Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/wolfpld/tracy.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBartosz Taudul <wolf@nereid.pl>2021-12-01 23:52:31 +0300
committerBartosz Taudul <wolf@nereid.pl>2021-12-01 23:52:31 +0300
commit6579399bfd7a30a23b3c9905ce3b64825bb7586c (patch)
tree5d2d4ecfd93340bab6c8e30006d94b57b0cc6d8d
parent1a0cf3ff46274a070ec64732b1ea01f8f68f8755 (diff)
Update xxHash to 0.8.1.
-rw-r--r--server/TracyCharUtil.hpp6
-rw-r--r--server/TracyVarArray.hpp6
-rw-r--r--server/tracy_xxh3.h2704
-rw-r--r--server/tracy_xxhash.h4796
4 files changed, 4154 insertions, 3358 deletions
diff --git a/server/TracyCharUtil.hpp b/server/TracyCharUtil.hpp
index e09db6d6..f96f9ec5 100644
--- a/server/TracyCharUtil.hpp
+++ b/server/TracyCharUtil.hpp
@@ -5,10 +5,8 @@
#include <stdint.h>
#include <string.h>
-#ifndef XXH_STATIC_LINKING_ONLY
-# define XXH_STATIC_LINKING_ONLY
-#endif
-#include "tracy_xxh3.h"
+#define XXH_INLINE_ALL
+#include "tracy_xxhash.h"
namespace tracy
{
diff --git a/server/TracyVarArray.hpp b/server/TracyVarArray.hpp
index fb0b6f20..2302a8cd 100644
--- a/server/TracyVarArray.hpp
+++ b/server/TracyVarArray.hpp
@@ -4,10 +4,8 @@
#include <stdint.h>
#include <string.h>
-#ifndef XXH_STATIC_LINKING_ONLY
-# define XXH_STATIC_LINKING_ONLY
-#endif
-#include "tracy_xxh3.h"
+#define XXH_INLINE_ALL
+#include "tracy_xxhash.h"
#include "../common/TracyForceInline.hpp"
#include "TracyCharUtil.hpp"
diff --git a/server/tracy_xxh3.h b/server/tracy_xxh3.h
deleted file mode 100644
index 790c8ed1..00000000
--- a/server/tracy_xxh3.h
+++ /dev/null
@@ -1,2704 +0,0 @@
-/*
- * xxHash - Extremely Fast Hash algorithm
- * Development source file for `xxh3`
- * Copyright (C) 2019-2020 Yann Collet
- *
- * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * You can contact the author at:
- * - xxHash homepage: https://www.xxhash.com
- * - xxHash source repository: https://github.com/Cyan4973/xxHash
- */
-
-/*
- * Note: This file is separated for development purposes.
- * It will be integrated into `xxhash.h` when development stage is completed.
- *
- * Credit: most of the work on vectorial and asm variants comes from @easyaspi314
- */
-
-#ifndef XXH3_H_1397135465
-#define XXH3_H_1397135465
-
-/* === Dependencies === */
-#ifndef XXHASH_H_5627135585666179
-/* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */
-# undef XXH_INLINE_ALL /* avoid redefinition */
-# define XXH_INLINE_ALL
-#endif
-#include "tracy_xxhash.h"
-
-
-/* === Compiler specifics === */
-
-#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
-# define XXH_RESTRICT restrict
-#else
-/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
-# define XXH_RESTRICT /* disable */
-#endif
-
-#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
- || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
- || defined(__clang__)
-# define XXH_likely(x) __builtin_expect(x, 1)
-# define XXH_unlikely(x) __builtin_expect(x, 0)
-#else
-# define XXH_likely(x) (x)
-# define XXH_unlikely(x) (x)
-#endif
-
-#if defined(__GNUC__)
-# if defined(__AVX2__)
-# include <immintrin.h>
-# elif defined(__SSE2__)
-# include <emmintrin.h>
-# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
-# define inline __inline__ /* clang bug */
-# include <arm_neon.h>
-# undef inline
-# endif
-#elif defined(_MSC_VER)
-# include <intrin.h>
-#endif
-
-/*
- * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
- * remaining a true 64-bit/128-bit hash function.
- *
- * This is done by prioritizing a subset of 64-bit operations that can be
- * emulated without too many steps on the average 32-bit machine.
- *
- * For example, these two lines seem similar, and run equally fast on 64-bit:
- *
- * xxh_u64 x;
- * x ^= (x >> 47); // good
- * x ^= (x >> 13); // bad
- *
- * However, to a 32-bit machine, there is a major difference.
- *
- * x ^= (x >> 47) looks like this:
- *
- * x.lo ^= (x.hi >> (47 - 32));
- *
- * while x ^= (x >> 13) looks like this:
- *
- * // note: funnel shifts are not usually cheap.
- * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
- * x.hi ^= (x.hi >> 13);
- *
- * The first one is significantly faster than the second, simply because the
- * shift is larger than 32. This means:
- * - All the bits we need are in the upper 32 bits, so we can ignore the lower
- * 32 bits in the shift.
- * - The shift result will always fit in the lower 32 bits, and therefore,
- * we can ignore the upper 32 bits in the xor.
- *
- * Thanks to this optimization, XXH3 only requires these features to be efficient:
- *
- * - Usable unaligned access
- * - A 32-bit or 64-bit ALU
- * - If 32-bit, a decent ADC instruction
- * - A 32 or 64-bit multiply with a 64-bit result
- * - For the 128-bit variant, a decent byteswap helps short inputs.
- *
- * The first two are already required by XXH32, and almost all 32-bit and 64-bit
- * platforms which can run XXH32 can run XXH3 efficiently.
- *
- * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
- * notable exception.
- *
- * First of all, Thumb-1 lacks support for the UMULL instruction which
- * performs the important long multiply. This means numerous __aeabi_lmul
- * calls.
- *
- * Second of all, the 8 functional registers are just not enough.
- * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
- * Lo registers, and this shuffling results in thousands more MOVs than A32.
- *
- * A32 and T32 don't have this limitation. They can access all 14 registers,
- * do a 32->64 multiply with UMULL, and the flexible operand allowing free
- * shifts is helpful, too.
- *
- * Therefore, we do a quick sanity check.
- *
- * If compiling Thumb-1 for a target which supports ARM instructions, we will
- * emit a warning, as it is not a "sane" platform to compile for.
- *
- * Usually, if this happens, it is because of an accident and you probably need
- * to specify -march, as you likely meant to compile for a newer architecture.
- */
-#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
-# warning "XXH3 is highly inefficient without ARM or Thumb-2."
-#endif
-
-/* ==========================================
- * Vectorization detection
- * ========================================== */
-#define XXH_SCALAR 0 /* Portable scalar version */
-#define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */
-#define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */
-#define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */
-#define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */
-#define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */
-
-#ifndef XXH_VECTOR /* can be defined on command line */
-# if defined(__AVX512F__)
-# define XXH_VECTOR XXH_AVX512
-# elif defined(__AVX2__)
-# define XXH_VECTOR XXH_AVX2
-# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
-# define XXH_VECTOR XXH_SSE2
-# elif defined(__GNUC__) /* msvc support maybe later */ \
- && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
- && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
- || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
-# define XXH_VECTOR XXH_NEON
-# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
- || (defined(__s390x__) && defined(__VEC__)) \
- && defined(__GNUC__) /* TODO: IBM XL */
-# define XXH_VECTOR XXH_VSX
-# else
-# define XXH_VECTOR XXH_SCALAR
-# endif
-#endif
-
-/*
- * Controls the alignment of the accumulator,
- * for compatibility with aligned vector loads, which are usually faster.
- */
-#ifndef XXH_ACC_ALIGN
-# if defined(XXH_X86DISPATCH)
-# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
-# elif XXH_VECTOR == XXH_SCALAR /* scalar */
-# define XXH_ACC_ALIGN 8
-# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
-# define XXH_ACC_ALIGN 16
-# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
-# define XXH_ACC_ALIGN 32
-# elif XXH_VECTOR == XXH_NEON /* neon */
-# define XXH_ACC_ALIGN 16
-# elif XXH_VECTOR == XXH_VSX /* vsx */
-# define XXH_ACC_ALIGN 16
-# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
-# define XXH_ACC_ALIGN 64
-# endif
-#endif
-
-#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
- || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
-# define XXH_SEC_ALIGN XXH_ACC_ALIGN
-#else
-# define XXH_SEC_ALIGN 8
-#endif
-
-/*
- * UGLY HACK:
- * GCC usually generates the best code with -O3 for xxHash.
- *
- * However, when targeting AVX2, it is overzealous in its unrolling resulting
- * in code roughly 3/4 the speed of Clang.
- *
- * There are other issues, such as GCC splitting _mm256_loadu_si256 into
- * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
- * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
- *
- * That is why when compiling the AVX2 version, it is recommended to use either
- * -O2 -mavx2 -march=haswell
- * or
- * -O2 -mavx2 -mno-avx256-split-unaligned-load
- * for decent performance, or to use Clang instead.
- *
- * Fortunately, we can control the first one with a pragma that forces GCC into
- * -O2, but the other one we can't control without "failed to inline always
- * inline function due to target mismatch" warnings.
- */
-#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
- && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
-# pragma GCC push_options
-# pragma GCC optimize("-O2")
-#endif
-
-
-#if XXH_VECTOR == XXH_NEON
-/*
- * NEON's setup for vmlal_u32 is a little more complicated than it is on
- * SSE2, AVX2, and VSX.
- *
- * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
- *
- * To do the same operation, the 128-bit 'Q' register needs to be split into
- * two 64-bit 'D' registers, performing this operation::
- *
- * [ a | b ]
- * | '---------. .--------' |
- * | x |
- * | .---------' '--------. |
- * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
- *
- * Due to significant changes in aarch64, the fastest method for aarch64 is
- * completely different than the fastest method for ARMv7-A.
- *
- * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
- * D11 will modify the high half of Q5. This is similar to how modifying AH
- * will only affect bits 8-15 of AX on x86.
- *
- * VZIP takes two registers, and puts even lanes in one register and odd lanes
- * in the other.
- *
- * On ARMv7-A, this strangely modifies both parameters in place instead of
- * taking the usual 3-operand form.
- *
- * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
- * lower and upper halves of the Q register to end up with the high and low
- * halves where we want - all in one instruction.
- *
- * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
- *
- * Unfortunately we need inline assembly for this: Instructions modifying two
- * registers at once is not possible in GCC or Clang's IR, and they have to
- * create a copy.
- *
- * aarch64 requires a different approach.
- *
- * In order to make it easier to write a decent compiler for aarch64, many
- * quirks were removed, such as conditional execution.
- *
- * NEON was also affected by this.
- *
- * aarch64 cannot access the high bits of a Q-form register, and writes to a
- * D-form register zero the high bits, similar to how writes to W-form scalar
- * registers (or DWORD registers on x86_64) work.
- *
- * The formerly free vget_high intrinsics now require a vext (with a few
- * exceptions)
- *
- * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
- * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
- * operand.
- *
- * The equivalent of the VZIP.32 on the lower and upper halves would be this
- * mess:
- *
- * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
- * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
- * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
- *
- * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
- *
- * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
- * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
- *
- * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
- */
-
-/*
- * Function-like macro:
- * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
- * {
- * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
- * outHi = (uint32x2_t)(in >> 32);
- * in = UNDEFINED;
- * }
- */
-# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
- && defined(__GNUC__) \
- && !defined(__aarch64__) && !defined(__arm64__)
-# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
- do { \
- /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
- /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
- /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
- __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
- (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
- (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
- } while (0)
-# else
-# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
- do { \
- (outLo) = vmovn_u64 (in); \
- (outHi) = vshrn_n_u64 ((in), 32); \
- } while (0)
-# endif
-#endif /* XXH_VECTOR == XXH_NEON */
-
-/*
- * VSX and Z Vector helpers.
- *
- * This is very messy, and any pull requests to clean this up are welcome.
