Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lj_strfmt_num.c « src « luajit-2.1 - github.com/torch/luajit-rocks.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9271f68a117cc04e2d99ee1c6dd55f950a348327 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
** String formatting for floating-point numbers.
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
** Contributed by Peter Cawley.
*/

#include <stdio.h>

#define lj_strfmt_num_c
#define LUA_CORE

#include "lj_obj.h"
#include "lj_buf.h"
#include "lj_str.h"
#include "lj_strfmt.h"

/* -- Precomputed tables -------------------------------------------------- */

/* Rescale factors to push the exponent of a number towards zero. */
#define RESCALE_EXPONENTS(P, N) \
  P(308), P(289), P(270), P(250), P(231), P(212), P(193), P(173), P(154), \
  P(135), P(115), P(96), P(77), P(58), P(38), P(0), P(0), P(0), N(39), N(58), \
  N(77), N(96), N(116), N(135), N(154), N(174), N(193), N(212), N(231), \
  N(251), N(270), N(289)

#define ONE_E_P(X) 1e+0 ## X
#define ONE_E_N(X) 1e-0 ## X
static const int16_t rescale_e[] = { RESCALE_EXPONENTS(-, +) };
static const double rescale_n[] = { RESCALE_EXPONENTS(ONE_E_P, ONE_E_N) };
#undef ONE_E_N
#undef ONE_E_P

/*
** For p in range -70 through 57, this table encodes pairs (m, e) such that
** 4*2^p <= (uint8_t)m*10^e, and is the smallest value for which this holds.
*/
static const int8_t four_ulp_m_e[] = {
  34, -21, 68, -21, 14, -20, 28, -20, 55, -20, 2, -19, 3, -19, 5, -19, 9, -19,
  -82, -18, 35, -18, 7, -17, -117, -17, 28, -17, 56, -17, 112, -16, -33, -16,
  45, -16, 89, -16, -78, -15, 36, -15, 72, -15, -113, -14, 29, -14, 57, -14,
  114, -13, -28, -13, 46, -13, 91, -12, -74, -12, 37, -12, 73, -12, 15, -11, 3,
  -11, 59, -11, 2, -10, 3, -10, 5, -10, 1, -9, -69, -9, 38, -9, 75, -9, 15, -7,
  3, -7, 6, -7, 12, -6, -17, -7, 48, -7, 96, -7, -65, -6, 39, -6, 77, -6, -103,
  -5, 31, -5, 62, -5, 123, -4, -11, -4, 49, -4, 98, -4, -60, -3, 4, -2, 79, -3,
  16, -2, 32, -2, 63, -2, 2, -1, 25, 0, 5, 1, 1, 2, 2, 2, 4, 2, 8, 2, 16, 2,
  32, 2, 64, 2, -128, 2, 26, 2, 52, 2, 103, 3, -51, 3, 41, 4, 82, 4, -92, 4,
  33, 4, 66, 4, -124, 5, 27, 5, 53, 5, 105, 6, 21, 6, 42, 6, 84, 6, 17, 7, 34,
  7, 68, 7, 2, 8, 3, 8, 6, 8, 108, 9, -41, 9, 43, 10, 86, 9, -84, 10, 35, 10,
  69, 10, -118, 11, 28, 11, 55, 12, 11, 13, 22, 13, 44, 13, 88, 13, -80, 13,
  36, 13, 71, 13, -115, 14, 29, 14, 57, 14, 113, 15, -30, 15, 46, 15, 91, 15,
  19, 16, 37, 16, 73, 16, 2, 17, 3, 17, 6, 17
};

/* min(2^32-1, 10^e-1) for e in range 0 through 10 */
static uint32_t ndigits_dec_threshold[] = {
  0, 9U, 99U, 999U, 9999U, 99999U, 999999U,
  9999999U, 99999999U, 999999999U, 0xffffffffU
};

