Welcome to mirror list, hosted at ThFree Co, Russian Federation.

attribute.rs « src - github.com/windirstat/ntfs.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9b8bb2aba5f4a9d5d81fd29a2fed5270aca97e4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// Copyright 2021 Colin Finck <colin@reactos.org>
// SPDX-License-Identifier: MIT OR Apache-2.0

use crate::attribute_value::{
    NtfsAttributeListNonResidentAttributeValue, NtfsAttributeValue, NtfsNonResidentAttributeValue,
    NtfsResidentAttributeValue,
};
use crate::error::{NtfsError, Result};
use crate::file::NtfsFile;
use crate::string::NtfsString;
use crate::structured_values::{
    NtfsAttributeList, NtfsAttributeListEntries, NtfsStructuredValue,
    NtfsStructuredValueFromResidentAttributeValue,
};
use crate::types::Vcn;
use binread::io::{Read, Seek};
use bitflags::bitflags;
use byteorder::{ByteOrder, LittleEndian};
use core::iter::FusedIterator;
use core::mem;
use core::ops::Range;
use enumn::N;
use memoffset::offset_of;
use strum_macros::Display;

/// On-disk structure of the generic header of an NTFS Attribute.
#[repr(C, packed)]
struct NtfsAttributeHeader {
    /// Type of the attribute, known types are in [`NtfsAttributeType`].
    ty: u32,
    /// Length of the resident part of this attribute, in bytes.
    length: u32,
    /// 0 if this attribute has a resident value, 1 if this attribute has a non-resident value.
    is_non_resident: u8,
    /// Length of the name, in UTF-16 code points (every code point is 2 bytes).
    name_length: u8,
    /// Offset to the beginning of the name, in bytes from the beginning of this header.
    name_offset: u16,
    /// Flags of the attribute, known flags are in [`NtfsAttributeFlags`].
    flags: u16,
    /// Identifier of this attribute that is unique within the [`NtfsFile`].
    instance: u16,
}

bitflags! {
    /// Flags returned by [`NtfsAttribute::flags`].
    pub struct NtfsAttributeFlags: u16 {
        /// The attribute value is compressed.
        const COMPRESSED = 0x0001;
        /// The attribute value is encrypted.
        const ENCRYPTED = 0x4000;
        /// The attribute value is stored sparsely.
        const SPARSE = 0x8000;
    }
}

/// On-disk structure of the extra header of an NTFS Attribute that has a resident value.
#[repr(C, packed)]
struct NtfsResidentAttributeHeader {
    attribute_header: NtfsAttributeHeader,
    /// Length of the value, in bytes.
    value_length: u32,
    /// Offset to the beginning of the value, in bytes from the beginning of the [`NtfsAttributeHeader`].
    value_offset: u16,
    /// 1 if this attribute (with resident value) is referenced in an index.
    indexed_flag: u8,
}

/// On-disk structure of the extra header of an NTFS Attribute that has a non-resident value.
#[repr(C, packed)]
struct NtfsNonResidentAttributeHeader {
    attribute_header: NtfsAttributeHeader,
    /// Lower boundary of Virtual Cluster Numbers (VCNs) referenced by this attribute.
    /// This becomes relevant when file data is split over multiple attributes.
    /// Otherwise, it's zero.
    lowest_vcn: Vcn,
    /// Upper boundary of Virtual Cluster Numbers (VCNs) referenced by this attribute.
    /// This becomes relevant when file data is split over multiple attributes.
    /// Otherwise, it's zero (or even -1 for zero-length files according to NTFS-3G).
    highest_vcn: Vcn,
    /// Offset to the beginning of the value data runs.
    data_runs_offset: u16,
    /// Binary exponent denoting the number of clusters in a compression unit.
    /// A typical value is 4, meaning that 2^4 = 16 clusters are part of a compression unit.
    /// A value of zero means no compression (but that should better be determined via
    /// [`NtfsAttributeFlags`]).
    compression_unit_exponent: u8,
    reserved: [u8; 5],
    /// Allocated space for the attribute value, in bytes. This is always a multiple of the cluster size.
    /// For compressed files, this is always a multiple of the compression unit size.
    allocated_size: u64,
    /// Size of the attribute value, in bytes.
    /// This can be larger than `allocated_size` if the value is compressed or stored sparsely.
    data_size: u64,
    /// Size of the initialized part of the attribute value, in bytes.
    /// This is usually the same as `data_size`.
    initialized_size: u64,
}

