************************************************
    /// Returns an iterator pointing to the first element in the container
    /// whose key is not considered to go before the key provided or end()
    /// if all keys are considered to go before the key provided.
    ///\return An iterator pointing to the element not before key or end()
    //*********************************************************************
    iterator lower_bound(const key_value_parameter_t& key)
    {
      return iterator(*this, find_lower_node(root_node, key));
    }

    //*********************************************************************
    /// Returns a const_iterator pointing to the first element in the
    /// container whose key is not considered to go before the key provided
    /// or end() if all keys are considered to go before the key provided.
    ///\return An const_iterator pointing to the element not before key or end()
    //*********************************************************************
    const_iterator lower_bound(const key_value_parameter_t& key) const
    {
      return const_iterator(*this, find_lower_node(root_node, key));
    }

    //*********************************************************************
    /// Returns an iterator pointing to the first element in the container
    /// whose key is not considered to go after the key provided or end()
    /// if all keys are considered to go after the key provided.
    ///\return An iterator pointing to the element after key or end()
    //*********************************************************************
    iterator upper_bound(const key_value_parameter_t& key)
    {
      return iterator(*this, find_upper_node(root_node, key));
    }

    //*********************************************************************
    /// Returns a const_iterator pointing to the first element in the
    /// container whose key is not considered to go after the key provided
    /// or end() if all keys are considered to go after the key provided.
    ///\return An const_iterator pointing to the element after key or end()
    //*********************************************************************
    const_iterator upper_bound(const key_value_parameter_t& key) const
    {
      return const_iterator(*this, find_upper_node(root_node, key));
    }

    //*************************************************************************
    /// Assignment operator.
    //*************************************************************************
    imap& operator = (const imap& rhs)
    {
      // Skip if doing self assignment
      if (this != &rhs)
      {
        assign(rhs.cbegin(), rhs.cend());
      }

      return *this;
    }

  protected:

    //*************************************************************************
    /// Constructor.
    //*************************************************************************
    imap(ipool<Data_Node>& node_pool, size_t max_size_)
      : map_base(max_size_)
      , p_node_pool(&node_pool)
    {
    }

    //*************************************************************************
    /// Initialise the map.
    //*************************************************************************
    void initialise()
    {
      if (!empty())
      {
        p_node_pool->release_all();
      }

      current_size = 0;
      root_node = nullptr;
    }

  private:

    //*************************************************************************
    /// Allocate a Data_Node.
    //*************************************************************************
    Data_Node& allocate_data_node(value_type value) const
    {
      return *(p_node_pool->allocate(Data_Node(value)));
    }

    //*************************************************************************
    /// Destroy a Data_Node.
    //*************************************************************************
    void destroy_data_node(Data_Node& node) const
    {
      p_node_pool->release(&node);
    }

    //*************************************************************************
    /// Find the value matching the node provided
    //*************************************************************************
    Node* find_node(Node* position, const key_value_parameter_t& key)
    {
      Node* found = position;
      while (found)
      {
        // Downcast found to Data_Node class for comparison and other operations
        Data_Node& found_data_node = imap::data_cast(*found);

        // Compare the node value to the current position value
        if (node_comp(key, found_data_node))
        {
          // Keep searching for the node on the left
          found = found->children[kLeft];
        }
        else if (node_comp(found_data_node, key))
        {
          // Keep searching for the node on the right
          found = found->children[kRight];
        }
        else
        {
          // Node that matches the key provided was found, exit loop
          break;
        }
      }

      // Return the node found (might be nullptr)
      return found;
    }

    //*************************************************************************
    /// Find the value matching the node provided
    //*************************************************************************
    const Node* find_node(const Node* position, const key_value_parameter_t& key) const
    {
      const Node* found = position;
      while (found)
      {
        // Downcast found to Data_Node class for comparison and other operations
        const Data_Node& found_data_node = imap::data_cast(*found);

        // Compare the node value to the current position value
        if (node_comp(key, found_data_node))
        {
          // Keep searching for the node on the left
          found = found->children[kLeft];
        }
        else if (node_comp(found_data_node, key))
        {
          // Keep searching for the node on the right
          found = found->children[kRight];
        }
        else
        {
          // Node that matches the key provided was found, exit loop
          break;
        }
      }