/* -- Helper functions ---------------------------------------------------- */

/* Compute the number of digits in the decimal representation of x. */
static MSize ndigits_dec(uint32_t x)
{
  MSize t = ((lj_fls(x | 1) * 77) >> 8) + 1; /* 2^8/77 is roughly log2(10) */
  return t + (x > ndigits_dec_threshold[t]);
}

#define WINT_R(x, sh, sc) \
  { uint32_t d = (x*(((1<<sh)+sc-1)/sc))>>sh; x -= d*sc; *p++ = (char)('0'+d); }

/* Write 9-digit unsigned integer to buffer. */
static char *lj_strfmt_wuint9(char *p, uint32_t u)
{
  uint32_t v = u / 10000, w;
  u -= v * 10000;
  w = v / 10000;
  v -= w * 10000;
  *p++ = (char)('0'+w);
  WINT_R(v, 23, 1000)
  WINT_R(v, 12, 100)
  WINT_R(v, 10, 10)
  *p++ = (char)('0'+v);
  WINT_R(u, 23, 1000)
  WINT_R(u, 12, 100)
  WINT_R(u, 10, 10)
  *p++ = (char)('0'+u);
  return p;
}
#undef WINT_R

/* -- Extended precision arithmetic --------------------------------------- */

/*
** The "nd" format is a fixed-precision decimal representation for numbers. It
** consists of up to 64 uint32_t values, with each uint32_t storing a value
** in the range [0, 1e9). A number in "nd" format consists of three variables:
**
**  uint32_t nd[64];
**  uint32_t ndlo;
**  uint32_t ndhi;
**
** The integral part of the number is stored in nd[0 ... ndhi], the value of
** which is sum{i in [0, ndhi] | nd[i] * 10^(9*i)}. If the fractional part of
** the number is zero, ndlo is zero. Otherwise, the fractional part is stored
** in nd[ndlo ... 63], the value of which is taken to be
** sum{i in [ndlo, 63] | nd[i] * 10^(9*(i-64))}.
**
** If the array part had 128 elements rather than 64, then every double would
** have an exact representation in "nd" format. With 64 elements, all integral
** doubles have an exact representation, and all non-integral doubles have
** enough digits to make both %.99e and %.99f do the right thing.
*/

#if LJ_64
#define ND_MUL2K_MAX_SHIFT	29
#define ND_MUL2K_DIV1E9(val)	((uint32_t)((val) / 1000000000))
#else
#define ND_MUL2K_MAX_SHIFT	11
#define ND_MUL2K_DIV1E9(val)	((uint32_t)((val) >> 9) / 1953125)
#endif

/* Multiply nd by 2^k and add carry_in (ndlo is assumed to be zero). */
static uint32_t nd_mul2k(uint32_t* nd, uint32_t ndhi, uint32_t k,
			 uint32_t carry_in, SFormat sf)
{
  uint32_t i, ndlo = 0, start = 1;
  /* Performance hacks. */
  if (k > ND_MUL2K_MAX_SHIFT*2 && STRFMT_FP(sf) != STRFMT_FP(STRFMT_T_FP_F)) {
    start = ndhi - (STRFMT_PREC(sf) + 17) / 8;
  }
  /* Real logic. */
  while (k >= ND_MUL2K_MAX_SHIFT) {
    for (i = ndlo; i <= ndhi; i++) {
      uint64_t val = ((uint64_t)nd[i] << ND_MUL2K_MAX_SHIFT) | carry_in;
      carry_in = ND_MUL2K_DIV1E9(val);
      nd[i] = (uint32_t)val - carry_in * 1000000000;
    }
    if (carry_in) {
      nd[++ndhi] = carry_in; carry_in = 0;
      if (start++ == ndlo) ++ndlo;
    }
    k -= ND_MUL2K_MAX_SHIFT;
  }
  if (k) {
    for (i = ndlo; i <= ndhi; i++) {
      uint64_t val = ((uint64_t)nd[i] << k) | carry_in;
      carry_in = ND_MUL2K_DIV1E9(val);
      nd[i] = (uint32_t)val - carry_in * 1000000000;
    }
    if (carry_in) nd[++ndhi] = carry_in;
  }
  return ndhi;
}