- *
- * There are a lot of problems with supporting VSX and s390x, due to
- * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
- */
-#if XXH_VECTOR == XXH_VSX
-# if defined(__s390x__)
-# include <s390intrin.h>
-# else
-# include <altivec.h>
-# endif
-
-# undef vector /* Undo the pollution */
-
-typedef __vector unsigned long long xxh_u64x2;
-typedef __vector unsigned char xxh_u8x16;
-typedef __vector unsigned xxh_u32x4;
-
-# ifndef XXH_VSX_BE
-# if defined(__BIG_ENDIAN__) \
- || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
-# define XXH_VSX_BE 1
-# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
-# warning "-maltivec=be is not recommended. Please use native endianness."
-# define XXH_VSX_BE 1
-# else
-# define XXH_VSX_BE 0
-# endif
-# endif /* !defined(XXH_VSX_BE) */
-
-# if XXH_VSX_BE
-/* A wrapper for POWER9's vec_revb. */
-# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
-# define XXH_vec_revb vec_revb
-# else
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
-{
- xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
- 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
- return vec_perm(val, val, vByteSwap);
-}
-# endif
-# endif /* XXH_VSX_BE */
-
-/*
- * Performs an unaligned load and byte swaps it on big endian.
- */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
-{
- xxh_u64x2 ret;
- memcpy(&ret, ptr, sizeof(xxh_u64x2));
-# if XXH_VSX_BE
- ret = XXH_vec_revb(ret);
-# endif
- return ret;
-}
-
-/*
- * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
- *
- * These intrinsics weren't added until GCC 8, despite existing for a while,
- * and they are endian dependent. Also, their meaning swap depending on version.
- * */
-# if defined(__s390x__)
- /* s390x is always big endian, no issue on this platform */
-# define XXH_vec_mulo vec_mulo
-# define XXH_vec_mule vec_mule
-# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
-/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
-# define XXH_vec_mulo __builtin_altivec_vmulouw
-# define XXH_vec_mule __builtin_altivec_vmuleuw
-# else
-/* gcc needs inline assembly */
-/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
-{
- xxh_u64x2 result;
- __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
- return result;
-}
-XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
-{
- xxh_u64x2 result;
- __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
- return result;
-}
-# endif /* XXH_vec_mulo, XXH_vec_mule */
-#endif /* XXH_VECTOR == XXH_VSX */
-
-
-/* prefetch
- * can be disabled, by declaring XXH_NO_PREFETCH build macro */
-#if defined(XXH_NO_PREFETCH)
-# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
-#else
-# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
-# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
-# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
-# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
-# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
-# else
-# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
-# endif
-#endif /* XXH_NO_PREFETCH */
-
-
-/* ==========================================
- * XXH3 default settings
- * ========================================== */
-
-#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
-
-#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
-# error "default keyset is not large enough"
-#endif
-
-/* Pseudorandom secret taken directly from FARSH */
-XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
- 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
- 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
- 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
- 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
- 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
- 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
- 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
- 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
- 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
- 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
- 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
- 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
-};
-
-
-#ifdef XXH_OLD_NAMES
-# define kSecret XXH3_kSecret
-#endif
-
-/*
- * Calculates a 32-bit to 64-bit long multiply.
- *
- * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
- * need to (but it shouldn't need to anyways, it is about 7 instructions to do
- * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
- * use that instead of the normal method.
- *
- * If you are compiling for platforms like Thumb-1 and don't have a better option,
- * you may also want to write your own long multiply routine here.
- *
- * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
- * {
- * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
- * }
- */
-#if defined(_MSC_VER) && defined(_M_IX86)
-# include <intrin.h>
-# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
-#else
-/*
- * Downcast + upcast is usually better than masking on older compilers like
- * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
- *
- * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
- * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
- */
-# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
-#endif
-
-/*
- * Calculates a 64->128-bit long multiply.
- *
- * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
- */
-static XXH128_hash_t
-XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
-{
- /*
- * GCC/Clang __uint128_t method.
- *
- * On most 64-bit targets, GCC and Clang define a __uint128_t type.
- * This is usually the best way as it usually uses a native long 64-bit
- * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
- *
- * Usually.
- *
- * Despite being a 32-bit platform, Clang (and emscripten) define this type
- * despite not having the arithmetic for it. This results in a laggy
- * compiler builtin call which calculates a full 128-bit multiply.
- * In that case it is best to use the portable one.
- * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
- */
-#if defined(__GNUC__) && !defined(__wasm__) \
- && defined(__SIZEOF_INT128__) \
- || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
-
- __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
- XXH128_hash_t r128;
- r128.low64 = (xxh_u64)(product);
- r128.high64 = (xxh_u64)(product >> 64);
- return r128;
-
- /*
- * MSVC for x64's _umul128 method.
- *
- * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
- *
- * This compiles to single operand MUL on x64.
- */
-#elif defined(_M_X64) || defined(_M_IA64)
-
-#ifndef _MSC_VER
-# pragma intrinsic(_umul128)
-#endif
- xxh_u64 product_high;
- xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
- XXH128_hash_t r128;
- r128.low64 = product_low;
- r128.high64 = product_high;
- return r128;
-
-#else
- /*
- * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
- *
- * This is a fast and simple grade school multiply, which is shown below
- * with base 10 arithmetic instead of base 0x100000000.
- *
- * 9 3 // D2 lhs = 93
- * x 7 5 // D2 rhs = 75
- * ----------
- * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
- * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
- * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
- * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
- * ---------
- * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
- * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
- * ---------
- * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
- *
- * The reasons for adding the products like this are:
- * 1. It avoids manual carry tracking. Just like how
- * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
- * This avoids a lot of complexity.
- *
- * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
- * instruction available in ARM's Digital Signal Processing extension
- * in 32-bit ARMv6 and later, which is shown below:
- *
- * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
- * {
- * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
- * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
- * *RdHi = (xxh_u32)(product >> 32);
- * }
- *
- * This instruction was designed for efficient long multiplication, and
- * allows this to be calculated in only 4 instructions at speeds
- * comparable to some 64-bit ALUs.
- *
- * 3. It isn't terrible on other platforms. Usually this will be a couple
- * of 32-bit ADD/ADCs.
- */
-
- /* First calculate all of the cross products. */
- xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
- xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
- xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
- xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
-
- /* Now add the products together. These will never overflow. */
- xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
- xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
- xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
-
- XXH128_hash_t r128;
- r128.low64 = lower;
- r128.high64 = upper;
- return r128;
-#endif
-}
-
-/*
- * Does a 64-bit to 128-bit multiply, then XOR folds it.
- *
- * The reason for the separate function is to prevent passing too many structs
- * around by value. This will hopefully inline the multiply, but we don't force it.
- */
-static xxh_u64
-XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
-{
- XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
- return product.low64 ^ product.high64;
-}
-
-/* Seems to produce slightly better code on GCC for some reason. */
-XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
-{
- XXH_ASSERT(0 <= shift && shift < 64);
- return v64 ^ (v64 >> shift);
-}
-
-/*
- * This is a fast avalanche stage,
- * suitable when input bits are already partially mixed
- */
-static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
-{
- h64 = XXH_xorshift64(h64, 37);
- h64 *= 0x165667919E3779F9ULL;
- h64 = XXH_xorshift64(h64, 32);
- return h64;
-}
-
-/*
- * This is a stronger avalanche,
- * inspired by Pelle Evensen's rrmxmx
- * preferable when input has not been previously mixed
- */
-static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
-{
- /* this mix is inspired by Pelle Evensen's rrmxmx */
- h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
- h64 *= 0x9FB21C651E98DF25ULL;
- h64 ^= (h64 >> 35) + len ;
- h64 *= 0x9FB21C651E98DF25ULL;
- return XXH_xorshift64(h64, 28);
-}
-
-
-/* ==========================================
- * Short keys
- * ==========================================
- * One of the shortcomings of XXH32 and XXH64 was that their performance was
- * sub-optimal on short lengths. It used an iterative algorithm which strongly
- * favored lengths that were a multiple of 4 or 8.
- *
- * Instead of iterating over individual inputs, we use a set of single shot
- * functions which piece together a range of lengths and operate in constant time.
- *
- * Additionally, the number of multiplies has been significantly reduced. This
- * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
- *
- * Depending on the platform, this may or may not be faster than XXH32, but it
- * is almost guaranteed to be faster than XXH64.
- */
-
-/*
- * At very short lengths, there isn't enough input to fully hide secrets, or use
- * the entire secret.
- *
- * There is also only a limited amount of mixing we can do before significantly
- * impacting performance.
- *
- * Therefore, we use different sections of the secret and always mix two secret
- * samples with an XOR. This should have no effect on performance on the
- * seedless or withSeed variants because everything _should_ be constant folded
- * by modern compilers.
- *
- * The XOR mixing hides individual parts of the secret and increases entropy.
- *
- * This adds an extra layer of strength for custom secrets.
- */
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(1 <= len && len <= 3);
- XXH_ASSERT(secret != NULL);
- /*
- * len = 1: combined = { input[0], 0x01, input[0], input[0] }
- * len = 2: combined = { input[1], 0x02, input[0], input[1] }
- * len = 3: combined = { input[2], 0x03, input[0], input[1] }
- */
- { xxh_u8 const c1 = input[0];
- xxh_u8 const c2 = input[len >> 1];
- xxh_u8 const c3 = input[len - 1];
- xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
- | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
- xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
- xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
- return XXH64_avalanche(keyed);
- }
-}
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(4 <= len && len < 8);
- seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
- { xxh_u32 const input1 = XXH_readLE32(input);
- xxh_u32 const input2 = XXH_readLE32(input + len - 4);
- xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
- xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
- xxh_u64 const keyed = input64 ^ bitflip;
- return XXH3_rrmxmx(keyed, len);
- }
-}
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(8 <= len && len <= 16);
- { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
- xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
- xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
- xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
- xxh_u64 const acc = len
- + XXH_swap64(input_lo) + input_hi
- + XXH3_mul128_fold64(input_lo, input_hi);
- return XXH3_avalanche(acc);
- }
-}
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- XXH_ASSERT(len <= 16);
- { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
- if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
- if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
- return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
- }
-}
-
-/*
- * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
- * multiplication by zero, affecting hashes of lengths 17 to 240.
- *
- * However, they are very unlikely.
- *
- * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
- * unseeded non-cryptographic hashes, it does not attempt to defend itself
- * against specially crafted inputs, only random inputs.
- *
- * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
- * cancelling out the secret is taken an arbitrary number of times (addressed
- * in XXH3_accumulate_512), this collision is very unlikely with random inputs
- * and/or proper seeding:
- *
- * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
- * function that is only called up to 16 times per hash with up to 240 bytes of
- * input.
- *
- * This is not too bad for a non-cryptographic hash function, especially with
- * only 64 bit outputs.
- *
- * The 128-bit variant (which trades some speed for strength) is NOT affected
- * by this, although it is always a good idea to use a proper seed if you care
- * about strength.
- */
-XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
- const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
-{
-#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
- && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
- /*
- * UGLY HACK:
- * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
- * slower code.
- *
- * By forcing seed64 into a register, we disrupt the cost model and
- * cause it to scalarize. See `XXH32_round()`
- *
- * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
- * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
- * GCC 9.2, despite both emitting scalar code.
- *
- * GCC generates much better scalar code than Clang for the rest of XXH3,
- * which is why finding a more optimal codepath is an interest.