/// All known NTFS Attribute types.
///
/// Reference: <https://flatcap.github.io/linux-ntfs/ntfs/attributes/index.html>
#[derive(Clone, Copy, Debug, Display, Eq, N, PartialEq)]
#[repr(u32)]
pub enum NtfsAttributeType {
    /// $STANDARD_INFORMATION, see [`NtfsStandardInformation`].
    ///
    /// [`NtfsStandardInformation`]: crate::structured_values::NtfsStandardInformation
    StandardInformation = 0x10,
    /// $ATTRIBUTE_LIST, see [`NtfsAttributeList`].
    ///
    /// [`NtfsAttributeList`]: crate::structured_values::NtfsAttributeList
    AttributeList = 0x20,
    /// $FILE_NAME, see [`NtfsFileName`].
    ///
    /// [`NtfsFileName`]: crate::structured_values::NtfsFileName
    FileName = 0x30,
    /// $OBJECT_ID, see [`NtfsObjectId`].
    ///
    /// [`NtfsObjectId`]: crate::structured_values::NtfsObjectId
    ObjectId = 0x40,
    /// $SECURITY_DESCRIPTOR
    SecurityDescriptor = 0x50,
    /// $VOLUME_NAME, see [`NtfsVolumeName`].
    ///
    /// [`NtfsVolumeName`]: crate::structured_values::NtfsVolumeName
    VolumeName = 0x60,
    /// $VOLUME_INFORMATION, see [`NtfsVolumeInformation`].
    ///
    /// [`NtfsVolumeInformation`]: crate::structured_values::NtfsVolumeInformation
    VolumeInformation = 0x70,
    /// $DATA, see [`NtfsFile::data`].
    Data = 0x80,
    /// $INDEX_ROOT, see [`NtfsIndexRoot`].
    ///
    /// [`NtfsIndexRoot`]: crate::structured_values::NtfsIndexRoot
    IndexRoot = 0x90,
    /// $INDEX_ALLOCATION, see [`NtfsIndexAllocation`].
    ///
    /// [`NtfsIndexAllocation`]: crate::structured_values::NtfsIndexAllocation
    IndexAllocation = 0xA0,
    /// $BITMAP
    Bitmap = 0xB0,
    /// $REPARSE_POINT
    ReparsePoint = 0xC0,
    /// $EA_INFORMATION
    EAInformation = 0xD0,
    /// $EA
    EA = 0xE0,
    /// $PROPERTY_SET
    PropertySet = 0xF0,
    /// $LOGGED_UTILITY_STREAM
    LoggedUtilityStream = 0x100,
    /// Marks the end of the valid attributes.
    End = 0xFFFF_FFFF,
}

/// A single NTFS Attribute of an [`NtfsFile`].
///
/// Not to be confused with [`NtfsFileAttributeFlags`].
///
/// This structure is returned by the [`NtfsAttributesRaw`] iterator as well as [`NtfsAttributeItem::to_attribute`].
///
/// Reference: <https://flatcap.github.io/linux-ntfs/ntfs/concepts/attribute_header.html>
///
/// [`NtfsFileAttributeFlags`]: crate::structured_values::NtfsFileAttributeFlags
#[derive(Clone, Debug)]
pub struct NtfsAttribute<'n, 'f> {
    file: &'f NtfsFile<'n>,
    offset: usize,
    /// Has a value if this attribute's value may be split over multiple attributes.
    /// The connected attributes can be iterated using the encapsulated iterator.
    list_entries: Option<&'f NtfsAttributeListEntries<'n, 'f>>,
}

impl<'n, 'f> NtfsAttribute<'n, 'f> {
    pub(crate) fn new(
        file: &'f NtfsFile<'n>,
        offset: usize,
        list_entries: Option<&'f NtfsAttributeListEntries<'n, 'f>>,
    ) -> Self {
        Self {
            file,
            offset,
            list_entries,
        }
    }