/* Divide nd by 2^k (ndlo is assumed to be zero). */
static uint32_t nd_div2k(uint32_t* nd, uint32_t ndhi, uint32_t k, SFormat sf)
{
  uint32_t ndlo = 0, stop1 = ~0, stop2 = ~0;
  /* Performance hacks. */
  if (!ndhi) {
    if (!nd[0]) {
      return 0;
    } else {
      uint32_t s = lj_ffs(nd[0]);
      if (s >= k) { nd[0] >>= k; return 0; }
      nd[0] >>= s; k -= s;
    }
  }
  if (k > 18) {
    if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_F)) {
      stop1 = 63 - (int32_t)STRFMT_PREC(sf) / 9;
    } else {
      int32_t floorlog2 = ndhi * 29 + lj_fls(nd[ndhi]) - k;
      int32_t floorlog10 = (int32_t)(floorlog2 * 0.30102999566398114);
      stop1 = 62 + (floorlog10 - (int32_t)STRFMT_PREC(sf)) / 9;
      stop2 = 61 + ndhi - (int32_t)STRFMT_PREC(sf) / 8;
    }
  }
  /* Real logic. */
  while (k >= 9) {
    uint32_t i = ndhi, carry = 0;
    for (;;) {
      uint32_t val = nd[i];
      nd[i] = (val >> 9) + carry;
      carry = (val & 0x1ff) * 1953125;
      if (i == ndlo) break;
      i = (i - 1) & 0x3f;
    }
    if (ndlo != stop1 && ndlo != stop2) {
      if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; }
      if (!nd[ndhi]) { ndhi = (ndhi - 1) & 0x3f; stop2--; }
    } else if (!nd[ndhi]) {
      if (ndhi != ndlo) { ndhi = (ndhi - 1) & 0x3f; stop2--; }
      else return ndlo;
    }
    k -= 9;
  }
  if (k) {
    uint32_t mask = (1U << k) - 1, mul = 1000000000 >> k, i = ndhi, carry = 0;
    for (;;) {
      uint32_t val = nd[i];
      nd[i] = (val >> k) + carry;
      carry = (val & mask) * mul;
      if (i == ndlo) break;
      i = (i - 1) & 0x3f;
    }
    if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; }
  }
  return ndlo;
}

/* Add m*10^e to nd (assumes ndlo <= e/9 <= ndhi and 0 <= m <= 9). */
static uint32_t nd_add_m10e(uint32_t* nd, uint32_t ndhi, uint8_t m, int32_t e)
{
  uint32_t i, carry;
  if (e >= 0) {
    i = (uint32_t)e/9;
    carry = m * (ndigits_dec_threshold[e - (int32_t)i*9] + 1);
  } else {
    int32_t f = (e-8)/9;
    i = (uint32_t)(64 + f);
    carry = m * (ndigits_dec_threshold[e - f*9] + 1);
  }
  for (;;) {
    uint32_t val = nd[i] + carry;
    if (LJ_UNLIKELY(val >= 1000000000)) {
      val -= 1000000000;
      nd[i] = val;
      if (LJ_UNLIKELY(i == ndhi)) {
	ndhi = (ndhi + 1) & 0x3f;
	nd[ndhi] = 1;
	break;
      }
      carry = 1;
      i = (i + 1) & 0x3f;
    } else {
      nd[i] = val;
      break;
    }
  }
  return ndhi;
}

/* Test whether two "nd" values are equal in their most significant digits. */
static int nd_similar(uint32_t* nd, uint32_t ndhi, uint32_t* ref, MSize hilen,
		      MSize prec)
{
  char nd9[9], ref9[9];
  if (hilen <= prec) {
    if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0;
    prec -= hilen; ref--; ndhi = (ndhi - 1) & 0x3f;
    if (prec >= 9) {
      if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0;
      prec -= 9; ref--; ndhi = (ndhi - 1) & 0x3f;
    }
  } else {
    prec -= hilen - 9;
  }
  lua_assert(prec < 9);
  lj_strfmt_wuint9(nd9, nd[ndhi]);
  lj_strfmt_wuint9(ref9, *ref);
  return !memcmp(nd9, ref9, prec) && (nd9[prec] < '5') == (ref9[prec] < '5');
}