      // Return the node found (might be nullptr)
      return found;
    }

    //*************************************************************************
    /// Find the reference node matching the node provided
    //*************************************************************************
    Node*& find_node(Node*& position, const Node* node)
    {
      Node* found = position;
      while (found)
      {
        if (found->children[kLeft] == node)
        {
          return found->children[kLeft];
        }
        else if (found->children[kRight] == node)
        {
          return found->children[kRight];
        }
        else
        {
          // Downcast found to Data_Node class for comparison and other operations
          Data_Node& found_data_node = imap::data_cast(*found);
          const Data_Node& data_node = imap::data_cast(*node);

          // Compare the node value to the current position value
          if (node_comp(data_node, found_data_node))
          {
            // Keep searching for the node on the left
            found = found->children[kLeft];
          }
          else if (node_comp(found_data_node, data_node))
          {
            // Keep searching for the node on the right
            found = found->children[kRight];
          }
          else
          {
            // Return position provided (it matches the node)
            return position;
          }
        }
      }

      // Return root node if nothing was found
      return root_node;
    }

    //*************************************************************************
    /// Find the parent node that contains the node provided in its left or
    /// right tree
    //*************************************************************************
    Node* find_parent_node(Node* position, const Node* node)
    {
      // Default to no parent node found
      Node* found = nullptr;

      // If the position provided is the same as the node then there is no parent
      if (position && node && position != node)
      {
        while (position)
        {
          // Is this position not the parent of the node we are looking for?
          if (position->children[kLeft] != node &&
              position->children[kRight] != node)
          {
            // Downcast node and position to Data_Node references for key comparisons
            const Data_Node& node_data_node = imap::data_cast(*node);
            Data_Node& position_data_node = imap::data_cast(*position);
            // Compare the node value to the current position value
            if (node_comp(node_data_node, position_data_node))
            {
              // Keep looking for parent on the left
              position = position->children[kLeft];
            }
            else if (node_comp(position_data_node, node_data_node))
            {
              // Keep looking for parent on the right
              position = position->children[kRight];
            }
          }
          else
          {
            // Return the current position as the parent node found
            found = position;

            // Parent node found, exit loop
            break;
          }
        }
      }

      // Return the parent node found (might be nullptr)
      return found;
    }

    //*************************************************************************
    /// Find the parent node that contains the node provided in its left or
    /// right tree
    //*************************************************************************
    const Node* find_parent_node(const Node* position, const Node* node) const
    {
      // Default to no parent node found
      const Node* found = nullptr;

      // If the position provided is the same as the node then there is no parent
      if (position && node && position != node)
      {
        while (position)
        {
          // Is this position not the parent of the node we are looking for?
          if (position->children[kLeft] != node &&
              position->children[kRight] != node)
          {
            // Downcast node and position to Data_Node references for key comparisons
            const Data_Node& node_data_node = imap::data_cast(*node);
            const Data_Node& position_data_node = imap::data_cast(*position);
            // Compare the node value to the current position value
            if (node_comp(node_data_node, position_data_node))
            {
              // Keep looking for parent on the left
              position = position->children[kLeft];
            }
            else if (node_comp(position_data_node, node_data_node))
            {
              // Keep looking for parent on the right
              position = position->children[kRight];
            }
          }
          else
          {
            // Return the current position as the parent node found
            found = position;

            // Parent node found, exit loop
            break;
          }
        }
      }

      // Return the parent node found (might be nullptr)
      return found;
    }

    //*************************************************************************
    /// Find the node whose key is not considered to go before the key provided
    //*************************************************************************
    Node* find_lower_node(Node* position, const key_value_parameter_t& key) const
    {
      // Something at this position? keep going
      Node* lower_node = position;
      while (lower_node)
      {
        // Downcast lower node to Data_Node reference for key comparisons
        Data_Node& data_node = imap::data_cast(*lower_node);
        // Compare the key value to the current lower node key value
        if (node_comp(key, data_node))
        {
          if (lower_node->children[kLeft])
          {
            lower_node = lower_node->children[kLeft];
          }
          else
          {
            // Found lowest node
            break;
          }
        }
        else if (node_comp(data_node, key))
        {
          lower_node = lower_node->children[kRight];
        }
        else
        {
          // Found equal node
          break;
        }
      }