    /// Returns the length of this NTFS Attribute, in bytes.
    ///
    /// This denotes the length of the attribute structure on disk.
    /// Apart from various headers, this structure also includes the name and,
    /// for resident attributes, the actual value.
    pub fn attribute_length(&self) -> u32 {
        let start = self.offset + offset_of!(NtfsAttributeHeader, length);
        LittleEndian::read_u32(&self.file.record_data()[start..])
    }

    /// Returns flags set for this attribute as specified by [`NtfsAttributeFlags`].
    pub fn flags(&self) -> NtfsAttributeFlags {
        let start = self.offset + offset_of!(NtfsAttributeHeader, flags);
        NtfsAttributeFlags::from_bits_truncate(LittleEndian::read_u16(
            &self.file.record_data()[start..],
        ))
    }

    /// Returns the identifier of this attribute that is unique within the [`NtfsFile`].
    pub fn instance(&self) -> u16 {
        let start = self.offset + offset_of!(NtfsAttributeHeader, instance);
        LittleEndian::read_u16(&self.file.record_data()[start..])
    }

    /// Returns `true` if this is a resident attribute, i.e. one where its value
    /// is part of the attribute structure.
    pub fn is_resident(&self) -> bool {
        let start = self.offset + offset_of!(NtfsAttributeHeader, is_non_resident);
        let is_non_resident = self.file.record_data()[start];
        is_non_resident == 0
    }

    /// Gets the name of this NTFS Attribute (if any) and returns it wrapped in an [`NtfsString`].
    ///
    /// Note that most NTFS attributes have no name and are distinguished by their types.
    /// Use [`NtfsAttribute::ty`] to get the attribute type.
    pub fn name(&self) -> Result<NtfsString<'f>> {
        if self.name_offset() == 0 || self.name_length() == 0 {
            return Ok(NtfsString(&[]));
        }

        self.validate_name_sizes()?;

        let start = self.offset + self.name_offset() as usize;
        let end = start + self.name_length();
        let string = NtfsString(&self.file.record_data()[start..end]);

        Ok(string)
    }

    fn name_offset(&self) -> u16 {
        let start = self.offset + offset_of!(NtfsAttributeHeader, name_offset);
        LittleEndian::read_u16(&self.file.record_data()[start..])
    }

    /// Returns the length of the name of this NTFS Attribute, in bytes.
    ///
    /// An attribute name has a maximum length of 255 UTF-16 code points (510 bytes).
    /// It is always part of the attribute itself and hence also of the length
    /// returned by [`NtfsAttribute::attribute_length`].
    pub fn name_length(&self) -> usize {
        let start = self.offset + offset_of!(NtfsAttributeHeader, name_length);
        let name_length_in_characters = self.file.record_data()[start];
        name_length_in_characters as usize * mem::size_of::<u16>()
    }

    pub(crate) fn non_resident_value(&self) -> Result<NtfsNonResidentAttributeValue<'n, 'f>> {
        let (data, position) = self.non_resident_value_data_and_position();

        NtfsNonResidentAttributeValue::new(
            self.file.ntfs(),
            data,
            position,
            self.non_resident_value_data_size(),
        )
    }

    pub(crate) fn non_resident_value_data_and_position(&self) -> (&'f [u8], u64) {
        debug_assert!(!self.is_resident());
        let start = self.offset + self.non_resident_value_data_runs_offset() as usize;
        let end = self.offset + self.attribute_length() as usize;
        let data = &self.file.record_data()[start..end];
        let position = self.file.position() + start as u64;