/* -- Formatted conversions to buffer ------------------------------------- */

/* Write formatted floating-point number to either sb or p. */
static char *lj_strfmt_wfnum(SBuf *sb, SFormat sf, lua_Number n, char *p)
{
  MSize width = STRFMT_WIDTH(sf), prec = STRFMT_PREC(sf), len;
  TValue t;
  t.n = n;
  if (LJ_UNLIKELY((t.u32.hi << 1) >= 0xffe00000)) {
    /* Handle non-finite values uniformly for %a, %e, %f, %g. */
    int prefix = 0, ch = (sf & STRFMT_F_UPPER) ? 0x202020 : 0;
    if (((t.u32.hi & 0x000fffff) | t.u32.lo) != 0) {
      ch ^= ('n' << 16) | ('a' << 8) | 'n';
      if ((sf & STRFMT_F_SPACE)) prefix = ' ';
    } else {
      ch ^= ('i' << 16) | ('n' << 8) | 'f';
      if ((t.u32.hi & 0x80000000)) prefix = '-';
      else if ((sf & STRFMT_F_PLUS)) prefix = '+';
      else if ((sf & STRFMT_F_SPACE)) prefix = ' ';
    }
    len = 3 + (prefix != 0);
    if (!p) p = lj_buf_more(sb, width > len ? width : len);
    if (!(sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' ';
    if (prefix) *p++ = prefix;
    *p++ = (char)(ch >> 16); *p++ = (char)(ch >> 8); *p++ = (char)ch;
  } else if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_A)) {
    /* %a */
    const char *hexdig = (sf & STRFMT_F_UPPER) ? "0123456789ABCDEFPX"
					       : "0123456789abcdefpx";
    int32_t e = (t.u32.hi >> 20) & 0x7ff;
    char prefix = 0, eprefix = '+';
    if (t.u32.hi & 0x80000000) prefix = '-';
    else if ((sf & STRFMT_F_PLUS)) prefix = '+';
    else if ((sf & STRFMT_F_SPACE)) prefix = ' ';
    t.u32.hi &= 0xfffff;
    if (e) {
      t.u32.hi |= 0x100000;
      e -= 1023;
    } else if (t.u32.lo | t.u32.hi) {
      /* Non-zero denormal - normalise it. */
      uint32_t shift = t.u32.hi ? 20-lj_fls(t.u32.hi) : 52-lj_fls(t.u32.lo);
      e = -1022 - shift;
      t.u64 <<= shift;
    }
    /* abs(n) == t.u64 * 2^(e - 52) */
    /* If n != 0, bit 52 of t.u64 is set, and is the highest set bit. */
    if ((int32_t)prec < 0) {
      /* Default precision: use smallest precision giving exact result. */
      prec = t.u32.lo ? 13-lj_ffs(t.u32.lo)/4 : 5-lj_ffs(t.u32.hi|0x100000)/4;
    } else if (prec < 13) {
      /* Precision is sufficiently low as to maybe require rounding. */
      t.u64 += (((uint64_t)1) << (51 - prec*4));
    }
    if (e < 0) {
      eprefix = '-';
      e = -e;
    }
    len = 5 + ndigits_dec((uint32_t)e) + prec + (prefix != 0)
	    + ((prec | (sf & STRFMT_F_ALT)) != 0);
    if (!p) p = lj_buf_more(sb, width > len ? width : len);
    if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) {
      while (width-- > len) *p++ = ' ';
    }
    if (prefix) *p++ = prefix;
    *p++ = '0';
    *p++ = hexdig[17]; /* x or X */
    if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) {
      while (width-- > len) *p++ = '0';
    }
    *p++ = '0' + (t.u32.hi >> 20); /* Usually '1', sometimes '0' or '2'. */
    if ((prec | (sf & STRFMT_F_ALT))) {
      /* Emit fractional part. */
      char *q = p + 1 + prec;
