Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SpatialMaxPooling.c « generic - github.com/torch/nn.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7faa0ee3f8259d0720f831725aec656d15d55bb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/SpatialMaxPooling.c"
#else

static void nn_(SpatialMaxPooling_updateOutput_frame)(real *input_p, real *output_p,
                                                      real *indx_p, real *indy_p,
                                                      long nslices,
                                                      long iwidth, long iheight,
                                                      long owidth, long oheight,
                                                      int kW, int kH, int dW, int dH)
{
  long k;
#pragma omp parallel for private(k)
  for (k = 0; k < nslices; k++)
  {
    // loop over output
    long i, j;
    for(i = 0; i < oheight; i++)
    {
      for(j = 0; j < owidth; j++)
      {
        // local pointers
        real *ip = input_p   + k*iwidth*iheight + i*iwidth*dH + j*dW;
        real *op = output_p  + k*owidth*oheight + i*owidth + j;
        real *indyp = indy_p + k*owidth*oheight + i*owidth + j;
        real *indxp = indx_p + k*owidth*oheight + i*owidth + j;

        // compute local max:
        long maxindex = -1;
        real maxval = -THInf;
        long tcntr = 0;
        int x,y;
        for(y = 0; y < kH; y++)
        {
          for(x = 0; x < kW; x++)
          {
            real val = *(ip + y*iwidth + x);
            if (val > maxval)
            {
              maxval = val;
              maxindex = tcntr;
            }
            tcntr++;
          }
        }

        // set output to local max
        *op = maxval;

        // store location of max (x,y)
        *indyp = (int)(maxindex / kW)+1;
        *indxp = (maxindex % kW) +1;
      }
    }
  }
}

static int nn_(SpatialMaxPooling_updateOutput)(lua_State *L)
{
  THTensor *input = luaT_checkudata(L, 2, torch_Tensor);
  int kW = luaT_getfieldcheckint(L, 1, "kW");
  int kH = luaT_getfieldcheckint(L, 1, "kH");
  int dW = luaT_getfieldcheckint(L, 1, "dW");
  int dH = luaT_getfieldcheckint(L, 1, "dH");
  THTensor *indices = luaT_getfieldcheckudata(L, 1, "indices", torch_Tensor);
  THTensor *output = luaT_getfieldcheckudata(L, 1, "output", torch_Tensor);

  luaL_argcheck(L, input->nDimension == 3 || input->nDimension == 4 , 2, "3D or 4D (batch mode) tensor expected");
  int dimw = 2;
  int dimh = 1;
  long nbatch = 1;
  if (input->nDimension == 4) 
  {
    nbatch = input->size[0];
    dimw++;
    dimh++;
  }
  luaL_argcheck(L, input->size[dimw] >= kW && input->size[dimh] >= kH, 2, "input image smaller than kernel size");

  // sizes
  long nslices = input->size[dimh-1];
  long iheight = input->size[dimh];
  long iwidth = input->size[dimw];
  long oheight = (iheight - kH) / dH + 1;
  long owidth = (iwidth - kW) / dW + 1;

  // get contiguous input
  input = THTensor_(newContiguous)(input);

  // resize output
  if (input->nDimension == 3)
  {
    THTensor_(resize3d)(output, nslices, oheight, owidth);
    // indices will contain i,j locations for each output point
    THTensor_(resize4d)(indices, 2, nslices, oheight, owidth);

    real *input_data = THTensor_(data)(input);
    real *output_data = THTensor_(data)(output);
    real *indices_data = THTensor_(data)(indices);

    nn_(SpatialMaxPooling_updateOutput_frame)(input_data, output_data,
                                              indices_data+nslices*owidth*oheight, indices_data,
                                              nslices,
                                              iwidth, iheight,
                                              owidth, oheight,
                                              kW, kH, dW, dH);
  }
  else
  {
    THTensor_(resize4d)(output, nbatch, nslices, oheight, owidth);
    // indices will contain i,j locations for each output point
    THTensor_(resize5d)(indices, 2, nbatch, nslices, oheight, owidth);

    real *input_data = THTensor_(data)(input);
    real *output_data = THTensor_(data)(output);
    real *indices_data = THTensor_(data)(indices);

    long p;
#pragma omp parallel for private(p)
    for (p = 0; p < nbatch; p++)
    {
      nn_(SpatialMaxPooling_updateOutput_frame)(input_data+p*nslices*iwidth*iheight, output_data+p*nslices*owidth*oheight,
                                                indices_data+(p+nbatch)*nslices*owidth*oheight, indices_data+p*nslices*owidth*oheight,
                                                nslices,
                                                iwidth, iheight,
                                                owidth, oheight,
                                                kW, kH, dW, dH);
    }
  }