        (data, position)
    }

    fn non_resident_value_data_size(&self) -> u64 {
        debug_assert!(!self.is_resident());
        let start = self.offset + offset_of!(NtfsNonResidentAttributeHeader, data_size);
        LittleEndian::read_u64(&self.file.record_data()[start..])
    }

    fn non_resident_value_data_runs_offset(&self) -> u16 {
        debug_assert!(!self.is_resident());
        let start = self.offset + offset_of!(NtfsNonResidentAttributeHeader, data_runs_offset);
        LittleEndian::read_u16(&self.file.record_data()[start..])
    }

    pub(crate) fn offset(&self) -> usize {
        self.offset
    }

    /// Returns the absolute position of this NTFS Attribute within the filesystem, in bytes.
    pub fn position(&self) -> u64 {
        self.file.position() + self.offset as u64
    }

    /// Attempts to parse the value data as the given resident structured value type and returns that.
    ///
    /// This is a fast path for attributes that are always resident.
    /// It doesn't need a reference to the filesystem reader.
    ///
    /// This function first checks that the attribute is of the required type for that structured value
    /// and if it's a resident attribute.
    /// It returns with an error if that is not the case.
    /// It also returns an error for any parsing problem.
    pub fn resident_structured_value<S>(&self) -> Result<S>
    where
        S: NtfsStructuredValueFromResidentAttributeValue<'n, 'f>,
    {
        let ty = self.ty()?;
        if ty != S::TY {
            return Err(NtfsError::AttributeOfDifferentType {
                position: self.position(),
                expected: S::TY,
                actual: ty,
            });
        }

        if !self.is_resident() {
            return Err(NtfsError::UnexpectedNonResidentAttribute {
                position: self.position(),
            });
        }

        let resident_value = self.resident_value()?;
        S::from_resident_attribute_value(resident_value)
    }

    pub(crate) fn resident_value(&self) -> Result<NtfsResidentAttributeValue<'f>> {
        debug_assert!(self.is_resident());
        self.validate_resident_value_sizes()?;

        let start = self.offset + self.resident_value_offset() as usize;
        let end = start + self.resident_value_length() as usize;
        let data = &self.file.record_data()[start..end];

        Ok(NtfsResidentAttributeValue::new(data, self.position()))
    }

    fn resident_value_length(&self) -> u32 {
        debug_assert!(self.is_resident());
        let start = self.offset + offset_of!(NtfsResidentAttributeHeader, value_length);
        LittleEndian::read_u32(&self.file.record_data()[start..])
    }

    fn resident_value_offset(&self) -> u16 {
        debug_assert!(self.is_resident());
        let start = self.offset + offset_of!(NtfsResidentAttributeHeader, value_offset);
        LittleEndian::read_u16(&self.file.record_data()[start..])
    }

    /// Attempts to parse the value data as the given structured value type and returns that.
    ///
    /// This function first checks that the attribute is of the required type for that structured value.
    /// It returns with an error if that is not the case.
    /// It also returns an error for any parsing problem.
    pub fn structured_value<T, S>(&self, fs: &mut T) -> Result<S>
    where
        T: Read + Seek,
        S: NtfsStructuredValue<'n, 'f>,
    {
        let ty = self.ty()?;
        if ty != S::TY {
            return Err(NtfsError::AttributeOfDifferentType {
                position: self.position(),
                expected: S::TY,
                actual: ty,
            });
        }

        S::from_attribute_value(fs, self.value()?)
    }

    /// Returns the type of this NTFS Attribute, or [`NtfsError::UnsupportedAttributeType`]
    /// if it's an unknown type.
    pub fn ty(&self) -> Result<NtfsAttributeType> {
        let start = self.offset + offset_of!(NtfsAttributeHeader, ty);
        let ty = LittleEndian::read_u32(&self.file.record_data()[start..]);