- */
- __asm__ ("" : "+r" (seed64));
-#endif
- { xxh_u64 const input_lo = XXH_readLE64(input);
- xxh_u64 const input_hi = XXH_readLE64(input+8);
- return XXH3_mul128_fold64(
- input_lo ^ (XXH_readLE64(secret) + seed64),
- input_hi ^ (XXH_readLE64(secret+8) - seed64)
- );
- }
-}
-
-/* For mid range keys, XXH3 uses a Mum-hash variant. */
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
- const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH64_hash_t seed)
-{
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
- XXH_ASSERT(16 < len && len <= 128);
-
- { xxh_u64 acc = len * XXH_PRIME64_1;
- if (len > 32) {
- if (len > 64) {
- if (len > 96) {
- acc += XXH3_mix16B(input+48, secret+96, seed);
- acc += XXH3_mix16B(input+len-64, secret+112, seed);
- }
- acc += XXH3_mix16B(input+32, secret+64, seed);
- acc += XXH3_mix16B(input+len-48, secret+80, seed);
- }
- acc += XXH3_mix16B(input+16, secret+32, seed);
- acc += XXH3_mix16B(input+len-32, secret+48, seed);
- }
- acc += XXH3_mix16B(input+0, secret+0, seed);
- acc += XXH3_mix16B(input+len-16, secret+16, seed);
-
- return XXH3_avalanche(acc);
- }
-}
-
-#define XXH3_MIDSIZE_MAX 240
-
-XXH_NO_INLINE XXH64_hash_t
-XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
- const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH64_hash_t seed)
-{
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
- XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
- #define XXH3_MIDSIZE_STARTOFFSET 3
- #define XXH3_MIDSIZE_LASTOFFSET 17
-
- { xxh_u64 acc = len * XXH_PRIME64_1;
- int const nbRounds = (int)len / 16;
- int i;
- for (i=0; i<8; i++) {
- acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
- }
- acc = XXH3_avalanche(acc);
- XXH_ASSERT(nbRounds >= 8);
-#if defined(__clang__) /* Clang */ \
- && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
- && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
- /*
- * UGLY HACK:
- * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
- * In everywhere else, it uses scalar code.
- *
- * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
- * would still be slower than UMAAL (see XXH_mult64to128).
- *
- * Unfortunately, Clang doesn't handle the long multiplies properly and
- * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
- * scalarized into an ugly mess of VMOV.32 instructions.
- *
- * This mess is difficult to avoid without turning autovectorization
- * off completely, but they are usually relatively minor and/or not
- * worth it to fix.
- *
- * This loop is the easiest to fix, as unlike XXH32, this pragma
- * _actually works_ because it is a loop vectorization instead of an
- * SLP vectorization.
- */
- #pragma clang loop vectorize(disable)
-#endif
- for (i=8 ; i < nbRounds; i++) {
- acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
- }
- /* last bytes */
- acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
- return XXH3_avalanche(acc);
- }
-}
-
-
-/* ======= Long Keys ======= */
-
-#define XXH_STRIPE_LEN 64
-#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
-#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
-
-#ifdef XXH_OLD_NAMES
-# define STRIPE_LEN XXH_STRIPE_LEN
-# define ACC_NB XXH_ACC_NB
-#endif
-
-XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
-{
- if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
- memcpy(dst, &v64, sizeof(v64));
-}
-
-/* Several intrinsic functions below are supposed to accept __int64 as argument,
- * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
- * However, several environments do not define __int64 type,
- * requiring a workaround.
- */
-#if !defined (__VMS) \
- && (defined (__cplusplus) \
- || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
- typedef int64_t xxh_i64;
-#else
- /* the following type must have a width of 64-bit */
- typedef long long xxh_i64;
-#endif
-
-/*
- * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
- *
- * It is a hardened version of UMAC, based off of FARSH's implementation.
- *
- * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
- * implementations, and it is ridiculously fast.
- *
- * We harden it by mixing the original input to the accumulators as well as the product.
- *
- * This means that in the (relatively likely) case of a multiply by zero, the
- * original input is preserved.
- *
- * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
- * cross-pollination, as otherwise the upper and lower halves would be
- * essentially independent.
- *
- * This doesn't matter on 64-bit hashes since they all get merged together in
- * the end, so we skip the extra step.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-
-#if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH)
-
-#ifndef XXH_TARGET_AVX512
-# define XXH_TARGET_AVX512 /* disable attribute target */
-#endif
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void
-XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
- const void* XXH_RESTRICT input,
- const void* XXH_RESTRICT secret)
-{
- XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc;
- XXH_ASSERT((((size_t)acc) & 63) == 0);
- XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
-
- {
- /* data_vec = input[0]; */
- __m512i const data_vec = _mm512_loadu_si512 (input);
- /* key_vec = secret[0]; */
- __m512i const key_vec = _mm512_loadu_si512 (secret);
- /* data_key = data_vec ^ key_vec; */
- __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
- /* data_key_lo = data_key >> 32; */
- __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
- /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
- __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
- /* xacc[0] += swap(data_vec); */
- __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
- __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
- /* xacc[0] += product; */
- *xacc = _mm512_add_epi64(product, sum);
- }
-}
-
-/*
- * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
- *
- * Multiplication isn't perfect, as explained by Google in HighwayHash:
- *
- * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
- * // varying degrees. In descending order of goodness, bytes
- * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
- * // As expected, the upper and lower bytes are much worse.
- *
- * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
- *
- * Since our algorithm uses a pseudorandom secret to add some variance into the
- * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
- *
- * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
- * extraction.
- *
- * Both XXH3_64bits and XXH3_128bits use this subroutine.
- */
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void
-XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
-{
- XXH_ASSERT((((size_t)acc) & 63) == 0);
- XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
- { XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc;
- const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
-
- /* xacc[0] ^= (xacc[0] >> 47) */
- __m512i const acc_vec = *xacc;
- __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
- __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
- /* xacc[0] ^= secret; */
- __m512i const key_vec = _mm512_loadu_si512 (secret);
- __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
-
- /* xacc[0] *= XXH_PRIME32_1; */
- __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
- __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
- __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
- *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
- }
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX512 void
-XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
-{
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
- XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
- XXH_ASSERT(((size_t)customSecret & 63) == 0);
- (void)(&XXH_writeLE64);
- { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
- __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
-
- XXH_ALIGN(64) const __m512i* const src = (const __m512i*) XXH3_kSecret;
- XXH_ALIGN(64) __m512i* const dest = ( __m512i*) customSecret;
- int i;
- for (i=0; i < nbRounds; ++i) {
- /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
- * this will warn "discards ‘const’ qualifier". */
- union {
- XXH_ALIGN(64) const __m512i* cp;
- XXH_ALIGN(64) void* p;
- } remote_const_void;
- remote_const_void.cp = src + i;
- dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
- } }
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH)
-
-#ifndef XXH_TARGET_AVX2
-# define XXH_TARGET_AVX2 /* disable attribute target */
-#endif
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void
-XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
- const void* XXH_RESTRICT input,
- const void* XXH_RESTRICT secret)
-{
- XXH_ASSERT((((size_t)acc) & 31) == 0);
- { XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
- const __m256i* const xinput = (const __m256i *) input;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
- const __m256i* const xsecret = (const __m256i *) secret;
-
- size_t i;
- for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
- /* data_vec = xinput[i]; */
- __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
- /* key_vec = xsecret[i]; */
- __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
- /* data_key = data_vec ^ key_vec; */
- __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
- /* data_key_lo = data_key >> 32; */
- __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
- /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
- __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
- /* xacc[i] += swap(data_vec); */
- __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
- __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
- /* xacc[i] += product; */
- xacc[i] = _mm256_add_epi64(product, sum);
- } }
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void
-XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
-{
- XXH_ASSERT((((size_t)acc) & 31) == 0);
- { XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
- const __m256i* const xsecret = (const __m256i *) secret;
- const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
-
- size_t i;
- for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
- /* xacc[i] ^= (xacc[i] >> 47) */
- __m256i const acc_vec = xacc[i];
- __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
- __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
- /* xacc[i] ^= xsecret; */
- __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
- __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
-
- /* xacc[i] *= XXH_PRIME32_1; */
- __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
- __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
- __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
- xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
- }
- }
-}
-
-XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
-{
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
- XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
- (void)(&XXH_writeLE64);
- XXH_PREFETCH(customSecret);
- { __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64);
-
- XXH_ALIGN(64) const __m256i* const src = (const __m256i*) XXH3_kSecret;
- XXH_ALIGN(64) __m256i* dest = ( __m256i*) customSecret;
-
-# if defined(__GNUC__) || defined(__clang__)
- /*
- * On GCC & Clang, marking 'dest' as modified will cause the compiler:
- * - do not extract the secret from sse registers in the internal loop
- * - use less common registers, and avoid pushing these reg into stack
- * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
- * customSecret, and on aarch64, this prevented LDP from merging two
- * loads together for free. Putting the loads together before the stores
- * properly generates LDP.
- */
- __asm__("" : "+r" (dest));
-# endif
-
- /* GCC -O2 need unroll loop manually */
- dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
- dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
- dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
- dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
- dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
- dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
- }
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
-
-#ifndef XXH_TARGET_SSE2
-# define XXH_TARGET_SSE2 /* disable attribute target */
-#endif
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void
-XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
- const void* XXH_RESTRICT input,
- const void* XXH_RESTRICT secret)
-{
- /* SSE2 is just a half-scale version of the AVX2 version. */
- XXH_ASSERT((((size_t)acc) & 15) == 0);
- { XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
- const __m128i* const xinput = (const __m128i *) input;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
- const __m128i* const xsecret = (const __m128i *) secret;
-
- size_t i;
- for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
- /* data_vec = xinput[i]; */
- __m128i const data_vec = _mm_loadu_si128 (xinput+i);
- /* key_vec = xsecret[i]; */
- __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
- /* data_key = data_vec ^ key_vec; */
- __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
- /* data_key_lo = data_key >> 32; */
- __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
- /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
- __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
- /* xacc[i] += swap(data_vec); */
- __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
- __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
- /* xacc[i] += product; */
- xacc[i] = _mm_add_epi64(product, sum);
- } }
-}
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void
-XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
-{
- XXH_ASSERT((((size_t)acc) & 15) == 0);
- { XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
- /* Unaligned. This is mainly for pointer arithmetic, and because
- * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
- const __m128i* const xsecret = (const __m128i *) secret;
- const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
-
- size_t i;
- for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
- /* xacc[i] ^= (xacc[i] >> 47) */
- __m128i const acc_vec = xacc[i];
- __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
- __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
- /* xacc[i] ^= xsecret[i]; */
- __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
- __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
-
- /* xacc[i] *= XXH_PRIME32_1; */
- __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
- __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
- __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
- xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
- }
- }
-}
-
-XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
-{
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
- (void)(&XXH_writeLE64);
- { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
-
-# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
- // MSVC 32bit mode does not support _mm_set_epi64x before 2015
- XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 };
- __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
-# else
- __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
-# endif
- int i;
-
- XXH_ALIGN(64) const float* const src = (float const*) XXH3_kSecret;
- XXH_ALIGN(XXH_SEC_ALIGN) __m128i* dest = (__m128i*) customSecret;
-# if defined(__GNUC__) || defined(__clang__)
- /*
- * On GCC & Clang, marking 'dest' as modified will cause the compiler:
- * - do not extract the secret from sse registers in the internal loop
- * - use less common registers, and avoid pushing these reg into stack
- */
- __asm__("" : "+r" (dest));
-# endif
-
- for (i=0; i < nbRounds; ++i) {
- dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed);
- } }
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_NEON)
-
-XXH_FORCE_INLINE void
-XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
- const void* XXH_RESTRICT input,
- const void* XXH_RESTRICT secret)
-{
- XXH_ASSERT((((size_t)acc) & 15) == 0);
- {
- XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
- /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
- uint8_t const* const xinput = (const uint8_t *) input;
- uint8_t const* const xsecret = (const uint8_t *) secret;
-
- size_t i;
- for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
- /* data_vec = xinput[i]; */
- uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
- /* key_vec = xsecret[i]; */
- uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
- uint64x2_t data_key;
- uint32x2_t data_key_lo, data_key_hi;
- /* xacc[i] += swap(data_vec); */
- uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
- uint64x2_t const swapped = vextq_u64(data64, data64, 1);
- xacc[i] = vaddq_u64 (xacc[i], swapped);
- /* data_key = data_vec ^ key_vec; */
- data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
- /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
- * data_key_hi = (uint32x2_t) (data_key >> 32);
- * data_key = UNDEFINED; */
- XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
- /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
- xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
-
- }
- }
-}
-
-XXH_FORCE_INLINE void
-XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
-{
- XXH_ASSERT((((size_t)acc) & 15) == 0);
-
- { uint64x2_t* xacc = (uint64x2_t*) acc;
- uint8_t const* xsecret = (uint8_t const*) secret;
- uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
-
- size_t i;
- for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
- /* xacc[i] ^= (xacc[i] >> 47); */
- uint64x2_t acc_vec = xacc[i];
- uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
- uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
-
- /* xacc[i] ^= xsecret[i]; */
- uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
- uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
-
- /* xacc[i] *= XXH_PRIME32_1 */
- uint32x2_t data_key_lo, data_key_hi;
- /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
- * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
- * xacc[i] = UNDEFINED; */
- XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
- { /*
- * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
- *
- * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
- * incorrectly "optimize" this:
- * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
- * shifted = vshll_n_u32(tmp, 32);
- * to this:
- * tmp = "vmulq_u64"(a, b); // no such thing!