      *p = '.';
      if (prec < 13) t.u64 >>= (52 - prec*4);
      else while (prec > 13) p[prec--] = '0';
      while (prec) { p[prec--] = hexdig[t.u64 & 15]; t.u64 >>= 4; }
      p = q;
    }
    *p++ = hexdig[16]; /* p or P */
    *p++ = eprefix; /* + or - */
    p = lj_strfmt_wint(p, e);
  } else {
    /* %e or %f or %g - begin by converting n to "nd" format. */
    uint32_t nd[64];
    uint32_t ndhi = 0, ndlo, i;
    int32_t e = (t.u32.hi >> 20) & 0x7ff, ndebias = 0;
    char prefix = 0, *q;
    if (t.u32.hi & 0x80000000) prefix = '-';
    else if ((sf & STRFMT_F_PLUS)) prefix = '+';
    else if ((sf & STRFMT_F_SPACE)) prefix = ' ';
    prec += ((int32_t)prec >> 31) & 7; /* Default precision is 6. */
    if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_G)) {
      /* %g - decrement precision if non-zero (to make it like %e). */
      prec--;
      prec ^= (uint32_t)((int32_t)prec >> 31);
    }
    if ((sf & STRFMT_T_FP_E) && prec < 14 && n != 0) {
      /* Precision is sufficiently low that rescaling will probably work. */
      if ((ndebias = rescale_e[e >> 6])) {
	t.n = n * rescale_n[e >> 6];
	if (LJ_UNLIKELY(!e)) t.n *= 1e10, ndebias -= 10;
	t.u64 -= 2; /* Convert 2ulp below (later we convert 2ulp above). */
	nd[0] = 0x100000 | (t.u32.hi & 0xfffff);
	e = ((t.u32.hi >> 20) & 0x7ff) - 1075 - (ND_MUL2K_MAX_SHIFT < 29);
	goto load_t_lo; rescale_failed:
	t.n = n;
	e = (t.u32.hi >> 20) & 0x7ff;
	ndebias = ndhi = 0;
      }
    }
    nd[0] = t.u32.hi & 0xfffff;
    if (e == 0) e++; else nd[0] |= 0x100000;
    e -= 1043;
    if (t.u32.lo) {
      e -= 32 + (ND_MUL2K_MAX_SHIFT < 29); load_t_lo:
#if ND_MUL2K_MAX_SHIFT >= 29
      nd[0] = (nd[0] << 3) | (t.u32.lo >> 29);
      ndhi = nd_mul2k(nd, ndhi, 29, t.u32.lo & 0x1fffffff, sf);
#elif ND_MUL2K_MAX_SHIFT >= 11
      ndhi = nd_mul2k(nd, ndhi, 11, t.u32.lo >> 21, sf);
      ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo >> 10) & 0x7ff, sf);
      ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo <<  1) & 0x7ff, sf);
#else
#error "ND_MUL2K_MAX_SHIFT too small"
#endif
    }
    if (e >= 0) {
      ndhi = nd_mul2k(nd, ndhi, (uint32_t)e, 0, sf);
      ndlo = 0;
    } else {
      ndlo = nd_div2k(nd, ndhi, (uint32_t)-e, sf);
      if (ndhi && !nd[ndhi]) ndhi--;
    }
    /* abs(n) == nd * 10^ndebias (for slightly loose interpretation of ==) */
    if ((sf & STRFMT_T_FP_E)) {
      /* %e or %g - assume %e and start by calculating nd's exponent (nde). */
      char eprefix = '+';
      int32_t nde = -1;
      MSize hilen;
      if (ndlo && !nd[ndhi]) {
	ndhi = 64; do {} while (!nd[--ndhi]);
	nde -= 64 * 9;
      }
      hilen = ndigits_dec(nd[ndhi]);
      nde += ndhi * 9 + hilen;
      if (ndebias) {
	/*
	** Rescaling was performed, but this introduced some error, and might
	** have pushed us across a rounding boundary. We check whether this
	** error affected the result by introducing even more error (2ulp in