      // Return the lower_node position found
      return lower_node;
    }

    //*************************************************************************
    /// Find the node whose key is considered to go after the key provided
    //*************************************************************************
    Node* find_upper_node(Node* position, const key_value_parameter_t& key) const
    {
      // Keep track of parent of last upper node
      Node* upper_node = nullptr;
      // Start with position provided
      Node* node = position;
      while (node)
      {
        // Downcast position to Data_Node reference for key comparisons
        Data_Node& data_node = imap::data_cast(*node);
        // Compare the key value to the current upper node key value
        if (node_comp(key, data_node))
        {
          upper_node = node;
          node = node->children[kLeft];
        }
        else if (node_comp(data_node, key))
        {
          node = node->children[kRight];
        }
        else if (node->children[kRight])
        {
          upper_node = find_limit_node(node->children[kRight], kLeft);
          break;
        }
        else
        {
          break;
        }
      }

      // Return the upper node position found (might be nullptr)
      return upper_node;
    }

    //*************************************************************************
    /// Insert a node.
    //*************************************************************************
    Node* insert_node(Node*& position, Data_Node& node)
    {
      // Find the location where the node belongs
      Node* found = position;

      // Was position provided not empty? then find where the node belongs
      if (position)
      {
        // Find the critical parent node (default to nullptr)
        Node* critical_parent_node = nullptr;
        Node* critical_node = root_node;

        while (found)
        {
          // Search for critical weight node (all nodes whose weight factor
          // is set to kNeither (balanced)
          if (kNeither != found->weight)
          {
            critical_node = found;
          }

          // Downcast found to Data_Node class for comparison and other operations
          Data_Node& found_data_node = imap::data_cast(*found);

          // Is the node provided to the left of the current position?
          if (node_comp(node, found_data_node))
          {
            // Update direction taken to insert new node in parent node
            found->dir = kLeft;
          }
          // Is the node provided to the right of the current position?
          else if (node_comp(found_data_node, node))
          {
            // Update direction taken to insert new node in parent node
            found->dir = kRight;
          }
          else
          {
            // Update direction taken to insert new node in parent node
            found->dir = kNeither;

            // Clear critical node value to skip weight step below
            critical_node = nullptr;

            // Destroy the node provided (its a duplicate)
            destroy_data_node(node);

            // Exit loop, duplicate node found
            break;
          }

          // Is there a child of this parent node?
          if (found->children[found->dir])
          {
            // Will this node be the parent of the next critical node whose
            // weight factor is set to kNeither (balanced)?
            if (kNeither != found->children[found->dir]->weight)
            {
              critical_parent_node = found;
            }

            // Keep looking for empty spot to insert new node
            found = found->children[found->dir];
          }
          else
          {
            // Attatch node to right
            attach_node(found->children[found->dir], node);

            // Return newly added node
            found = found->children[found->dir];

            // Exit loop
            break;
          }
        }

        // Was a critical node found that should be checked for balance?
        if (critical_node)
        {
          if (critical_parent_node == nullptr && critical_node == root_node)
          {
            balance_node(root_node);
          }
          else if (critical_parent_node == nullptr && critical_node == position)
          {
            balance_node(position);
          }
          else
          {
            balance_node(critical_parent_node->children[critical_parent_node->dir]);
          }
        }
      }
      else
      {
        // Attatch node to current position
        attach_node(position, node);

