Welcome to mirror list, hosted at ThFree Co, Russian Federation.

test.lua « test - github.com/torch/image.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 80299e9b1d78320210217f7aec5d079d01284165 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
local test = torch.TestSuite()
local precision = 1e-4
local precision_mean = 1e-3
local precision_std = 1e-1


local function getTestImagePath(name)
  return paths.concat(sys.fpath(), 'assets', name)
end


local function assertByteTensorEq(actual, expected, rcond, msg)
  rcond = rcond or 1e-5
  tester:assertTensorEq(actual:double(), expected:double(), rcond, msg)
end


local function toByteTensor(x)
  local y = torch.round(x)
  y[torch.le(x, 0)] = 0
  y[torch.ge(x, 255)] = 255
  return y:byte()
end


local function toByteImage(x)
  return toByteTensor(torch.mul(x, 255))
end


local function testFunctionOnByteTensor(f, msg)
  local lena = image.lena():float()
  local expected = toByteImage(f(lena))
  local actual = f(toByteImage(lena))
  assertByteTensorEq(actual, expected, nil, msg)
end


local unpack = unpack and unpack or table.unpack -- lua52 compatibility


----------------------------------------------------------------------
-- Flip test
--
function test.FlipAgainstHFlip()
  for ndims = 1, 5 do
    for flip_dim = 1, ndims do
      local sz = {}
      for i = 1, ndims do
        sz[i] = math.random(5,10)
      end

      local input = torch.rand(unpack(sz))
      local output = image.flip(input, flip_dim)

      -- Now perform the same operation using HFLIP
      local input_tran = input
      if (flip_dim < ndims) then
        -- First permute the flip dimension to X dim
        input_tran = input:transpose(flip_dim, ndims):contiguous()
      end
      -- Now reshape it to 3D
      local original_hflip_sz = input_tran:size()
      if ndims == 1 then
        input_tran:resize(1, original_hflip_sz[1])
      end
      if ndims > 3 then
        sz1 = 1
        for i = 1, ndims - 2 do
          sz1 = sz1 * original_hflip_sz[i]
        end
        input_tran:resize(sz1, original_hflip_sz[input_tran:dim()-1],
          original_hflip_sz[input_tran:dim()])
      end

      local output_hflip = image.hflip(input_tran)

      -- Put it back to Ndim
      output_hflip:resize(original_hflip_sz)

      if (flip_dim < ndims) then
        -- permute bacx the flip dimension
        output_hflip = output_hflip:transpose(flip_dim, ndims):contiguous()
      end

      local err = output_hflip - output
      tester:asserteq(err:abs():max(), 0, 'error - bad flip! (ndims='..
        ndims..',flip_dim='..flip_dim..')')
    end
  end
end

----------------------------------------------------------------------
-- Gaussian tests
--
-- The old gaussian function, commit: 71670e1dcfcfe040aba5403c800a0d316987c2ed
local function naive_gaussian(...)
   -- process args
   local _, size, sigma, amplitude, normalize,
   width, height, sigma_horz, sigma_vert, mean_horz, mean_vert = dok.unpack(
      {...},
      'image.gaussian',
      'returns a 2D gaussian kernel',
      {arg='size', type='number', help='kernel size (size x size)', default=3},
      {arg='sigma', type='number', help='sigma (horizontal and vertical)', default=0.25},
      {arg='amplitude', type='number', help='amplitute of the gaussian (max value)', default=1},
      {arg='normalize', type='number', help='normalize kernel (exc Amplitude)', default=false},
      {arg='width', type='number', help='kernel width', defaulta='size'},
      {arg='height', type='number', help='kernel height', defaulta='size'},
      {arg='sigma_horz', type='number', help='horizontal sigma', defaulta='sigma'},
      {arg='sigma_vert', type='number', help='vertical sigma', defaulta='sigma'},
      {arg='mean_horz', type='number', help='horizontal mean', default=0.5},
      {arg='mean_vert', type='number', help='vertical mean', default=0.5}
   )

   -- local vars
   local center_x = mean_horz * width + 0.5
   local center_y = mean_vert * height + 0.5