        NtfsAttributeType::n(ty).ok_or(NtfsError::UnsupportedAttributeType {
            position: self.position(),
            actual: ty,
        })
    }

    fn validate_name_sizes(&self) -> Result<()> {
        let start = self.name_offset();
        if start as u32 >= self.attribute_length() {
            return Err(NtfsError::InvalidAttributeNameOffset {
                position: self.position(),
                expected: start,
                actual: self.attribute_length(),
            });
        }

        let end = start as usize + self.name_length();
        if end > self.attribute_length() as usize {
            return Err(NtfsError::InvalidAttributeNameLength {
                position: self.position(),
                expected: end,
                actual: self.attribute_length(),
            });
        }

        Ok(())
    }

    fn validate_resident_value_sizes(&self) -> Result<()> {
        debug_assert!(self.is_resident());

        let start = self.resident_value_offset();
        if start as u32 > self.attribute_length() {
            return Err(NtfsError::InvalidResidentAttributeValueOffset {
                position: self.position(),
                expected: start,
                actual: self.attribute_length(),
            });
        }

        let end = start as u32 + self.resident_value_length();
        if end > self.attribute_length() {
            return Err(NtfsError::InvalidResidentAttributeValueLength {
                position: self.position(),
                expected: end,
                actual: self.attribute_length(),
            });
        }

        Ok(())
    }

    /// Returns an [`NtfsAttributeValue`] structure to read the value of this NTFS Attribute.
    pub fn value(&self) -> Result<NtfsAttributeValue<'n, 'f>> {
        if let Some(list_entries) = self.list_entries {
            // The first attribute reports the entire data size for all connected attributes
            // (remaining ones are set to zero).
            // Fortunately, we are the first attribute :)
            let data_size = self.non_resident_value_data_size();

            let value = NtfsAttributeListNonResidentAttributeValue::new(
                self.file.ntfs(),
                list_entries.clone(),
                self.instance(),
                self.ty()?,
                data_size,
            );
            Ok(NtfsAttributeValue::AttributeListNonResident(value))
        } else if self.is_resident() {
            let value = self.resident_value()?;
            Ok(NtfsAttributeValue::Resident(value))
        } else {
            let value = self.non_resident_value()?;
            Ok(NtfsAttributeValue::NonResident(value))
        }
    }

    /// Returns the length of the value data of this NTFS Attribute, in bytes.
    pub fn value_length(&self) -> u64 {
        if self.is_resident() {
            self.resident_value_length() as u64
        } else {
            self.non_resident_value_data_size()
        }
    }
}

/// Iterator over
///   all attributes of an [`NtfsFile`],
///   returning an [`NtfsAttributeItem`] for each entry.
///
/// This iterator is returned from the [`NtfsFile::attributes`] function.
/// It provides a flattened "data-centric" view of the attributes and abstracts away the filesystem details
/// to deal with many or large attributes (Attribute Lists and connected attributes).
///
/// Check [`NtfsAttributesRaw`] if you want to iterate over the plain attributes on the filesystem.
/// See [`NtfsAttributesAttached`] for an iterator that implements [`Iterator`] and [`FusedIterator`].
#[derive(Clone, Debug)]
pub struct NtfsAttributes<'n, 'f> {
    raw_iter: NtfsAttributesRaw<'n, 'f>,
    list_entries: Option<NtfsAttributeListEntries<'n, 'f>>,
    list_skip_info: Option<(u16, NtfsAttributeType)>,
}

impl<'n, 'f> NtfsAttributes<'n, 'f> {
    pub(crate) fn new(file: &'f NtfsFile<'n>) -> Self {
        Self {
            raw_iter: NtfsAttributesRaw::new(file),
            list_entries: None,
            list_skip_info: None,
        }
    }

    /// Returns a variant of this iterator that implements [`Iterator`] and [`FusedIterator`]
    /// by mutably borrowing the filesystem reader.
    pub fn attach<'a, T>(self, fs: &'a mut T) -> NtfsAttributesAttached<'n, 'f, 'a, T>
    where
        T: Read + Seek,
    {
        NtfsAttributesAttached::new(fs, self)
    }