	** either direction), and seeing whether a roundary boundary was
	** crossed. Having already converted the -2ulp case, we save off its
	** most significant digits, convert the +2ulp case, and compare them.
	*/
	int32_t eidx = e + 70 + (ND_MUL2K_MAX_SHIFT < 29)
			 + (t.u32.lo >= 0xfffffffe && !(~t.u32.hi << 12));
	const int8_t *m_e = four_ulp_m_e + eidx * 2;
	lua_assert(0 <= eidx && eidx < 128);
	nd[33] = nd[ndhi];
	nd[32] = nd[(ndhi - 1) & 0x3f];
	nd[31] = nd[(ndhi - 2) & 0x3f];
	nd_add_m10e(nd, ndhi, (uint8_t)*m_e, m_e[1]);
	if (LJ_UNLIKELY(!nd_similar(nd, ndhi, nd + 33, hilen, prec + 1))) {
	  goto rescale_failed;
	}
      }
      if ((int32_t)(prec - nde) < (0x3f & -(int32_t)ndlo) * 9) {
	/* Precision is sufficiently low as to maybe require rounding. */
	ndhi = nd_add_m10e(nd, ndhi, 5, nde - prec - 1);
	nde += (hilen != ndigits_dec(nd[ndhi]));
      }
      nde += ndebias;
      if ((sf & STRFMT_T_FP_F)) {
	/* %g */
	if ((int32_t)prec >= nde && nde >= -4) {
	  if (nde < 0) ndhi = 0;
	  prec -= nde;
	  goto g_format_like_f;
	} else if (!(sf & STRFMT_F_ALT) && prec && width > 5) {
	  /* Decrease precision in order to strip trailing zeroes. */
	  char tail[9];
	  uint32_t maxprec = hilen - 1 + ((ndhi - ndlo) & 0x3f) * 9;
	  if (prec >= maxprec) prec = maxprec;
	  else ndlo = (ndhi - (((int32_t)(prec - hilen) + 9) / 9)) & 0x3f;
	  i = prec - hilen - (((ndhi - ndlo) & 0x3f) * 9) + 10;
	  lj_strfmt_wuint9(tail, nd[ndlo]);
	  while (prec && tail[--i] == '0') {
	    prec--;
	    if (!i) {
	      if (ndlo == ndhi) { prec = 0; break; }
	      lj_strfmt_wuint9(tail, nd[++ndlo]);
	      i = 9;
	    }
	  }
	}
      }
      if (nde < 0) {
	/* Make nde non-negative. */
	eprefix = '-';
	nde = -nde;
      }
      len = 3 + prec + (prefix != 0) + ndigits_dec((uint32_t)nde) + (nde < 10)
	      + ((prec | (sf & STRFMT_F_ALT)) != 0);
      if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 5);
      if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) {
	while (width-- > len) *p++ = ' ';
      }
      if (prefix) *p++ = prefix;
      if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) {
	while (width-- > len) *p++ = '0';
      }
      q = lj_strfmt_wint(p + 1, nd[ndhi]);
      p[0] = p[1]; /* Put leading digit in the correct place. */
      if ((prec | (sf & STRFMT_F_ALT))) {
	/* Emit fractional part. */
	p[1] = '.'; p += 2;
	prec -= (MSize)(q - p); p = q; /* Account for digits already emitted. */
	/* Then emit chunks of 9 digits (this may emit 8 digits too many). */
	for (i = ndhi; (int32_t)prec > 0 && i != ndlo; prec -= 9) {
	  i = (i - 1) & 0x3f;
	  p = lj_strfmt_wuint9(p, nd[i]);
	}
	if ((sf & STRFMT_T_FP_F) && !(sf & STRFMT_F_ALT)) {
	  /* %g (and not %#g) - strip trailing zeroes. */
	  p += (int32_t)prec & ((int32_t)prec >> 31);
	  while (p[-1] == '0') p--;
	  if (p[-1] == '.') p--;
	} else {
	  /* %e (or %#g) - emit trailing zeroes. */
	  while ((int32_t)prec > 0) { *p++ = '0'; prec--; }
	  p += (int32_t)prec;
	}
      } else {