   -- generate kernel
   local gauss = torch.Tensor(height, width)
   for i=1,height do
      for j=1,width do
         gauss[i][j] = amplitude * math.exp(-(math.pow((j-center_x)
                                                    /(sigma_horz*width),2)/2
                                           + math.pow((i-center_y)
                                                   /(sigma_vert*height),2)/2))
      end
   end
   if normalize then
      gauss:div(gauss:sum())
   end
   return gauss
end

function test.gaussian()
   local sigma_horz = 0.1 + math.random() * 0.3;  -- [0.1, 0.4]
   local sigma_vert = 0.1 + math.random() * 0.3;  -- [0.1, 0.4]
   local mean_horz = 0.1 + math.random() * 0.8;  -- [0.1, 0.9]
   local mean_vert = 0.1 + math.random() * 0.8;  -- [0.1, 0.9]
   local width = 640
   local height = 480
   local amplitude = 10

   for _, normalize in pairs{true, false} do
      im1 = image.gaussian{amplitude=amplitude,
                        normalize=normalize,
                        width=width,
                        height=height,
                        sigma_horz=sigma_horz,
                        sigma_vert=sigma_vert,
                        mean_horz=mean_horz,
                        mean_vert=mean_vert}

      im2 = naive_gaussian{amplitude=amplitude,
                  normalize=normalize,
                  width=width,
                  height=height,
                  sigma_horz=sigma_horz,
                  sigma_vert=sigma_vert,
                  mean_horz=mean_horz,
                  mean_vert=mean_vert}

      tester:assertlt(im1:add(-1, im2):sum(), precision, "Incorrect gaussian")
   end
end


function test.byteGaussian()
  local expected = toByteTensor(image.gaussian{
      amplitude = 1000,
      tensor = torch.FloatTensor(5, 5),
  })
  local actual = image.gaussian{
      amplitude = 1000,
      tensor = torch.ByteTensor(5, 5),
  }
  assertByteTensorEq(actual, expected)
end


----------------------------------------------------------------------
-- Gaussian pyramid test
--
function test.gaussianpyramid()
  -- Char, Short and Int tensors not supported.
  types = {
      'torch.ByteTensor',
      'torch.FloatTensor',
      'torch.DoubleTensor'
  }
  for _, type in ipairs(types) do
    local output = unpack(image.gaussianpyramid(torch.rand(8, 8):type(type), {0.5}))
    tester:assert(output:type() == type, 'Type ' .. type .. ' produces a different output.')
  end
end

----------------------------------------------------------------------
-- Scale test
--
local function outerProduct(x)
  x = torch.Tensor(x)
  return torch.ger(x, x)
end


function test.bilinearUpscale()
  local im = outerProduct{1, 2, 4, 2}
  local expected = outerProduct{1, 1.5, 2, 3, 4, 3, 2}
  local actual = image.scale(im, expected:size(2), expected:size(1), 'bilinear')
  tester:assertTensorEq(actual, expected, 1e-5)
end


function test.bilinearDownscale()
  local im = outerProduct{1, 2, 4, 2}
  local expected = outerProduct{1.25, 3, 2.5}
  local actual = image.scale(im, expected:size(2), expected:size(1), 'bilinear')
  tester:assertTensorEq(actual, expected, 1e-5)
end


function test.bicubicUpscale()
  local im = outerProduct{1, 2, 4, 2}
  local expected = outerProduct{1, 1.4375, 2, 3.1875, 4, 3.25, 2}
  local actual = image.scale(im, expected:size(2), expected:size(1), 'bicubic')
  tester:assertTensorEq(actual, expected, 1e-5)
end


function test.bicubicDownscale()
  local im = outerProduct{1, 2, 4, 2}
  local expected = outerProduct{1, 3.1875, 2}
  local actual = image.scale(im, expected:size(2), expected:size(1), 'bicubic')
  tester:assertTensorEq(actual, expected, 1e-5)
end


function test.bicubicUpscale_ByteTensor()
  local im = torch.ByteTensor{{0, 1, 32}}
  local expected = torch.ByteTensor{{0, 0, 9, 32}}
  local actual = image.scale(im, expected:size(2), expected:size(1), 'bicubic')
  assertByteTensorEq(actual, expected)
end


function test.bilinearUpscale_ByteTensor()
  local im = torch.ByteTensor{{1, 2},
                              {2, 3}}
  local expected = torch.ByteTensor{{1, 2, 2},
                                    {2, 3, 3},
                                    {2, 3, 3}}
  local actual = image.scale(im, expected:size(2), expected:size(1))
  assertByteTensorEq(actual, expected)
end