- * shifted = vshlq_n_u64(tmp, 32);
- *
- * However, unlike SSE, Clang lacks a 64-bit multiply routine
- * for NEON, and it scalarizes two 64-bit multiplies instead.
- *
- * vmull_u32 has the same timing as vmul_u32, and it avoids
- * this bug completely.
- * See https://bugs.llvm.org/show_bug.cgi?id=39967
- */
- uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
- /* xacc[i] = prod_hi << 32; */
- xacc[i] = vshlq_n_u64(prod_hi, 32);
- /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
- xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
- }
- } }
-}
-
-#endif
-
-#if (XXH_VECTOR == XXH_VSX)
-
-XXH_FORCE_INLINE void
-XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
- const void* XXH_RESTRICT input,
- const void* XXH_RESTRICT secret)
-{
- xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */
- xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
- xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
- xxh_u64x2 const v32 = { 32, 32 };
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
- /* data_vec = xinput[i]; */
- xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
- /* key_vec = xsecret[i]; */
- xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
- xxh_u64x2 const data_key = data_vec ^ key_vec;
- /* shuffled = (data_key << 32) | (data_key >> 32); */
- xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
- /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
- xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
- xacc[i] += product;
-
- /* swap high and low halves */
-#ifdef __s390x__
- xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2);
-#else
- xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
-#endif
- xacc[i] += data_swapped;
- }
-}
-
-XXH_FORCE_INLINE void
-XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
-{
- XXH_ASSERT((((size_t)acc) & 15) == 0);
-
- { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
- const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
- /* constants */
- xxh_u64x2 const v32 = { 32, 32 };
- xxh_u64x2 const v47 = { 47, 47 };
- xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
- size_t i;
- for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
- /* xacc[i] ^= (xacc[i] >> 47); */
- xxh_u64x2 const acc_vec = xacc[i];
- xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
-
- /* xacc[i] ^= xsecret[i]; */
- xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
- xxh_u64x2 const data_key = data_vec ^ key_vec;
-
- /* xacc[i] *= XXH_PRIME32_1 */
- /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
- xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
- /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
- xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
- xacc[i] = prod_odd + (prod_even << v32);
- } }
-}
-
-#endif
-
-/* scalar variants - universal */
-
-XXH_FORCE_INLINE void
-XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
- const void* XXH_RESTRICT input,
- const void* XXH_RESTRICT secret)
-{
- XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
- const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
- const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
- size_t i;
- XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
- for (i=0; i < XXH_ACC_NB; i++) {
- xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
- xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
- xacc[i ^ 1] += data_val; /* swap adjacent lanes */
- xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
- }
-}
-
-XXH_FORCE_INLINE void
-XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
-{
- XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
- const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
- size_t i;
- XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
- for (i=0; i < XXH_ACC_NB; i++) {
- xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
- xxh_u64 acc64 = xacc[i];
- acc64 = XXH_xorshift64(acc64, 47);
- acc64 ^= key64;
- acc64 *= XXH_PRIME32_1;
- xacc[i] = acc64;
- }
-}
-
-XXH_FORCE_INLINE void
-XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
-{
- /*
- * We need a separate pointer for the hack below,
- * which requires a non-const pointer.
- * Any decent compiler will optimize this out otherwise.
- */
- const xxh_u8* kSecretPtr = XXH3_kSecret;
- XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
-
-#if defined(__clang__) && defined(__aarch64__)
- /*
- * UGLY HACK:
- * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
- * placed sequentially, in order, at the top of the unrolled loop.
- *
- * While MOVK is great for generating constants (2 cycles for a 64-bit
- * constant compared to 4 cycles for LDR), long MOVK chains stall the
- * integer pipelines:
- * I L S
- * MOVK
- * MOVK
- * MOVK
- * MOVK
- * ADD
- * SUB STR
- * STR
- * By forcing loads from memory (as the asm line causes Clang to assume
- * that XXH3_kSecretPtr has been changed), the pipelines are used more
- * efficiently:
- * I L S
- * LDR
- * ADD LDR
- * SUB STR
- * STR
- * XXH3_64bits_withSeed, len == 256, Snapdragon 835
- * without hack: 2654.4 MB/s
- * with hack: 3202.9 MB/s
- */
- __asm__("" : "+r" (kSecretPtr));
-#endif
- /*
- * Note: in debug mode, this overrides the asm optimization
- * and Clang will emit MOVK chains again.
- */
- XXH_ASSERT(kSecretPtr == XXH3_kSecret);
-
- { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
- int i;
- for (i=0; i < nbRounds; i++) {
- /*
- * The asm hack causes Clang to assume that kSecretPtr aliases with
- * customSecret, and on aarch64, this prevented LDP from merging two
- * loads together for free. Putting the loads together before the stores
- * properly generates LDP.
- */
- xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
- xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
- XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
- XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
- } }
-}
-
-
-typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
-typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
-typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
-
-
-#if (XXH_VECTOR == XXH_AVX512)
-
-#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
-#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
-#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
-
-#elif (XXH_VECTOR == XXH_AVX2)
-
-#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
-#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
-#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
-
-#elif (XXH_VECTOR == XXH_SSE2)
-
-#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
-#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
-#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
-
-#elif (XXH_VECTOR == XXH_NEON)
-
-#define XXH3_accumulate_512 XXH3_accumulate_512_neon
-#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
-#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#elif (XXH_VECTOR == XXH_VSX)
-
-#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
-#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
-#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#else /* scalar */
-
-#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
-#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
-#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
-
-#endif
-
-
-
-#ifndef XXH_PREFETCH_DIST
-# ifdef __clang__
-# define XXH_PREFETCH_DIST 320
-# else
-# if (XXH_VECTOR == XXH_AVX512)
-# define XXH_PREFETCH_DIST 512
-# else
-# define XXH_PREFETCH_DIST 384
-# endif
-# endif /* __clang__ */
-#endif /* XXH_PREFETCH_DIST */
-
-/*
- * XXH3_accumulate()
- * Loops over XXH3_accumulate_512().
- * Assumption: nbStripes will not overflow the secret size
- */
-XXH_FORCE_INLINE void
-XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
- const xxh_u8* XXH_RESTRICT input,
- const xxh_u8* XXH_RESTRICT secret,
- size_t nbStripes,
- XXH3_f_accumulate_512 f_acc512)
-{
- size_t n;
- for (n = 0; n < nbStripes; n++ ) {
- const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
- XXH_PREFETCH(in + XXH_PREFETCH_DIST);
- f_acc512(acc,
- in,
- secret + n*XXH_SECRET_CONSUME_RATE);
- }
-}
-
-XXH_FORCE_INLINE void
-XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
- const xxh_u8* XXH_RESTRICT input, size_t len,
- const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble)
-{
- size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
- size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
- size_t const nb_blocks = (len - 1) / block_len;
-
- size_t n;
-
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
-
- for (n = 0; n < nb_blocks; n++) {
- XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
- f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
- }
-
- /* last partial block */
- XXH_ASSERT(len > XXH_STRIPE_LEN);
- { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
- XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
- XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
-
- /* last stripe */
- { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
-#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
- f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
- } }
-}
-
-XXH_FORCE_INLINE xxh_u64
-XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
-{
- return XXH3_mul128_fold64(
- acc[0] ^ XXH_readLE64(secret),
- acc[1] ^ XXH_readLE64(secret+8) );
-}
-
-static XXH64_hash_t
-XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
-{
- xxh_u64 result64 = start;
- size_t i = 0;
-
- for (i = 0; i < 4; i++) {
- result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
-#if defined(__clang__) /* Clang */ \
- && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
- && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
- && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
- /*
- * UGLY HACK:
- * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
- * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
- * XXH3_64bits, len == 256, Snapdragon 835:
- * without hack: 2063.7 MB/s
- * with hack: 2560.7 MB/s
- */
- __asm__("" : "+r" (result64));
-#endif
- }
-
- return XXH3_avalanche(result64);
-}
-
-#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
- XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
- const void* XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble)
-{
- XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
-
- XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
-
- /* converge into final hash */
- XXH_STATIC_ASSERT(sizeof(acc) == 64);
- /* do not align on 8, so that the secret is different from the accumulator */
-#define XXH_SECRET_MERGEACCS_START 11
- XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
- return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH64_hash_t
-XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
- XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
-{
- (void)seed64;
- return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- * Since the function is not inlined, the compiler may not be able to understand that,
- * in some scenarios, its `secret` argument is actually a compile time constant.
- * This variant enforces that the compiler can detect that,
- * and uses this opportunity to streamline the generated code for better performance.
- */
-XXH_NO_INLINE XXH64_hash_t
-XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
- XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
-{
- (void)seed64; (void)secret; (void)secretLen;
- return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
-}
-
-/*
- * XXH3_hashLong_64b_withSeed():
- * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
- * and then use this key for long mode hashing.
- *
- * This operation is decently fast but nonetheless costs a little bit of time.
- * Try to avoid it whenever possible (typically when seed==0).
- *
- * It's important for performance that XXH3_hashLong is not inlined. Not sure
- * why (uop cache maybe?), but the difference is large and easily measurable.
- */
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
- XXH64_hash_t seed,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble,
- XXH3_f_initCustomSecret f_initSec)
-{
- if (seed == 0)
- return XXH3_hashLong_64b_internal(input, len,
- XXH3_kSecret, sizeof(XXH3_kSecret),
- f_acc512, f_scramble);
- { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
- f_initSec(secret, seed);
- return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
- f_acc512, f_scramble);
- }
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH64_hash_t
-XXH3_hashLong_64b_withSeed(const void* input, size_t len,
- XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
-{
- (void)secret; (void)secretLen;
- return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
- XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
-}
-
-
-typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
- XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
-
-XXH_FORCE_INLINE XXH64_hash_t
-XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
- XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
- XXH3_hashLong64_f f_hashLong)
-{
- XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
- /*
- * If an action is to be taken if `secretLen` condition is not respected,
- * it should be done here.
- * For now, it's a contract pre-condition.
- * Adding a check and a branch here would cost performance at every hash.
- * Also, note that function signature doesn't offer room to return an error.
- */
- if (len <= 16)
- return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
- if (len <= 128)
- return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
- if (len <= XXH3_MIDSIZE_MAX)
- return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
- return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
-}
-
-
-/* === Public entry point === */
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
-{
- return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
-}
-
-XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
-{
- return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
-}
-
-XXH_PUBLIC_API XXH64_hash_t
-XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
-{
- return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
-}
-
-
-/* === XXH3 streaming === */
-
-/*
- * Malloc's a pointer that is always aligned to align.
- *
- * This must be freed with `XXH_alignedFree()`.
- *
- * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
- * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
- * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
- *
- * This underalignment previously caused a rather obvious crash which went
- * completely unnoticed due to XXH3_createState() not actually being tested.
- * Credit to RedSpah for noticing this bug.