	p++;
      }
      *p++ = (sf & STRFMT_F_UPPER) ? 'E' : 'e';
      *p++ = eprefix; /* + or - */
      if (nde < 10) *p++ = '0'; /* Always at least two digits of exponent. */
      p = lj_strfmt_wint(p, nde);
    } else {
      /* %f (or, shortly, %g in %f style) */
      if (prec < (MSize)(0x3f & -(int32_t)ndlo) * 9) {
	/* Precision is sufficiently low as to maybe require rounding. */
	ndhi = nd_add_m10e(nd, ndhi, 5, 0 - prec - 1);
      }
      g_format_like_f:
      if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT) && prec && width) {
	/* Decrease precision in order to strip trailing zeroes. */
	if (ndlo) {
	  /* nd has a fractional part; we need to look at its digits. */
	  char tail[9];
	  uint32_t maxprec = (64 - ndlo) * 9;
	  if (prec >= maxprec) prec = maxprec;
	  else ndlo = 64 - (prec + 8) / 9;
	  i = prec - ((63 - ndlo) * 9);
	  lj_strfmt_wuint9(tail, nd[ndlo]);
	  while (prec && tail[--i] == '0') {
	    prec--;
	    if (!i) {
	      if (ndlo == 63) { prec = 0; break; }
	      lj_strfmt_wuint9(tail, nd[++ndlo]);
	      i = 9;
	    }
	  }
	} else {
	  /* nd has no fractional part, so precision goes straight to zero. */
	  prec = 0;
	}
      }
      len = ndhi * 9 + ndigits_dec(nd[ndhi]) + prec + (prefix != 0)
		     + ((prec | (sf & STRFMT_F_ALT)) != 0);
      if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 8);
      if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) {
	while (width-- > len) *p++ = ' ';
      }
      if (prefix) *p++ = prefix;
      if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) {
	while (width-- > len) *p++ = '0';
      }
      /* Emit integer part. */
      p = lj_strfmt_wint(p, nd[ndhi]);
      i = ndhi;
      while (i) p = lj_strfmt_wuint9(p, nd[--i]);
      if ((prec | (sf & STRFMT_F_ALT))) {
	/* Emit fractional part. */
	*p++ = '.';
	/* Emit chunks of 9 digits (this may emit 8 digits too many). */
	while ((int32_t)prec > 0 && i != ndlo) {
	  i = (i - 1) & 0x3f;
	  p = lj_strfmt_wuint9(p, nd[i]);
	  prec -= 9;
	}
	if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT)) {
	  /* %g (and not %#g) - strip trailing zeroes. */
	  p += (int32_t)prec & ((int32_t)prec >> 31);
	  while (p[-1] == '0') p--;
	  if (p[-1] == '.') p--;
	} else {
	  /* %f (or %#g) - emit trailing zeroes. */
	  while ((int32_t)prec > 0) { *p++ = '0'; prec--; }
	  p += (int32_t)prec;
	}
      }
    }
  }
  if ((sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' ';
  return p;
}

/* Add formatted floating-point number to buffer. */
SBuf *lj_strfmt_putfnum(SBuf *sb, SFormat sf, lua_Number n)
{
  setsbufP(sb, lj_strfmt_wfnum(sb, sf, n, NULL));
  return sb;
}

/* -- Conversions to strings ---------------------------------------------- */

/* Convert number to string. */
GCstr * LJ_FASTCALL lj_strfmt_num(lua_State *L, cTValue *o)
{
  char buf[STRFMT_MAXBUF_NUM];
  MSize len = (MSize)(lj_strfmt_wfnum(NULL, STRFMT_G14, o->n, buf) - buf);
  return lj_str_new(L, buf, len);
}