----------------------------------------------------------------------
-- Scale test
--
local flip_tests = {}
function flip_tests.test_transformation_largeByteImage(flip)
    local x_real = image.fabio():double():mul(255)
    local x_byte = x_real:clone():byte()

    assert(x_byte:size(1) > 256 and x_byte:size(2) > 256, 'Tricky case only occurs for images larger than 256 px, pick another example')

    local f_real, f_byte
    f_real = image[flip](x_real)
    f_byte = image[flip](x_byte)
    assertByteTensorEq(f_real:byte(), f_byte, 1e-16,
        flip .. ':  result for double and byte images do not match')
end

function flip_tests.test_inplace(flip)
    local im = image.lena()
    local not_inplace = image[flip](im)
    local in_place = im:clone()
    image[flip](in_place, in_place)
    tester:assertTensorEq(in_place, not_inplace, 1e-16, flip .. ': result in-place does not match result not in-place')
end

for _, flip in pairs{'vflip', 'hflip'} do
    for name, flip_test in pairs(flip_tests) do
        test[name .. '_' .. flip] = function() return flip_test(flip) end
    end
end

function test.test_vflip_simple()
    local im_even = torch.Tensor{{1,2}, {3, 4}}
    local expected_even = torch.Tensor{{3, 4}, {1, 2}}
    local x_even = image.vflip(im_even)
    tester:assertTensorEq(expected_even, x_even, 1e-16, 'vflip: fails on even size')
    -- test inplace
    image.vflip(im_even, im_even)
    tester:assertTensorEq(expected_even, im_even, 1e-16, 'vflip: fails on even size in place')

    local im_odd = torch.Tensor{{1,2}, {3, 4}, {5, 6}}
    local expected_odd = torch.Tensor{{5,6}, {3, 4}, {1, 2}}
    local x_odd = image.vflip(im_odd)
    tester:assertTensorEq(expected_odd, x_odd, 1e-16, 'vflip: fails on odd size')
    -- test inplace
    image.vflip(im_odd, im_odd)
    tester:assertTensorEq(expected_odd, im_odd, 1e-16, 'vflip: fails on odd size in place')
end

function test.test_hflip_simple()
    local im_even = torch.Tensor{{1, 2}, {3, 4}}
    local expected_even = torch.Tensor{{2, 1}, {4, 3}}
    local x_even = image.hflip(im_even)
    tester:assertTensorEq(expected_even, x_even, 1e-16, 'hflip: fails on even size')
    -- test inplace
    image.hflip(im_even, im_even)
    tester:assertTensorEq(expected_even, im_even, 1e-16, 'hflip: fails on even size in place')

    local im_odd = torch.Tensor{{1,2, 3}, {4, 5, 6}}
    local expected_odd = torch.Tensor{{3, 2, 1}, {6, 5, 4}}
    local x_odd = image.hflip(im_odd)
    tester:assertTensorEq(expected_odd, x_odd, 1e-16, 'hflip: fails on odd size')
    -- test inplace
    image.hflip(im_odd, im_odd)
    tester:assertTensorEq(expected_odd, im_odd, 1e-16, 'hflip: fails on odd size in place')
end

----------------------------------------------------------------------
-- decompress jpg test
--
function test.CompareLoadAndDecompress()
  -- This test breaks if someone removes lena from the repo
  local imfile = getTestImagePath('grace_hopper_512.jpg')
  if not paths.filep(imfile) then
    error(imfile .. ' is missing!')
  end

  -- Load lena directly from the filename
  local img = image.loadJPG(imfile)

  -- Make sure the returned image width and height match the height and width
  -- reported by graphicsmagick (just a sanity check)
  local ok, gm = pcall(require, 'graphicsmagick')
  if not ok then
    -- skip this part of the test if graphicsmagick is not installed
    print('\ntest.CompareLoadAndDecompress partially requires the ' ..
          'graphicsmagick package to run. You can install it with ' ..
          '"luarocks install graphicsmagick".')
  else
    local info = gm.info(imfile)
    local w = info.width
    local h = info.height
    tester:assert(w == img:size(3), 'image dimension error ')
    tester:assert(h == img:size(3), 'image dimension error ')
  end