  // cleanup
  THTensor_(free)(input);
  return 1;
}

static void nn_(SpatialMaxPooling_updateGradInput_frame)(real *gradInput_p, real *gradOutput_p,
                                                         real *indx_p, real *indy_p,
                                                         long nslices,
                                                         long iwidth, long iheight,
                                                         long owidth, long oheight,
                                                         int dW, int dH)
{
  long k;
#pragma omp parallel for private(k)
  for (k = 0; k < nslices; k++)
  {
    real *gradInput_p_k = gradInput_p + k*iwidth*iheight;
    real *gradOutput_p_k = gradOutput_p + k*owidth*oheight;
    real *indx_p_k = indx_p + k*owidth*oheight;
    real *indy_p_k = indy_p + k*owidth*oheight;

    // calculate max points
    long i, j;
    for(i = 0; i < oheight; i++)
    {
      for(j = 0; j < owidth; j++)
      {
        // retrieve position of max
        long maxi = indy_p_k[i*owidth + j] - 1 + i*dH;
        long maxj = indx_p_k[i*owidth + j] - 1 + j*dW;

        // update gradient
        gradInput_p_k[maxi*iwidth + maxj] += gradOutput_p_k[i*owidth + j];
      }
    }
  }
}

static int nn_(SpatialMaxPooling_updateGradInput)(lua_State *L)
{
  THTensor *input = luaT_checkudata(L, 2, torch_Tensor);
  THTensor *gradOutput = luaT_checkudata(L, 3, torch_Tensor);
  int dW = luaT_getfieldcheckint(L, 1, "dW");
  int dH = luaT_getfieldcheckint(L, 1, "dH");
  THTensor *indices = luaT_getfieldcheckudata(L, 1, "indices", torch_Tensor);
  THTensor *gradInput = luaT_getfieldcheckudata(L, 1, "gradInput", torch_Tensor);

  // get contiguous gradOutput
  gradOutput = THTensor_(newContiguous)(gradOutput);

  // resize
  THTensor_(resizeAs)(gradInput, input);
  THTensor_(zero)(gradInput);

  int dimw = 2;
  int dimh = 1;
  long nbatch = 1;
  if (input->nDimension == 4) {
    nbatch = input->size[0];
    dimw++;
    dimh++;
  }

  // sizes
  int nslices = input->size[dimh-1];
  int iheight = input->size[dimh];
  int iwidth = input->size[dimw];
  int oheight = gradOutput->size[dimh];
  int owidth = gradOutput->size[dimw];

  // get raw pointers
  real *gradInput_data = THTensor_(data)(gradInput);
  real *gradOutput_data = THTensor_(data)(gradOutput);
  real *indices_data = THTensor_(data)(indices);

  // backprop
  if (input->nDimension == 3)
  {
    nn_(SpatialMaxPooling_updateGradInput_frame)(gradInput_data, gradOutput_data,
                                                 indices_data+nslices*owidth*oheight, indices_data,
                                                 nslices,
                                                 iwidth, iheight,
                                                 owidth, oheight,
                                                 dW, dH);
  }
  else
  {
    long p;
#pragma omp parallel for private(p)
    for (p = 0; p < nbatch; p++)
    {
      nn_(SpatialMaxPooling_updateGradInput_frame)(gradInput_data+p*nslices*iwidth*iheight, gradOutput_data+p*nslices*owidth*oheight,
                                                   indices_data+(p+nbatch)*nslices*owidth*oheight, indices_data+p*nslices*owidth*oheight,
                                                   nslices,
                                                   iwidth, iheight,
                                                   owidth, oheight,
                                                   dW, dH);
    }
  }

  // cleanup
  THTensor_(free)(gradOutput);

  return 1;
}

static const struct luaL_Reg nn_(SpatialMaxPooling__) [] = {
  {"SpatialMaxPooling_updateOutput", nn_(SpatialMaxPooling_updateOutput)},
  {"SpatialMaxPooling_updateGradInput", nn_(SpatialMaxPooling_updateGradInput)},
  {NULL, NULL}
};

static void nn_(SpatialMaxPooling_init)(lua_State *L)
{
  luaT_pushmetatable(L, torch_Tensor);
  luaT_registeratname(L, nn_(SpatialMaxPooling__), "nn");
  lua_pop(L,1);
}

#endif