- *
- * The alignment is done manually: Functions like posix_memalign or _mm_malloc
- * are avoided: To maintain portability, we would have to write a fallback
- * like this anyways, and besides, testing for the existence of library
- * functions without relying on external build tools is impossible.
- *
- * The method is simple: Overallocate, manually align, and store the offset
- * to the original behind the returned pointer.
- *
- * Align must be a power of 2 and 8 <= align <= 128.
- */
-static void* XXH_alignedMalloc(size_t s, size_t align)
-{
- XXH_ASSERT(align <= 128 && align >= 8); /* range check */
- XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
- XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
- { /* Overallocate to make room for manual realignment and an offset byte */
- xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
- if (base != NULL) {
- /*
- * Get the offset needed to align this pointer.
- *
- * Even if the returned pointer is aligned, there will always be
- * at least one byte to store the offset to the original pointer.
- */
- size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
- /* Add the offset for the now-aligned pointer */
- xxh_u8* ptr = base + offset;
-
- XXH_ASSERT((size_t)ptr % align == 0);
-
- /* Store the offset immediately before the returned pointer. */
- ptr[-1] = (xxh_u8)offset;
- return ptr;
- }
- return NULL;
- }
-}
-/*
- * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
- * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
- */
-static void XXH_alignedFree(void* p)
-{
- if (p != NULL) {
- xxh_u8* ptr = (xxh_u8*)p;
- /* Get the offset byte we added in XXH_malloc. */
- xxh_u8 offset = ptr[-1];
- /* Free the original malloc'd pointer */
- xxh_u8* base = ptr - offset;
- XXH_free(base);
- }
-}
-XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
-{
- return (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
-}
-
-XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
-{
- XXH_alignedFree(statePtr);
- return XXH_OK;
-}
-
-XXH_PUBLIC_API void
-XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
-{
- memcpy(dst_state, src_state, sizeof(*dst_state));
-}
-
-static void
-XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
- XXH64_hash_t seed,
- const xxh_u8* secret, size_t secretSize)
-{
- XXH_ASSERT(statePtr != NULL);
- memset(statePtr, 0, sizeof(*statePtr));
- statePtr->acc[0] = XXH_PRIME32_3;
- statePtr->acc[1] = XXH_PRIME64_1;
- statePtr->acc[2] = XXH_PRIME64_2;
- statePtr->acc[3] = XXH_PRIME64_3;
- statePtr->acc[4] = XXH_PRIME64_4;
- statePtr->acc[5] = XXH_PRIME32_2;
- statePtr->acc[6] = XXH_PRIME64_5;
- statePtr->acc[7] = XXH_PRIME32_1;
- statePtr->seed = seed;
- XXH_ASSERT(secret != NULL);
- statePtr->extSecret = secret;
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
- statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
- statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset(XXH3_state_t* statePtr)
-{
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
-{
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
- if (secret == NULL) return XXH_ERROR;
- if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
-{
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_64bits_reset_internal(statePtr, seed, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
- XXH3_initCustomSecret(statePtr->customSecret, seed);
- statePtr->extSecret = NULL;
- return XXH_OK;
-}
-
-/* Note : when XXH3_consumeStripes() is invoked,
- * there must be a guarantee that at least one more byte must be consumed from input
- * so that the function can blindly consume all stripes using the "normal" secret segment */
-XXH_FORCE_INLINE void
-XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
- size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
- const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
- const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble)
-{
- XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
- XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
- if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
- /* need a scrambling operation */
- size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
- size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
- XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
- f_scramble(acc, secret + secretLimit);
- XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
- *nbStripesSoFarPtr = nbStripesAfterBlock;
- } else {
- XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
- *nbStripesSoFarPtr += nbStripes;
- }
-}
-
-/*
- * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
- */
-XXH_FORCE_INLINE XXH_errorcode
-XXH3_update(XXH3_state_t* state,
- const xxh_u8* input, size_t len,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble)
-{
- if (input==NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
- return XXH_OK;
-#else
- return XXH_ERROR;
-#endif
-
- { const xxh_u8* const bEnd = input + len;
- const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
-
- state->totalLen += len;
-
- if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
- XXH_memcpy(state->buffer + state->bufferedSize, input, len);
- state->bufferedSize += (XXH32_hash_t)len;
- return XXH_OK;
- }
- /* total input is now > XXH3_INTERNALBUFFER_SIZE */
-
- #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
- XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
-
- /*
- * Internal buffer is partially filled (always, except at beginning)
- * Complete it, then consume it.
- */
- if (state->bufferedSize) {
- size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
- XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
- input += loadSize;
- XXH3_consumeStripes(state->acc,
- &state->nbStripesSoFar, state->nbStripesPerBlock,
- state->buffer, XXH3_INTERNALBUFFER_STRIPES,
- secret, state->secretLimit,
- f_acc512, f_scramble);
- state->bufferedSize = 0;
- }
- XXH_ASSERT(input < bEnd);
-
- /* Consume input by a multiple of internal buffer size */
- if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) {
- const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
- do {
- XXH3_consumeStripes(state->acc,
- &state->nbStripesSoFar, state->nbStripesPerBlock,
- input, XXH3_INTERNALBUFFER_STRIPES,
- secret, state->secretLimit,
- f_acc512, f_scramble);
- input += XXH3_INTERNALBUFFER_SIZE;
- } while (input<limit);
- /* for last partial stripe */
- memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
- }
- XXH_ASSERT(input < bEnd);
-
- /* Some remaining input (always) : buffer it */
- XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
- state->bufferedSize = (XXH32_hash_t)(bEnd-input);
- }
-
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
-{
- return XXH3_update(state, (const xxh_u8*)input, len,
- XXH3_accumulate_512, XXH3_scrambleAcc);
-}
-
-
-XXH_FORCE_INLINE void
-XXH3_digest_long (XXH64_hash_t* acc,
- const XXH3_state_t* state,
- const unsigned char* secret)
-{
- /*
- * Digest on a local copy. This way, the state remains unaltered, and it can
- * continue ingesting more input afterwards.
- */
- memcpy(acc, state->acc, sizeof(state->acc));
- if (state->bufferedSize >= XXH_STRIPE_LEN) {
- size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
- size_t nbStripesSoFar = state->nbStripesSoFar;
- XXH3_consumeStripes(acc,
- &nbStripesSoFar, state->nbStripesPerBlock,
- state->buffer, nbStripes,
- secret, state->secretLimit,
- XXH3_accumulate_512, XXH3_scrambleAcc);
- /* last stripe */
- XXH3_accumulate_512(acc,
- state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
- secret + state->secretLimit - XXH_SECRET_LASTACC_START);
- } else { /* bufferedSize < XXH_STRIPE_LEN */
- xxh_u8 lastStripe[XXH_STRIPE_LEN];
- size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
- XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
- memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
- memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
- XXH3_accumulate_512(acc,
- lastStripe,
- secret + state->secretLimit - XXH_SECRET_LASTACC_START);
- }
-}
-
-XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
-{
- const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
- if (state->totalLen > XXH3_MIDSIZE_MAX) {
- XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
- XXH3_digest_long(acc, state, secret);
- return XXH3_mergeAccs(acc,
- secret + XXH_SECRET_MERGEACCS_START,
- (xxh_u64)state->totalLen * XXH_PRIME64_1);
- }
- /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
- if (state->seed)
- return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
- return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
- secret, state->secretLimit + XXH_STRIPE_LEN);
-}
-
-
-#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
-
-XXH_PUBLIC_API void
-XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize)
-{
- XXH_ASSERT(secretBuffer != NULL);
- if (customSeedSize == 0) {
- memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
- return;
- }
- XXH_ASSERT(customSeed != NULL);
-
- { size_t const segmentSize = sizeof(XXH128_hash_t);
- size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
- XXH128_canonical_t scrambler;
- XXH64_hash_t seeds[12];
- size_t segnb;
- XXH_ASSERT(nbSegments == 12);
- XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
- XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
-
- /*
- * Copy customSeed to seeds[], truncating or repeating as necessary.
- */
- { size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
- size_t filled = toFill;
- memcpy(seeds, customSeed, toFill);
- while (filled < sizeof(seeds)) {
- toFill = XXH_MIN(filled, sizeof(seeds) - filled);
- memcpy((char*)seeds + filled, seeds, toFill);
- filled += toFill;
- } }
-
- /* generate secret */
- memcpy(secretBuffer, &scrambler, sizeof(scrambler));
- for (segnb=1; segnb < nbSegments; segnb++) {
- size_t const segmentStart = segnb * segmentSize;
- XXH128_canonical_t segment;
- XXH128_canonicalFromHash(&segment,
- XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) );
- memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment));
- } }
-}
-
-
-/* ==========================================
- * XXH3 128 bits (a.k.a XXH128)
- * ==========================================
- * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
- * even without counting the significantly larger output size.
- *
- * For example, extra steps are taken to avoid the seed-dependent collisions
- * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
- *
- * This strength naturally comes at the cost of some speed, especially on short
- * lengths. Note that longer hashes are about as fast as the 64-bit version
- * due to it using only a slight modification of the 64-bit loop.
- *
- * XXH128 is also more oriented towards 64-bit machines. It is still extremely
- * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
- */
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- /* A doubled version of 1to3_64b with different constants. */
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(1 <= len && len <= 3);
- XXH_ASSERT(secret != NULL);
- /*
- * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
- * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
- * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
- */
- { xxh_u8 const c1 = input[0];
- xxh_u8 const c2 = input[len >> 1];
- xxh_u8 const c3 = input[len - 1];
- xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
- | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
- xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
- xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
- xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
- xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
- xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
- XXH128_hash_t h128;
- h128.low64 = XXH64_avalanche(keyed_lo);
- h128.high64 = XXH64_avalanche(keyed_hi);
- return h128;
- }
-}
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(4 <= len && len <= 8);
- seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
- { xxh_u32 const input_lo = XXH_readLE32(input);
- xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
- xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
- xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
- xxh_u64 const keyed = input_64 ^ bitflip;
-
- /* Shift len to the left to ensure it is even, this avoids even multiplies. */
- XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
-
- m128.high64 += (m128.low64 << 1);
- m128.low64 ^= (m128.high64 >> 3);
-
- m128.low64 = XXH_xorshift64(m128.low64, 35);
- m128.low64 *= 0x9FB21C651E98DF25ULL;
- m128.low64 = XXH_xorshift64(m128.low64, 28);
- m128.high64 = XXH3_avalanche(m128.high64);
- return m128;
- }
-}
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- XXH_ASSERT(input != NULL);
- XXH_ASSERT(secret != NULL);
- XXH_ASSERT(9 <= len && len <= 16);
- { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
- xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
- xxh_u64 const input_lo = XXH_readLE64(input);
- xxh_u64 input_hi = XXH_readLE64(input + len - 8);
- XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
- /*
- * Put len in the middle of m128 to ensure that the length gets mixed to
- * both the low and high bits in the 128x64 multiply below.
- */
- m128.low64 += (xxh_u64)(len - 1) << 54;
- input_hi ^= bitfliph;
- /*
- * Add the high 32 bits of input_hi to the high 32 bits of m128, then
- * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
- * the high 64 bits of m128.
- *
- * The best approach to this operation is different on 32-bit and 64-bit.
- */
- if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
- /*
- * 32-bit optimized version, which is more readable.
- *
- * On 32-bit, it removes an ADC and delays a dependency between the two
- * halves of m128.high64, but it generates an extra mask on 64-bit.
- */
- m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
- } else {
- /*
- * 64-bit optimized (albeit more confusing) version.