  -- Now load the raw binary from the source file into a ByteTensor
  local fin = torch.DiskFile(imfile, 'r')
  fin:binary()
  fin:seekEnd()
  local file_size_bytes = fin:position() - 1
  fin:seek(1)
  local img_binary = torch.ByteTensor(file_size_bytes)
  fin:readByte(img_binary:storage())
  fin:close()

  -- Now decompress the image from the ByteTensor
  local img_from_tensor = image.decompressJPG(img_binary)

  tester:assertlt((img_from_tensor - img):abs():max(), precision,
    'images from load and decompress dont match! ')
end

function test.LoadInvalid()
  -- Make sure nothing nasty happens if we try and load a "garbage" tensor
  local file_size_bytes = 1000
  local img_binary = torch.rand(file_size_bytes):mul(255):byte()

  -- Now decompress the image from the ByteTensor
  tester:assertError(
    function() image.decompressJPG(img_binary) end,
    'A non-nil was returned on an invalid input!'
  )
end

----------------------------------------------------------------------
-- compress jpg test
--

function test.CompressAndDecompress()
  -- This test is unfortunately a correlated test: it will only be valid
  -- if decompressJPG is OK.  However, since decompressJPG has it's own unit
  -- test, this is problably fine.

  local img = image.lena()

  local quality = 100
  local img_compressed = image.compressJPG(img, quality)
  local size_100 = img_compressed:size(1)
  local img_decompressed = image.decompressJPG(img_compressed)
  local err = img_decompressed - img

  -- Now in general we will get BIG compression artifacts (even at quality=100)
  -- but they will be relatively small, so instead of a abs():max() test, we do
  -- a mean and std test.
  local mean_err = err:mean()
  local std_err = err:std()
  tester:assertlt(mean_err, precision_mean, 'compressJPG error is too high! ')
  tester:assertlt(std_err, precision_std, 'compressJPG error is too high! ')

  -- Also check that the quality setting scales the size of the compressed image
  quality = 25
  img_compressed = image.compressJPG(img, quality)
  local size_25 = img_compressed:size(1)
  tester:assertlt(size_25, size_100, 'compressJPG quality setting error! ')
end

----------------------------------------------------------------------
-- Lab conversion test
-- These tests break if someone removes lena from the repo


local function testRoundtrip(forward, backward)
  local expected = image.lena()
  local actual = backward(forward(expected))
  tester:assertTensorEq(actual, expected, 1e-4)
end


function test.rgb2lab()
  testRoundtrip(image.rgb2lab, image.lab2rgb)
end


function test.rgb2hsv()
  testRoundtrip(image.rgb2hsv, image.hsv2rgb)
end


function test.rgb2hsl()
  testRoundtrip(image.rgb2hsl, image.hsl2rgb)
end


function test.rgb2y()
  local x = torch.FloatTensor{{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}}:transpose(1, 3)
  local actual = image.rgb2y(x)
  local expected = torch.FloatTensor{{{0.299}, {0.587}, {0.114}}}
  tester:assertTensorEq(actual, expected, 1e-5)
end


function test.y2jet()
  local levels = torch.Tensor{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
  local expected = image.jetColormap(10)
  local actual = image.y2jet(levels)[{{}, 1, {}}]:t()
  tester:assertTensorEq(actual, expected, 1e-5)
end


function test.rgb2labByteTensor()
  local lena = image.lena():byte()
  tester:assertError(function () image.rgb2lab(lena) end)
  tester:assertError(function () image.lab2rgb(lena) end)
end


local function testByteTensorRoundtrip(forward, backward, cond, msg)
  local lena = toByteImage(image.lena())
  local expected = lena
  local actual = backward(forward(expected))  
  assertByteTensorEq(actual, expected, cond, msg)
end


function test.toFromByteTensor()
  local expected = toByteImage(image.lena():float())
  local actual = toByteImage(expected:float():div(255))
  assertByteTensorEq(actual, expected, nil, msg)
end