        // Return newly added node at current position
        found = position;
      }

      // Return the node found (might be nullptr)
      return found;
    }

    //*************************************************************************
    /// Find the next node in sequence from the node provided
    //*************************************************************************
    void next_node(Node*&position)
    {
      if (position)
      {
        // Is there a tree on the right? then find the minimum of that tree
        if (position->children[kRight])
        {
          // Return minimum node found
          position = find_limit_node(position->children[kRight], kLeft);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = find_parent_node(root_node, position);
            // Repeat while previous position was on right side of parent tree
          } while (parent && parent->children[kRight] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Find the next node in sequence from the node provided
    //*************************************************************************
    void next_node(const Node*& position) const
    {
      if (position)
      {
        // Is there a tree on the right? then find the minimum of that tree
        if (position->children[kRight])
        {
          // Return minimum node found
          position = find_limit_node(position->children[kRight], kLeft);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          const Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = find_parent_node(root_node, position);
            // Repeat while previous position was on right side of parent tree
          } while (parent && parent->children[kRight] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Find the previous node in sequence from the node provided
    //*************************************************************************
    void prev_node(Node*&position)
    {
      // If starting at the terminal end, the previous node is the maximum node
      // from the root
      if (!position)
      {
        position = find_limit_node(root_node, kRight);
      }
      else
      {
        // Is there a tree on the left? then find the maximum of that tree
        if (position->children[kLeft])
        {
          // Return maximum node found
          position = find_limit_node(position->children[kLeft], kRight);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = find_parent_node(root_node, position);
            // Repeat while previous position was on left side of parent tree
          } while (parent && parent->children[kLeft] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Find the previous node in sequence from the node provided
    //*************************************************************************
    void prev_node(const Node*& position) const
    {
      // If starting at the terminal end, the previous node is the maximum node
      // from the root
      if (!position)
      {
        position = find_limit_node(root_node, kRight);
      }
      else
      {
        // Is there a tree on the left? then find the maximum of that tree
        if (position->children[kLeft])
        {
          // Return maximum node found
          position = find_limit_node(position->children[kLeft], kRight);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          const Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = find_parent_node(root_node, position);
            // Repeat while previous position was on left side of parent tree
          } while (parent && parent->children[kLeft] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Remove the node specified from somewhere starting at the position
    /// provided
    //*************************************************************************
    Node* remove_node(Node*& position, const key_value_parameter_t& key)
    {
      // Step 1: Find the target node that matches the key provided, the
      // replacement node (might be the same as target node), and the critical
      // node to start rebalancing the tree from (up to the replacement node)
      Node* found_parent = nullptr;
      Node* found = nullptr;
      Node* replace_parent = nullptr;
      Node* replace = position;
      Node* balance_parent = nullptr;
      Node* balance = root_node;
      while (replace)
      {
        // Downcast found to Data_Node class for comparison and other operations
        Data_Node& replace_data_node = imap::data_cast(*replace);

        // Compare the key provided to the replace data node key
        if (node_comp(key, replace_data_node))
        {
          // Update the direction to the target/replace node
          replace->dir = kLeft;
        }
        else if (node_comp(replace_data_node, key))
        {
          // Update the direction to the target/replace node
          replace->dir = kRight;
        }
        else
        {
          // Update the direction to the replace node (target node found here)
          replace->dir = replace->children[kLeft] ? kLeft : kRight;

          // Note the target node was found (and its parent)
          found_parent = replace_parent;
          found = replace;
        }
        // Replacement node found if its missing a child in the replace->dir
        // value set above
        if (replace->children[replace->dir] == nullptr)
        {
          // Exit loop once replace node is found (target might not have been)
          break;
        }

        // If replacement node weight is kNeither or we are taking the shorter
        // path of replacement node and our sibling (on longer path) is
        // balanced then we need to update the balance node to match this
        // replacement node but all our ancestors will not require rebalancing
        if ((replace->weight == kNeither) ||
          (replace->weight == (1 - replace->dir) &&
          replace->children[1 - replace->dir]->weight == kNeither))
        {
          // Update balance node (and its parent) to replacement node
          balance_parent = replace_parent;
          balance = replace;
        }

        // Keep searching for the replacement node
        replace_parent = replace;
        replace = replace->children[replace->dir];
      }

      // If target node was found, proceed with rebalancing and replacement
      if (found)
      {
        // Step 2: Update weights from critical node to replacement parent node
        while (balance)
        {
          if (balance->children[balance->dir] == nullptr)
          {
            break;
          }

          if (balance->weight == kNeither)
          {
            balance->weight = 1 - balance->dir;
          }
          else if (balance->weight == balance->dir)
          {
            balance->weight = kNeither;
          }
          else
          {
            int weight = balance->children[1 - balance->dir]->weight;
            // Perform a 3 node rotation if weight is same as balance->dir
            if (weight == balance->dir)
            {
              // Is the root node being rebalanced (no parent)
              if (balance_parent == nullptr)
              {
                rotate_3node(root_node, 1 - balance->dir,
                  balance->children[1 - balance->dir]->children[balance->dir]->weight);
              }
              else
              {
                rotate_3node(balance_parent->children[balance_parent->dir], 1 - balance->dir,
                  balance->children[1 - balance->dir]->children[balance->dir]->weight);
              }
            }
            // Already balanced, rebalance and make it heavy in opposite
            // direction of the node being removed
            else if (weight == kNeither)
            {
              // Is the root node being rebalanced (no parent)
              if (balance_parent == nullptr)
              {
                rotate_2node(root_node, 1 - balance->dir);
                root_node->weight = balance->dir;
              }
              else
              {
                rotate_2node(balance_parent->children[balance_parent->dir], 1 - balance->dir);
                balance_parent->children[balance_parent->dir]->weight = balance->dir;
              }
              // Update balance node weight in opposite direction of node removed
              balance->weight = 1 - balance->dir;
            }
            // Rebalance and leave it balanced
            else
            {
              // Is the root node being rebalanced (no parent)
              if (balance_parent == nullptr)
              {
                rotate_2node(root_node, 1 - balance->dir);
              }
              else
              {
                rotate_2node(balance_parent->children[balance_parent->dir], 1 - balance->dir);
              }
            }