- *
- * Uses some properties of addition and multiplication to remove the mask:
- *
- * Let:
- * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
- * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
- * c = XXH_PRIME32_2
- *
- * a + (b * c)
- * Inverse Property: x + y - x == y
- * a + (b * (1 + c - 1))
- * Distributive Property: x * (y + z) == (x * y) + (x * z)
- * a + (b * 1) + (b * (c - 1))
- * Identity Property: x * 1 == x
- * a + b + (b * (c - 1))
- *
- * Substitute a, b, and c:
- * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
- *
- * Since input_hi.hi + input_hi.lo == input_hi, we get this:
- * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
- */
- m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
- }
- /* m128 ^= XXH_swap64(m128 >> 64); */
- m128.low64 ^= XXH_swap64(m128.high64);
-
- { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
- XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
- h128.high64 += m128.high64 * XXH_PRIME64_2;
-
- h128.low64 = XXH3_avalanche(h128.low64);
- h128.high64 = XXH3_avalanche(h128.high64);
- return h128;
- } }
-}
-
-/*
- * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
- */
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
-{
- XXH_ASSERT(len <= 16);
- { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
- if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
- if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
- { XXH128_hash_t h128;
- xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
- xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
- h128.low64 = XXH64_avalanche(seed ^ bitflipl);
- h128.high64 = XXH64_avalanche( seed ^ bitfliph);
- return h128;
- } }
-}
-
-/*
- * A bit slower than XXH3_mix16B, but handles multiply by zero better.
- */
-XXH_FORCE_INLINE XXH128_hash_t
-XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
- const xxh_u8* secret, XXH64_hash_t seed)
-{
- acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
- acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
- acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
- acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
- return acc;
-}
-
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
- const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH64_hash_t seed)
-{
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
- XXH_ASSERT(16 < len && len <= 128);
-
- { XXH128_hash_t acc;
- acc.low64 = len * XXH_PRIME64_1;
- acc.high64 = 0;
- if (len > 32) {
- if (len > 64) {
- if (len > 96) {
- acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
- }
- acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
- }
- acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
- }
- acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
- { XXH128_hash_t h128;
- h128.low64 = acc.low64 + acc.high64;
- h128.high64 = (acc.low64 * XXH_PRIME64_1)
- + (acc.high64 * XXH_PRIME64_4)
- + ((len - seed) * XXH_PRIME64_2);
- h128.low64 = XXH3_avalanche(h128.low64);
- h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
- return h128;
- }
- }
-}
-
-XXH_NO_INLINE XXH128_hash_t
-XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
- const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH64_hash_t seed)
-{
- XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
- XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
-
- { XXH128_hash_t acc;
- int const nbRounds = (int)len / 32;
- int i;
- acc.low64 = len * XXH_PRIME64_1;
- acc.high64 = 0;
- for (i=0; i<4; i++) {
- acc = XXH128_mix32B(acc,
- input + (32 * i),
- input + (32 * i) + 16,
- secret + (32 * i),
- seed);
- }
- acc.low64 = XXH3_avalanche(acc.low64);
- acc.high64 = XXH3_avalanche(acc.high64);
- XXH_ASSERT(nbRounds >= 4);
- for (i=4 ; i < nbRounds; i++) {
- acc = XXH128_mix32B(acc,
- input + (32 * i),
- input + (32 * i) + 16,
- secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
- seed);
- }
- /* last bytes */
- acc = XXH128_mix32B(acc,
- input + len - 16,
- input + len - 32,
- secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
- 0ULL - seed);
-
- { XXH128_hash_t h128;
- h128.low64 = acc.low64 + acc.high64;
- h128.high64 = (acc.low64 * XXH_PRIME64_1)
- + (acc.high64 * XXH_PRIME64_4)
- + ((len - seed) * XXH_PRIME64_2);
- h128.low64 = XXH3_avalanche(h128.low64);
- h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
- return h128;
- }
- }
-}
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
- const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble)
-{
- XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
-
- XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
-
- /* converge into final hash */
- XXH_STATIC_ASSERT(sizeof(acc) == 64);
- XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
- { XXH128_hash_t h128;
- h128.low64 = XXH3_mergeAccs(acc,
- secret + XXH_SECRET_MERGEACCS_START,
- (xxh_u64)len * XXH_PRIME64_1);
- h128.high64 = XXH3_mergeAccs(acc,
- secret + secretSize
- - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
- ~((xxh_u64)len * XXH_PRIME64_2));
- return h128;
- }
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t
-XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
- XXH64_hash_t seed64,
- const void* XXH_RESTRICT secret, size_t secretLen)
-{
- (void)seed64; (void)secret; (void)secretLen;
- return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
- XXH3_accumulate_512, XXH3_scrambleAcc);
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t
-XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
- XXH64_hash_t seed64,
- const void* XXH_RESTRICT secret, size_t secretLen)
-{
- (void)seed64;
- return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
- XXH3_accumulate_512, XXH3_scrambleAcc);
-}
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
- XXH64_hash_t seed64,
- XXH3_f_accumulate_512 f_acc512,
- XXH3_f_scrambleAcc f_scramble,
- XXH3_f_initCustomSecret f_initSec)
-{
- if (seed64 == 0)
- return XXH3_hashLong_128b_internal(input, len,
- XXH3_kSecret, sizeof(XXH3_kSecret),
- f_acc512, f_scramble);
- { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
- f_initSec(secret, seed64);
- return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
- f_acc512, f_scramble);
- }
-}
-
-/*
- * It's important for performance that XXH3_hashLong is not inlined.
- */
-XXH_NO_INLINE XXH128_hash_t
-XXH3_hashLong_128b_withSeed(const void* input, size_t len,
- XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
-{
- (void)secret; (void)secretLen;
- return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
- XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
-}
-
-typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
- XXH64_hash_t, const void* XXH_RESTRICT, size_t);
-
-XXH_FORCE_INLINE XXH128_hash_t
-XXH3_128bits_internal(const void* input, size_t len,
- XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
- XXH3_hashLong128_f f_hl128)
-{
- XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
- /*
- * If an action is to be taken if `secret` conditions are not respected,
- * it should be done here.
- * For now, it's a contract pre-condition.
- * Adding a check and a branch here would cost performance at every hash.
- */
- if (len <= 16)
- return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
- if (len <= 128)
- return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
- if (len <= XXH3_MIDSIZE_MAX)
- return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
- return f_hl128(input, len, seed64, secret, secretLen);
-}
-
-
-/* === Public XXH128 API === */
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
-{
- return XXH3_128bits_internal(input, len, 0,
- XXH3_kSecret, sizeof(XXH3_kSecret),
- XXH3_hashLong_128b_default);
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
-{
- return XXH3_128bits_internal(input, len, 0,
- (const xxh_u8*)secret, secretSize,
- XXH3_hashLong_128b_withSecret);
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
-{
- return XXH3_128bits_internal(input, len, seed,
- XXH3_kSecret, sizeof(XXH3_kSecret),
- XXH3_hashLong_128b_withSeed);
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH128(const void* input, size_t len, XXH64_hash_t seed)
-{
- return XXH3_128bits_withSeed(input, len, seed);
-}
-
-
-/* === XXH3 128-bit streaming === */
-
-/*
- * All the functions are actually the same as for 64-bit streaming variant.
- * The only difference is the finalizatiom routine.
- */
-
-static void
-XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
- XXH64_hash_t seed,
- const xxh_u8* secret, size_t secretSize)
-{
- XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset(XXH3_state_t* statePtr)
-{
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
-{
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
- if (secret == NULL) return XXH_ERROR;
- if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
-{
- if (statePtr == NULL) return XXH_ERROR;
- XXH3_128bits_reset_internal(statePtr, seed, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
- XXH3_initCustomSecret(statePtr->customSecret, seed);
- statePtr->extSecret = NULL;
- return XXH_OK;
-}
-
-XXH_PUBLIC_API XXH_errorcode
-XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
-{
- return XXH3_update(state, (const xxh_u8*)input, len,
- XXH3_accumulate_512, XXH3_scrambleAcc);
-}
-
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
-{
- const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
- if (state->totalLen > XXH3_MIDSIZE_MAX) {
- XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
- XXH3_digest_long(acc, state, secret);
- XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
- { XXH128_hash_t h128;
- h128.low64 = XXH3_mergeAccs(acc,
- secret + XXH_SECRET_MERGEACCS_START,
- (xxh_u64)state->totalLen * XXH_PRIME64_1);
- h128.high64 = XXH3_mergeAccs(acc,
- secret + state->secretLimit + XXH_STRIPE_LEN
- - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
- ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
- return h128;
- }
- }
- /* len <= XXH3_MIDSIZE_MAX : short code */
- if (state->seed)
- return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
- return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
- secret, state->secretLimit + XXH_STRIPE_LEN);
-}
-
-/* 128-bit utility functions */
-
-#include <string.h> /* memcmp, memcpy */
-
-/* return : 1 is equal, 0 if different */
-XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
-{
- /* note : XXH128_hash_t is compact, it has no padding byte */
- return !(memcmp(&h1, &h2, sizeof(h1)));
-}
-
-/* This prototype is compatible with stdlib's qsort().
- * return : >0 if *h128_1 > *h128_2
- * <0 if *h128_1 < *h128_2
- * =0 if *h128_1 == *h128_2 */
-XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
-{
- XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
- XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
- int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
- /* note : bets that, in most cases, hash values are different */
- if (hcmp) return hcmp;
- return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
-}
-
-
-/*====== Canonical representation ======*/
-XXH_PUBLIC_API void
-XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
-{
- XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
- if (XXH_CPU_LITTLE_ENDIAN) {
- hash.high64 = XXH_swap64(hash.high64);
- hash.low64 = XXH_swap64(hash.low64);
- }
- memcpy(dst, &hash.high64, sizeof(hash.high64));
- memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
-}
-
-XXH_PUBLIC_API XXH128_hash_t
-XXH128_hashFromCanonical(const XXH128_canonical_t* src)
-{
- XXH128_hash_t h;
- h.high64 = XXH_readBE64(src);
- h.low64 = XXH_readBE64(src->digest + 8);
- return h;
-}
-
-/* Pop our optimization override from above */
-#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
- && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
- && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
-# pragma GCC pop_options
-#endif
-
-#endif /* XXH3_H_1397135465 */
diff --git a/server/tracy_xxhash.h b/server/tracy_xxhash.h
index d8c32b5d..08ab7945 100644
--- a/server/tracy_xxhash.h
+++ b/server/tracy_xxhash.h
@@ -32,7 +32,12 @@
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
-
+/*!
+ * @mainpage xxHash
+ *
+ * @file xxhash.h
+ * xxHash prototypes and implementation
+ */
/* TODO: update */
/* Notice extracted from xxHash homepage:
@@ -44,7 +49,7 @@ Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo
Name Speed Q.Score Author
xxHash 5.4 GB/s 10
CrapWow 3.2 GB/s 2 Andrew
-MumurHash 3a 2.7 GB/s 10 Austin Appleby
+MurmurHash 3a 2.7 GB/s 10 Austin Appleby
SpookyHash 2.0 GB/s 10 Bob Jenkins
SBox 1.4 GB/s 9 Bret Mulvey
Lookup3 1.2 GB/s 9 Bob Jenkins
@@ -116,29 +121,80 @@ extern "C" {
/*
* This part deals with the special case where a unit wants to inline xxHash,
- * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
- * as part of some previously included *.h header file.
+ * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
+ * such as part of some previously included *.h header file.
* Without further action, the new include would just be ignored,
* and functions would effectively _not_ be inlined (silent failure).
* The following macros solve this situation by prefixing all inlined names,
* avoiding naming collision with previous inclusions.
*/
-# ifdef XXH_NAMESPACE
-# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
- /*
- * Note: Alternative: #undef all symbols (it's a pretty large list).
- * Without #error: it compiles, but functions are actually not inlined.
- */
-# endif
+ /* Before that, we unconditionally #undef all symbols,
+ * in case they were already defined with XXH_NAMESPACE.