    /// See [`Iterator::next`].
    pub fn next<T>(&mut self, fs: &mut T) -> Option<Result<NtfsAttributeItem<'n, 'f>>>
    where
        T: Read + Seek,
    {
        loop {
            if let Some(attribute_list_entries) = &mut self.list_entries {
                loop {
                    // If the next Attribute List entry turns out to be a non-resident attribute, that attribute's
                    // value may be split over multiple (adjacent) attributes.
                    // To view this value as a single one, we need an `AttributeListConnectedEntries` iterator
                    // and that iterator needs `NtfsAttributeListEntries` where the next call to `next` yields
                    // the first connected attribute.
                    // Therefore, we need to clone `attribute_list_entries` before every call.
                    let attribute_list_entries_clone = attribute_list_entries.clone();

                    let entry = match attribute_list_entries.next(fs) {
                        Some(Ok(entry)) => entry,
                        Some(Err(e)) => return Some(Err(e)),
                        None => break,
                    };
                    let entry_instance = entry.instance();
                    let entry_record_number = entry.base_file_reference().file_record_number();
                    let entry_ty = iter_try!(entry.ty());

                    // Ignore all Attribute List entries that just repeat attributes of the raw iterator.
                    if entry_record_number == self.raw_iter.file.file_record_number() {
                        continue;
                    }

                    // Ignore all Attribute List entries that are connected attributes of a previous one.
                    if let Some((skip_instance, skip_ty)) = self.list_skip_info {
                        if entry_instance == skip_instance && entry_ty == skip_ty {
                            continue;
                        }
                    }

                    // We found an attribute that we want to return.
                    self.list_skip_info = None;

                    let ntfs = self.raw_iter.file.ntfs();
                    let entry_file = iter_try!(entry.to_file(ntfs, fs));
                    let entry_attribute = iter_try!(entry.to_attribute(&entry_file));
                    let attribute_offset = entry_attribute.offset();

                    let mut list_entries = None;
                    if !entry_attribute.is_resident() {
                        list_entries = Some(attribute_list_entries_clone);
                        self.list_skip_info = Some((entry_instance, entry_ty));
                    }

                    let item = NtfsAttributeItem {
                        attribute_file: self.raw_iter.file,
                        attribute_value_file: Some(entry_file),
                        attribute_offset,
                        list_entries,
                    };
                    return Some(Ok(item));
                }
            }

            let attribute = self.raw_iter.next()?;
            if let Ok(NtfsAttributeType::AttributeList) = attribute.ty() {
                let attribute_list =
                    iter_try!(attribute.structured_value::<T, NtfsAttributeList>(fs));
                self.list_entries = Some(attribute_list.entries());
            } else {
                let item = NtfsAttributeItem {
                    attribute_file: self.raw_iter.file,
                    attribute_value_file: None,
                    attribute_offset: attribute.offset(),
                    list_entries: None,
                };
                return Some(Ok(item));
            }
        }
    }
}

/// Iterator over
///   all attributes of an [`NtfsFile`],
///   returning an [`NtfsAttributeItem`] for each entry,
///   implementing [`Iterator`] and [`FusedIterator`].
///
/// This iterator is returned from the [`NtfsAttributes::attach`] function.
/// Conceptually the same as [`NtfsAttributes`], but mutably borrows the filesystem
/// to implement aforementioned traits.
#[derive(Debug)]
pub struct NtfsAttributesAttached<'n, 'f, 'a, T: Read + Seek> {
    fs: &'a mut T,
    attributes: NtfsAttributes<'n, 'f>,
}

impl<'n, 'f, 'a, T> NtfsAttributesAttached<'n, 'f, 'a, T>
where
    T: Read + Seek,
{
    fn new(fs: &'a mut T, attributes: NtfsAttributes<'n, 'f>) -> Self {
        Self { fs, attributes }
    }