function test.rgb2hsvByteTensor()
  testFunctionOnByteTensor(image.rgb2hsv, 'image.rgb2hsv error for ByteTensor')
  testFunctionOnByteTensor(image.hsv2rgb, 'image.hsv2rgb error for ByteTensor')
  testByteTensorRoundtrip(image.rgb2hsv, image.hsv2rgb, 3,
                          'image.rgb2hsv roundtrip error for ByteTensor')
end


function test.rgb2hslByteTensor()
  testFunctionOnByteTensor(image.rgb2hsl, 'image.hsl2rgb error for ByteTensor')
  testFunctionOnByteTensor(image.hsl2rgb, 'image.rgb2hsl error for ByteTensor')
  testByteTensorRoundtrip(image.rgb2hsl, image.hsl2rgb, 3,
                          'image.rgb2hsl roundtrip error for ByteTensor')
end


function test.rgb2yByteTensor()
  testFunctionOnByteTensor(image.rgb2y, 'image.rgb2y error for ByteTensor')
end


function test.y2jetByteTensor()
  local levels = torch.Tensor{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
  local expected = toByteImage(image.y2jet(levels))
  local actual = image.y2jet(levels:byte())
  assertByteTensorEq(actual, expected, nil)
end


----------------------------------------------------------------------
-- PNG test
--
local function toBlob(filename)
  local f = torch.DiskFile(filename, 'r')
  f:binary()
  f:seekEnd()
  local size = f:position() - 1
  f:seek(1)
  local blob = torch.ByteTensor(size)
  f:readByte(blob:storage())
  f:close()
  return blob
end

local function checkPNG(imfile, depth, tensortype, want)
  local img = image.load(imfile, depth, tensortype)
  -- Tensors have to be converted to double, since assertTensorEq does not support ByteTensor
  --print('img: ', img)
  --print('want: ', want)
  assertByteTensorEq(img, want, precision_mean,
                    string.format('%s: pixel values are unexpected', imfile))
end

function test.LoadPNG()
  -- Gray 8-bit PNG image with width = 3, height = 1
  local gray8byte = torch.ByteTensor({{{0,127,255}}})
  checkPNG(getTestImagePath('gray3x1.png'), 1, 'byte', gray8byte)

  local gray8double = torch.DoubleTensor({{{0, 127/255, 1}}})
  checkPNG(getTestImagePath('gray3x1.png'), 1, 'double', gray8double)

  -- Gray 16-bit PNG image with width=1, height = 2
  local gray16byte = torch.ByteTensor{{{0}, {255}}}
  checkPNG(getTestImagePath('gray16-1x2.png'), 1, 'byte', gray16byte)

  local gray16float = torch.FloatTensor{{{0}, {65534/65535}}}
  checkPNG(getTestImagePath('gray16-1x2.png'), 1, 'float', gray16float)

  -- Color 8-bit PNG image with width = 2, height = 1
  local rgb8byte = torch.ByteTensor{{{255, 0}}, {{0, 127}}, {{63, 0}}}
  checkPNG(getTestImagePath('rgb2x1.png'), 3, 'byte', rgb8byte)

  local rgb8float = torch.FloatTensor{{{1, 0}}, {{0, 127/255}}, {{63/255, 0}}}
  checkPNG(getTestImagePath('rgb2x1.png'), 3, 'float', rgb8float)

  -- Color 16-bit PNG image with width = 2, height = 1
  local rgb16byte = torch.ByteTensor{{{255, 0}}, {{0, 127}}, {{63, 0}}}
  checkPNG(getTestImagePath('rgb16-2x1.png'), 3, 'byte', rgb16byte)

  local rgb16float = torch.FloatTensor{{{1, 0}}, {{0, 32767/65535}}, {{16383/65535, 0}}}
  checkPNG(getTestImagePath('rgb16-2x1.png'), 3, 'float', rgb16float)
end

function test.DecompressPNG()
  tester:assertTensorEq(
    image.load(getTestImagePath('rgb2x1.png')),
    image.decompressPNG(toBlob(getTestImagePath('rgb2x1.png'))),
    precision_mean,
    'decompressed and loaded images should be equal'
  )
end

function test.LoadCorruptedPNG()
  tester:assertErrorPattern(
    function() image.load(getTestImagePath("corrupt-ihdr.png")) end,
    "Error during init_io",
    "corrupted image should not be loaded or unexpected error message"
  )
end