+ * They will then be redefined for XXH_INLINE_ALL
+ */
+# undef XXH_versionNumber
+ /* XXH32 */
+# undef XXH32
+# undef XXH32_createState
+# undef XXH32_freeState
+# undef XXH32_reset
+# undef XXH32_update
+# undef XXH32_digest
+# undef XXH32_copyState
+# undef XXH32_canonicalFromHash
+# undef XXH32_hashFromCanonical
+ /* XXH64 */
+# undef XXH64
+# undef XXH64_createState
+# undef XXH64_freeState
+# undef XXH64_reset
+# undef XXH64_update
+# undef XXH64_digest
+# undef XXH64_copyState
+# undef XXH64_canonicalFromHash
+# undef XXH64_hashFromCanonical
+ /* XXH3_64bits */
+# undef XXH3_64bits
+# undef XXH3_64bits_withSecret
+# undef XXH3_64bits_withSeed
+# undef XXH3_64bits_withSecretandSeed
+# undef XXH3_createState
+# undef XXH3_freeState
+# undef XXH3_copyState
+# undef XXH3_64bits_reset
+# undef XXH3_64bits_reset_withSeed
+# undef XXH3_64bits_reset_withSecret
+# undef XXH3_64bits_update
+# undef XXH3_64bits_digest
+# undef XXH3_generateSecret
+ /* XXH3_128bits */
+# undef XXH128
+# undef XXH3_128bits
+# undef XXH3_128bits_withSeed
+# undef XXH3_128bits_withSecret
+# undef XXH3_128bits_reset
+# undef XXH3_128bits_reset_withSeed
+# undef XXH3_128bits_reset_withSecret
+# undef XXH3_128bits_reset_withSecretandSeed
+# undef XXH3_128bits_update
+# undef XXH3_128bits_digest
+# undef XXH128_isEqual
+# undef XXH128_cmp
+# undef XXH128_canonicalFromHash
+# undef XXH128_hashFromCanonical
+ /* Finally, free the namespace itself */
+# undef XXH_NAMESPACE
+
+ /* employ the namespace for XXH_INLINE_ALL */
# define XXH_NAMESPACE XXH_INLINE_
/*
- * Some identifiers (enums, type names) are not symbols, but they must
- * still be renamed to avoid redeclaration.
+ * Some identifiers (enums, type names) are not symbols,
+ * but they must nonetheless be renamed to avoid redeclaration.
* Alternative solution: do not redeclare them.
- * However, this requires some #ifdefs, and is a more dispersed action.
- * Meanwhile, renaming can be achieved in a single block
+ * However, this requires some #ifdefs, and has a more dispersed impact.
+ * Meanwhile, renaming can be achieved in a single place.
*/
-# define XXH_IPREF(Id) XXH_INLINE_ ## Id
+# define XXH_IPREF(Id) XXH_NAMESPACE ## Id
# define XXH_OK XXH_IPREF(XXH_OK)
# define XXH_ERROR XXH_IPREF(XXH_ERROR)
# define XXH_errorcode XXH_IPREF(XXH_errorcode)
@@ -165,6 +221,12 @@ extern "C" {
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1
+
+/*!
+ * @defgroup public Public API
+ * Contains details on the public xxHash functions.
+ * @{
+ */
/* specific declaration modes for Windows */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
@@ -178,8 +240,9 @@ extern "C" {
# endif
#endif
+#ifdef XXH_DOXYGEN
/*!
- * XXH_NAMESPACE, aka Namespace Emulation:
+ * @brief Emulate a namespace by transparently prefixing all symbols.
*
* If you want to include _and expose_ xxHash functions from within your own
* library, but also want to avoid symbol collisions with other libraries which
@@ -191,10 +254,15 @@ extern "C" {
* includes `xxhash.h`: Regular symbol names will be automatically translated
* by this header.
*/
+# define XXH_NAMESPACE /* YOUR NAME HERE */
+# undef XXH_NAMESPACE
+#endif
+
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
+/* XXH32 */
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
@@ -204,6 +272,7 @@ extern "C" {
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
+/* XXH64 */
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
@@ -213,6 +282,38 @@ extern "C" {
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
+/* XXH3_64bits */
+# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
+# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
+# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
+# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
+# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
+# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
+# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
+# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
+# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
+# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
+# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
+# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
+# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
+# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
+# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
+/* XXH3_128bits */
+# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
+# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
+# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
+# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
+# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
+# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
+# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
+# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
+# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
+# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
+# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
+# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
+# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
+# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
+# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
#endif
@@ -220,14 +321,23 @@ extern "C" {
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
-#define XXH_VERSION_MINOR 7
-#define XXH_VERSION_RELEASE 4
+#define XXH_VERSION_MINOR 8
+#define XXH_VERSION_RELEASE 1
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
+
+/*!
+ * @brief Obtains the xxHash version.
+ *
+ * This is mostly useful when xxHash is compiled as a shared library,
+ * since the returned value comes from the library, as opposed to header file.
+ *
+ * @return `XXH_VERSION_NUMBER` of the invoked library.
+ */
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
/* ****************************
-* Definitions
+* Common basic types
******************************/
#include <stddef.h> /* size_t */
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
@@ -236,11 +346,20 @@ typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
/*-**********************************************************************
* 32-bit hash
************************************************************************/
-#if !defined (__VMS) \
+#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
+/*!
+ * @brief An unsigned 32-bit integer.
+ *
+ * Not necessarily defined to `uint32_t` but functionally equivalent.
+ */
+typedef uint32_t XXH32_hash_t;
+
+#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
typedef uint32_t XXH32_hash_t;
+
#else
# include <limits.h>
# if UINT_MAX == 0xFFFFFFFFUL
@@ -255,22 +374,48 @@ typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
#endif
/*!
- * XXH32():
- * Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
- * The memory between input & input+length must be valid (allocated and read-accessible).
- * "seed" can be used to alter the result predictably.
- * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
+ * @}
+ *
+ * @defgroup xxh32_family XXH32 family
+ * @ingroup public
+ * Contains functions used in the classic 32-bit xxHash algorithm.
*
- * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
- * and offers true 64/128 bit hash results. It provides a superior level of
- * dispersion, and greatly reduces the risks of collisions.
+ * @note
+ * XXH32 is useful for older platforms, with no or poor 64-bit performance.
+ * Note that @ref xxh3_family provides competitive speed
+ * for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results.
+ *
+ * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
+ * @see @ref xxh32_impl for implementation details
+ * @{
*/
-XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
-/******* Streaming *******/
+/*!
+ * @brief Calculates the 32-bit hash of @p input using xxHash32.
+ *
+ * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
+ *
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed The 32-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 32-bit hash value.
+ *
+ * @see
+ * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
+ * Direct equivalents for the other variants of xxHash.
+ * @see
+ * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
+ */
+XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
-/*
- * Streaming functions generate the xxHash value from an incrememtal input.
+/*!
+ * Streaming functions generate the xxHash value from an incremental input.
* This method is slower than single-call functions, due to state management.
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
*
@@ -290,15 +435,117 @@ XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_
* digest, and generate new hash values later on by invoking `XXH*_digest()`.
*
* When done, release the state using `XXH*_freeState()`.
+ *
+ * Example code for incrementally hashing a file:
+ * @code{.c}
+ * #include <stdio.h>
+ * #include <xxhash.h>
+ * #define BUFFER_SIZE 256
+ *
+ * // Note: XXH64 and XXH3 use the same interface.
+ * XXH32_hash_t
+ * hashFile(FILE* stream)
+ * {
+ * XXH32_state_t* state;
+ * unsigned char buf[BUFFER_SIZE];
+ * size_t amt;
+ * XXH32_hash_t hash;
+ *
+ * state = XXH32_createState(); // Create a state
+ * assert(state != NULL); // Error check here
+ * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed
+ * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
+ * XXH32_update(state, buf, amt); // Hash the file in chunks
+ * }
+ * hash = XXH32_digest(state); // Finalize the hash
+ * XXH32_freeState(state); // Clean up
+ * return hash;
+ * }
+ * @endcode
+ */
+
+/*!
+ * @typedef struct XXH32_state_s XXH32_state_t
+ * @brief The opaque state struct for the XXH32 streaming API.
+ *
+ * @see XXH32_state_s for details.
*/
+typedef struct XXH32_state_s XXH32_state_t;
-typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
+/*!
+ * @brief Allocates an @ref XXH32_state_t.
+ *
+ * Must be freed with XXH32_freeState().
+ * @return An allocated XXH32_state_t on success, `NULL` on failure.
+ */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
+/*!
+ * @brief Frees an @ref XXH32_state_t.
+ *
+ * Must be allocated with XXH32_createState().
+ * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
+ * @return XXH_OK.
+ */
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
+/*!
+ * @brief Copies one @ref XXH32_state_t to another.
+ *
+ * @param dst_state The state to copy to.
+ * @param src_state The state to copy from.
+ * @pre
+ * @p dst_state and @p src_state must not be `NULL` and must not overlap.
+ */
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
+/*!
+ * @brief Resets an @ref XXH32_state_t to begin a new hash.
+ *
+ * This function resets and seeds a state. Call it before @ref XXH32_update().
+ *
+ * @param statePtr The state struct to reset.
+ * @param seed The 32-bit seed to alter the hash result predictably.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
+ */
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
+
+/*!
+ * @brief Consumes a block of @p input to an @ref XXH32_state_t.
+ *
+ * Call this to incrementally consume blocks of data.
+ *
+ * @param statePtr The state struct to update.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
+ */
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
+
+/*!
+ * @brief Returns the calculated hash value from an @ref XXH32_state_t.
+ *
+ * @note
+ * Calling XXH32_digest() will not affect @p statePtr, so you can update,
+ * digest, and update again.
+ *
+ * @param statePtr The state struct to calculate the hash from.
+ *
+ * @pre
+ * @p statePtr must not be `NULL`.
+ *
+ * @return The calculated xxHash32 value from that state.
+ */
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
/******* Canonical representation *******/
@@ -322,41 +569,151 @@ XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
* canonical format.
*/
-typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
+/*!
+ * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
+ */
+typedef struct {
+ unsigned char digest[4]; /*!< Hash bytes, big endian */
+} XXH32_canonical_t;
+
+/*!
+ * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
+ *
+ * @param dst The @ref XXH32_canonical_t pointer to be stored to.
+ * @param hash The @ref XXH32_hash_t to be converted.
+ *
+ * @pre
+ * @p dst must not be `NULL`.
+ */
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
+
+/*!
+ * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
+ *
+ * @param src The @ref XXH32_canonical_t to convert.
+ *
+ * @pre
+ * @p src must not be `NULL`.
+ *
+ * @return The converted hash.
+ */
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+#ifdef __has_attribute
+# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
+#else
+# define XXH_HAS_ATTRIBUTE(x) 0
+#endif
+
+/* C-language Attributes are added in C23. */
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
+# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
+#else
+# define XXH_HAS_C_ATTRIBUTE(x) 0
+#endif
+
+#if defined(__cplusplus) && defined(__has_cpp_attribute)
+# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
+#else
+# define XXH_HAS_CPP_ATTRIBUTE(x) 0
+#endif
+
+/*
+Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
+introduced in CPP17 and C23.
+CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
+C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
+*/
+#if XXH_HAS_C_ATTRIBUTE(x)
+# define XXH_FALLTHROUGH [[fallthrough]]
+#elif XXH_HAS_CPP_ATTRIBUTE(x)
+# define XXH_FALLTHROUGH [[fallthrough]]
+#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
+# define XXH_FALLTHROUGH __attribute__ ((fallthrough))
+#else
+# define XXH_FALLTHROUGH
+#endif
+
+/*!
+ * @}
+ * @ingroup public
+ * @{
+ */
+
#ifndef XXH_NO_LONG_LONG
/*-**********************************************************************
* 64-bit hash
************************************************************************/
-#if !defined (__VMS) \
+#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
+/*!
+ * @brief An unsigned 64-bit integer.
+ *
+ * Not necessarily defined to `uint64_t` but functionally equivalent.