            // Is balance node the same as the target node found? then update
            // its parent after the rotation performed above
            if (balance == found)
            {
              if (balance_parent)
              {
                found_parent = balance_parent->children[balance_parent->dir];
                // Update dir since it is likely stale
                found_parent->dir = found_parent->children[kLeft] == found ? kLeft : kRight;
              }
              else
              {
                found_parent = root_node;
                root_node->dir = root_node->children[kLeft] == found ? kLeft : kRight;
              }
            }
          }

          // Next balance node to consider
          balance_parent = balance;
          balance = balance->children[balance->dir];
        } // while(balance)

        // Step 3: Swap found node with replacement node
        if (found_parent)
        {
          // Handle traditional case
          detach_node(found_parent->children[found_parent->dir],
            replace_parent->children[replace_parent->dir]);
        }
        // Handle root node removal
        else
        {
          // Valid replacement node for root node being removed?
          if (replace_parent)
          {
            detach_node(root_node, replace_parent->children[replace_parent->dir]);
          }
          else
          {
            // Target node and replacement node are both root node
            detach_node(root_node, root_node);
          }
        }

        // Downcast found into data node
        Data_Node& found_data_node = imap::data_cast(*found);

        // One less.
        --current_size;

        // Destroy the node removed
        destroy_data_node(found_data_node);
      } // if(found)

      // Return node found (might be nullptr)
      return found;
    }

    // Disable copy construction.
    imap(const imap&);
  };
}

//***************************************************************************
/// Equal operator.
///\param lhs Reference to the first lookup.
///\param rhs Reference to the second lookup.
///\return <b>true</b> if the arrays are equal, otherwise <b>false</b>
///\ingroup lookup
//***************************************************************************
template <typename TKey, typename TMapped, typename TKeyCompare>
bool operator ==(const etl::imap<TKey, TMapped, TKeyCompare>& lhs, const etl::imap<TKey, TMapped, TKeyCompare>& rhs)
{
  return (lhs.size() == rhs.size()) && std::equal(lhs.begin(), lhs.end(), rhs.begin());
}

//***************************************************************************
/// Not equal operator.
///\param lhs Reference to the first lookup.
///\param rhs Reference to the second lookup.
///\return <b>true</b> if the arrays are not equal, otherwise <b>false</b>
///\ingroup lookup
//***************************************************************************
template <typename TKey, typename TMapped, typename TKeyCompare>
bool operator !=(const etl::imap<TKey, TMapped, TKeyCompare>& lhs, const etl::imap<TKey, TMapped, TKeyCompare>& rhs)
{
  return !(lhs == rhs);
}

//*************************************************************************
/// Less than operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically less than the
/// second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TMapped, typename TKeyCompare>
bool operator <(const etl::imap<TKey, TMapped, TKeyCompare>& lhs, const etl::imap<TKey, TMapped, TKeyCompare>& rhs)
{
  return std::lexicographical_compare(lhs.begin(),
                                      lhs.end(),
                                      rhs.begin(),
                                      rhs.end());
}

//*************************************************************************
/// Greater than operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically greater than the
/// second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TMapped, typename TKeyCompare>
bool operator >(const etl::imap<TKey, TMapped, TKeyCompare>& lhs, const etl::imap<TKey, TMapped, TKeyCompare>& rhs)
{
  return (rhs < lhs);
}

//*************************************************************************
/// Less than or equal operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically less than or equal
/// to the second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TMapped, typename TKeyCompare>
bool operator <=(const etl::imap<TKey, TMapped, TKeyCompare>& lhs, const etl::imap<TKey, TMapped, TKeyCompare>& rhs)
{
  return !(lhs > rhs);
}

//*************************************************************************
/// Greater than or equal operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically greater than or
/// equal to the second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TMapped, typename TKeyCompare>
bool operator >=(const etl::imap<TKey, TMapped, TKeyCompare>& lhs, const etl::imap<TKey, TMapped, TKeyCompare>& rhs)
{
  return !(lhs < rhs);
}

#ifdef ETL_COMPILER_MICROSOFT
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif

#undef __ETL_IN_IMAP_H__

#endif