    /// Consumes this iterator and returns the inner [`NtfsAttributes`].
    pub fn detach(self) -> NtfsAttributes<'n, 'f> {
        self.attributes
    }
}

impl<'n, 'f, 'a, T> Iterator for NtfsAttributesAttached<'n, 'f, 'a, T>
where
    T: Read + Seek,
{
    type Item = Result<NtfsAttributeItem<'n, 'f>>;

    fn next(&mut self) -> Option<Self::Item> {
        self.attributes.next(self.fs)
    }
}

impl<'n, 'f, 'a, T> FusedIterator for NtfsAttributesAttached<'n, 'f, 'a, T> where T: Read + Seek {}

/// Item returned by the [`NtfsAttributes`] iterator.
///
/// [`NtfsAttributes`] provides a flattened view over the attributes by traversing Attribute Lists.
/// Attribute Lists may contain entries with references to other [`NtfsFile`]s.
/// Therefore, the attribute's information may either be stored in the original [`NtfsFile`] or in another
/// [`NtfsFile`] that has been read just for this attribute.
///
/// [`NtfsAttributeItem`] abstracts over both cases by providing a reference to the original [`NtfsFile`],
/// and optionally holding another [`NtfsFile`] if the attribute is actually stored there.
#[derive(Clone, Debug)]
pub struct NtfsAttributeItem<'n, 'f> {
    attribute_file: &'f NtfsFile<'n>,
    attribute_value_file: Option<NtfsFile<'n>>,
    attribute_offset: usize,
    list_entries: Option<NtfsAttributeListEntries<'n, 'f>>,
}

impl<'n, 'f> NtfsAttributeItem<'n, 'f> {
    /// Returns the actual [`NtfsAttribute`] structure for this NTFS Attribute.
    pub fn to_attribute<'i>(&'i self) -> NtfsAttribute<'n, 'i> {
        if let Some(file) = &self.attribute_value_file {
            NtfsAttribute::new(file, self.attribute_offset, self.list_entries.as_ref())
        } else {
            NtfsAttribute::new(
                self.attribute_file,
                self.attribute_offset,
                self.list_entries.as_ref(),
            )
        }
    }
}

/// Iterator over
///   all top-level attributes of an [`NtfsFile`],
///   returning an [`NtfsAttribute`] for each entry,
///   implementing [`Iterator`] and [`FusedIterator`].
///
/// This iterator is returned from the [`NtfsFile::attributes_raw`] function.
/// Contrary to [`NtfsAttributes`], it does not traverse $ATTRIBUTE_LIST attributes and returns them
/// as raw [`NtfsAttribute`]s.
/// Check that structure if you want an iterator providing a flattened "data-centric" view over
/// the attributes by traversing Attribute Lists automatically.
#[derive(Clone, Debug)]
pub struct NtfsAttributesRaw<'n, 'f> {
    file: &'f NtfsFile<'n>,
    items_range: Range<usize>,
}

impl<'n, 'f> NtfsAttributesRaw<'n, 'f> {
    pub(crate) fn new(file: &'f NtfsFile<'n>) -> Self {
        let start = file.first_attribute_offset() as usize;
        let end = file.data_size() as usize;
        let items_range = start..end;

        Self { file, items_range }
    }
}

impl<'n, 'f> Iterator for NtfsAttributesRaw<'n, 'f> {
    type Item = NtfsAttribute<'n, 'f>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.items_range.is_empty() {
            return None;
        }

        // This may be an entire attribute or just the 4-byte end marker.
        // Check if this marks the end of the attribute list.
        let ty = LittleEndian::read_u32(&self.file.record_data()[self.items_range.start..]);
        if ty == NtfsAttributeType::End as u32 {
            return None;
        }

        // It's a real attribute.
        let attribute = NtfsAttribute::new(self.file, self.items_range.start, None);
        self.items_range.start += attribute.attribute_length() as usize;

        Some(attribute)
    }
}

impl<'n, 'f> FusedIterator for NtfsAttributesRaw<'n, 'f> {}