----------------------------------------------------------------------
-- PPM test
--
function test.test_ppmload()
    -- test.ppm is a 100x1 "French flag" like image, i.e the first pixel is blue
    -- the 84 next pixels are white and the 15 last pixels are red.
    -- This makes possible to implement a non regression test vs. the former
    -- PPM loader which had for effect to skip the first 85 pixels because of
    -- a header parser bug
    local img = image.load(getTestImagePath("P6.ppm"))
    local pix = img[{ {}, {1}, {1} }]

    -- Check the first pixel is blue
    local ref = torch.zeros(3, 1, 1)
    ref[3][1][1] = 1
    tester:assertTensorEq(pix, ref, 0, "PPM load: first pixel check failed")
end


function test.test_pgmaload()
    -- ascii.ppm is a PGMA file (ascii pgm)
    -- example comes from ehere
    -- http://people.sc.fsu.edu/~jburkardt/data/pgma/pgma.html
    local img = image.load(getTestImagePath("P2.pgm"), 1, 'byte')
    local max_gray = 15 -- 4th line of ascii.pgm
    local ascii_val = 3 -- pixel (2,2) in the file
    local pix_val = math.floor(255 * ascii_val / max_gray)

    local pix = img[1][2][2]

    -- Check that Pixel(1, 2,2) == 3
    local ref = pix_val
    tester:asserteq(pix, ref, "PGMA load: pixel check failed")
end

function test.test_pgmload()
    -- test.ppm is a 100x1 "French flag" like image, i.e the first pixel is blue
    -- the 84 next pixels are white and the 15 last pixels are red.
    -- This makes possible to implement a non regression test vs. the former
    -- PPM loader which had for effect to skip the first 85 pixels because of
    -- a header parser bug
    local img = image.load(getTestImagePath("P5.pgm"))
    local pix = img[{ {}, {1}, {1} }]

    local ref = torch.zeros(1, 1, 1); ref[1][1][1] = 0.07
    tester:assertTensorEq(pix, ref, 0.001, "PPM load: first pixel check failed")
end

function test.test_pbmload()
  -- test.pbm is a Portable BitMap (not supported)
  tester:assertErrorPattern(
    function() image.loadPPM(getTestImagePath("P4.pbm")) end,
    "unsupported magic number",
    "PBM format should not be loaded or unexpected error message"
  )
end

----------------------------------------------------------------------
-- Text drawing test
--
function test.test_textdraw()
  local types = {
     ["torch.ByteTensor"]   = "byte",
     ["torch.DoubleTensor"] = "double",
     ["torch.FloatTensor"]  = "float"
  }
  for k,v in pairs(types) do
    local img = image.drawText(
       torch.zeros(3, 24, 24):type(k),
       "foo\nbar", 2, 4, {color={255, 255, 255}, bg={255, 0, 0}}
    )
    checkPNG(getTestImagePath("foobar.png"), 3, v, img)
  end
end

----------------------------------------------------------------------
-- Text drawing rect
--
function test.test_drawRect()
  local types = {
     ["torch.ByteTensor"]   = "byte",
     ["torch.DoubleTensor"] = "double",
     ["torch.FloatTensor"]  = "float"
  }
  for k,v in pairs(types) do
    local bg = torch.zeros(3, 24, 12):type(k)
    if k == 'torch.ByteTensor' then
      bg:fill(3)
    else
      bg:fill(3/255)
    end
    local img = image.drawRect(bg, 5, 5, 10, 20, {color={255, 0, 255}})
    checkPNG(getTestImagePath("rectangle.png"), 3, v, img)
  end
end

function image.test(tests, seed)
   local defaultTensorType = torch.getdefaulttensortype()
   torch.setdefaulttensortype('torch.DoubleTensor')
   seed = seed or os.time()
   print('seed: ', seed)
   math.randomseed(seed)
   tester = torch.Tester()
   tester:add(test)
   tester:run(tests)
   torch.setdefaulttensortype(defaultTensorType)
   return tester
end