+ */
+typedef uint64_t XXH64_hash_t;
+#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
-# include <stdint.h>
- typedef uint64_t XXH64_hash_t;
+# include <stdint.h>
+ typedef uint64_t XXH64_hash_t;
#else
- /* the following type must have a width of 64-bit */
- typedef unsigned long long XXH64_hash_t;
+# include <limits.h>
+# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
+ /* LP64 ABI says uint64_t is unsigned long */
+ typedef unsigned long XXH64_hash_t;
+# else
+ /* the following type must have a width of 64-bit */
+ typedef unsigned long long XXH64_hash_t;
+# endif
#endif
/*!
- * XXH64():
- * Returns the 64-bit hash of sequence of length @length stored at memory
- * address @input.
- * @seed can be used to alter the result predictably.
+ * @}
+ *
+ * @defgroup xxh64_family XXH64 family
+ * @ingroup public
+ * @{
+ * Contains functions used in the classic 64-bit xxHash algorithm.
+ *
+ * @note
+ * XXH3 provides competitive speed for both 32-bit and 64-bit systems,
+ * and offers true 64/128 bit hash results.
+ * It provides better speed for systems with vector processing capabilities.
+ */
+
+
+/*!
+ * @brief Calculates the 64-bit hash of @p input using xxHash64.
*
* This function usually runs faster on 64-bit systems, but slower on 32-bit
* systems (see benchmark).
*
- * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
- * and offers true 64/128 bit hash results. It provides a superior level of
- * dispersion, and greatly reduces the risks of collisions.
+ * @param input The block of data to be hashed, at least @p length bytes in size.
+ * @param length The length of @p input, in bytes.
+ * @param seed The 64-bit seed to alter the hash's output predictably.
+ *
+ * @pre
+ * The memory between @p input and @p input + @p length must be valid,
+ * readable, contiguous memory. However, if @p length is `0`, @p input may be
+ * `NULL`. In C++, this also must be *TriviallyCopyable*.
+ *
+ * @return The calculated 64-bit hash.
+ *
+ * @see
+ * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
+ * Direct equivalents for the other variants of xxHash.
+ * @see
+ * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
*/
-XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, XXH64_hash_t seed);
+XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
/******* Streaming *******/
+/*!
+ * @brief The opaque state struct for the XXH64 streaming API.
+ *
+ * @see XXH64_state_s for details.
+ */
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
@@ -371,64 +728,14 @@ typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
-
-#endif /* XXH_NO_LONG_LONG */
-
-#endif /* XXHASH_H_5627135585666179 */
-
-
-
-#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
-#define XXHASH_H_STATIC_13879238742
-/* ****************************************************************************
- * This section contains declarations which are not guaranteed to remain stable.
- * They may change in future versions, becoming incompatible with a different
- * version of the library.
- * These declarations should only be used with static linking.
- * Never use them in association with dynamic linking!
- ***************************************************************************** */
-
-/*
- * These definitions are only present to allow static allocation of an XXH
- * state, for example, on the stack or in a struct.
- * Never **ever** access members directly.
- */
-
-struct XXH32_state_s {
- XXH32_hash_t total_len_32;
- XXH32_hash_t large_len;
- XXH32_hash_t v1;
- XXH32_hash_t v2;
- XXH32_hash_t v3;
- XXH32_hash_t v4;
- XXH32_hash_t mem32[4];
- XXH32_hash_t memsize;
- XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */
-}; /* typedef'd to XXH32_state_t */
-
-
-#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
-
-struct XXH64_state_s {
- XXH64_hash_t total_len;
- XXH64_hash_t v1;
- XXH64_hash_t v2;
- XXH64_hash_t v3;
- XXH64_hash_t v4;
- XXH64_hash_t mem64[4];
- XXH32_hash_t memsize;
- XXH32_hash_t reserved32; /* required for padding anyway */
- XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */
-}; /* typedef'd to XXH64_state_t */
-
-
-/*-**********************************************************************
-* XXH3
-* New experimental hash
-************************************************************************/
-
-/* ************************************************************************
- * XXH3 is a new hash algorithm featuring:
+/*!
+ * @}
+ * ************************************************************************
+ * @defgroup xxh3_family XXH3 family
+ * @ingroup public
+ * @{
+ *
+ * XXH3 is a more recent hash algorithm featuring:
* - Improved speed for both small and large inputs
* - True 64-bit and 128-bit outputs
* - SIMD acceleration
@@ -438,63 +745,37 @@ struct XXH64_state_s {
*
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
*
- * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
- * faster on small ones compared to XXH64, though exact differences depend on
- * the platform.
+ * Compared to XXH64, expect XXH3 to run approximately
+ * ~2x faster on large inputs and >3x faster on small ones,
+ * exact differences vary depending on platform.
*
- * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
- * on all platforms.
- *
- * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
- *
- * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
- * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
- * explained in the implementation.
+ * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
+ * but does not require it.
+ * Any 32-bit and 64-bit targets that can run XXH32 smoothly
+ * can run XXH3 at competitive speeds, even without vector support.
+ * Further details are explained in the implementation.
*
* Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
- * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro.
+ * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
+ *
+ * XXH3 implementation is portable:
+ * it has a generic C90 formulation that can be compiled on any platform,
+ * all implementations generage exactly the same hash value on all platforms.
+ * Starting from v0.8.0, it's also labelled "stable", meaning that
+ * any future version will also generate the same hash value.
*
* XXH3 offers 2 variants, _64bits and _128bits.
- * When only 64 bits are needed, prefer calling the _64bits variant, as it
- * reduces the amount of mixing, resulting in faster speed on small inputs.
*
+ * When only 64 bits are needed, prefer invoking the _64bits variant, as it
+ * reduces the amount of mixing, resulting in faster speed on small inputs.
* It's also generally simpler to manipulate a scalar return type than a struct.
*
- * The 128-bit version adds additional strength, but it is slightly slower.
- *
- * The XXH3 algorithm is still in development.
- * The results it produces may still change in future versions.
- *
- * Results produced by v0.7.x are not comparable with results from v0.7.y.
- * However, the API is completely stable, and it can safely be used for
- * ephemeral data (local sessions).
- *
- * Avoid storing values in long-term storage until the algorithm is finalized.
- * XXH3's return values will be officially finalized upon reaching v0.8.0.
- *
- * After which, return values of XXH3 and XXH128 will no longer change in
- * future versions.
- *
* The API supports one-shot hashing, streaming mode, and custom secrets.
*/
-#ifdef XXH_NAMESPACE
-# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
-# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
-# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
-
-# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
-# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
-# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
-
-# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
-# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
-# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
-# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
-# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
-
-# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
-#endif
+/*-**********************************************************************
+* XXH3 64-bit variant
+************************************************************************/
/* XXH3_64bits():
* default 64-bit variant, using default secret and default seed of 0.
@@ -503,90 +784,64 @@ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
/*
* XXH3_64bits_withSeed():
- * This variant generates a custom secret on the fly based on the default
- * secret, altered using the `seed` value.
+ * This variant generates a custom secret on the fly
+ * based on default secret altered using the `seed` value.
* While this operation is decently fast, note that it's not completely free.
* Note: seed==0 produces the same results as XXH3_64bits().
*/
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
+/*!
+ * The bare minimum size for a custom secret.
+ *
+ * @see
+ * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
+ * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
+ */
+#define XXH3_SECRET_SIZE_MIN 136
+
/*
* XXH3_64bits_withSecret():
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
* This makes it more difficult for an external actor to prepare an intentional collision.
* The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
- * However, the quality of the hash highly depends on the secret's entropy.
- * Technically, the secret must look like a bunch of random bytes.
+ * However, the quality of the secret impacts the dispersion of the hash algorithm.
+ * Therefore, the secret _must_ look like a bunch of random bytes.
* Avoid "trivial" or structured data such as repeated sequences or a text document.
- * Whenever unsure about the "randonmess" of the blob of bytes,
- * consider relabelling it as a "custom seed" instead,
- * and employ "XXH3_generateSecret()" (see below)
- * to generate a high quality secret derived from this custom seed.
+ * Whenever in doubt about the "randomness" of the blob of bytes,
+ * consider employing "XXH3_generateSecret()" instead (see below).
+ * It will generate a proper high entropy secret derived from the blob of bytes.
+ * Another advantage of using XXH3_generateSecret() is that
+ * it guarantees that all bits within the initial blob of bytes
+ * will impact every bit of the output.
+ * This is not necessarily the case when using the blob of bytes directly
+ * because, when hashing _small_ inputs, only a portion of the secret is employed.
*/
-#define XXH3_SECRET_SIZE_MIN 136
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
-/* streaming 64-bit */
-
-#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
-# include <stdalign.h>
-# define XXH_ALIGN(n) alignas(n)
-#elif defined(__GNUC__)
-# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
-#elif defined(_MSC_VER)
-# define XXH_ALIGN(n) __declspec(align(n))
-#else
-# define XXH_ALIGN(n) /* disabled */
-#endif
-
-/* Old GCC versions only accept the attribute after the type in structures. */
-#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
- && defined(__GNUC__)
-# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
-#else
-# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
-#endif
-
-typedef struct XXH3_state_s XXH3_state_t;
-
-#define XXH3_INTERNALBUFFER_SIZE 256
-#define XXH3_SECRET_DEFAULT_SIZE 192
-struct XXH3_state_s {
- XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
- /* used to store a custom secret generated from a seed */
- XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
- XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
- XXH32_hash_t bufferedSize;
- XXH32_hash_t reserved32;
- size_t nbStripesPerBlock;
- size_t nbStripesSoFar;
- size_t secretLimit;
- XXH64_hash_t totalLen;
- XXH64_hash_t seed;
- XXH64_hash_t reserved64;
- const unsigned char* extSecret; /* reference to external secret;
- * if == NULL, use .customSecret instead */
- /* note: there may be some padding at the end due to alignment on 64 bytes */
-}; /* typedef'd to XXH3_state_t */
-
-#undef XXH_ALIGN_MEMBER
-
+/******* Streaming *******/
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
* As a consequence, streaming is slower than one-shot hashing.
- * For better performance, prefer one-shot functions whenever possible.
+ * For better performance, prefer one-shot functions whenever applicable.
*/
+
+/*!
+ * @brief The state struct for the XXH3 streaming API.
+ *
+ * @see XXH3_state_s for details.
+ */
+typedef struct XXH3_state_s XXH3_state_t;
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
-
/*
* XXH3_64bits_reset():
- * Initialize with the default parameters.
- * The result will be equivalent to `XXH3_64bits()`.
+ * Initialize with default parameters.
+ * digest will be equivalent to `XXH3_64bits()`.
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
/*
@@ -599,8 +854,8 @@ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr,
* XXH3_64bits_reset_withSecret():
* `secret` is referenced, it _must outlive_ the hash streaming session.
* Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
- * and the quality of the hash depends on secret's entropy,
- * meaning that the secret should look like a bunch of random bytes.
+ * and the quality of produced hash values depends on secret's entropy
+ * (secret's content should look like a bunch of random bytes).
* When in doubt about the randomness of a candidate `secret`,
* consider employing `XXH3_generateSecret()` instead (see below).
*/
@@ -609,37 +864,42 @@ XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
+/* note : canonical representation of XXH3 is the same as XXH64
+ * since they both produce XXH64_hash_t values */
-/* 128-bit */
-
-#ifdef XXH_NAMESPACE
-# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
-# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
-# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
-# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
-
-# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
-# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
-# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
-# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
-# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
-# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
-# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
-# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
-# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
-#endif
+/*-**********************************************************************
+* XXH3 128-bit variant
+************************************************************************/
+/*!
+ * @brief The return value from 128-bit hashes.
+ *
+ * Stored in little endian order, although the fields themselves are in native
+ * endianness.
+ */
typedef struct {
- XXH64_hash_t low64;
- XXH64_hash_t high64;
+ XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
+ XXH64_hash_t high64; /*!< `value >> 64` */
} XXH128_hash_t;
-XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
-XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); /* == XXH128() */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+/******* Streaming *******/
+/*
+ * Streaming requires state maintenance.
+ * This operation costs memory and CPU.
+ * As a consequence, streaming is slower than one-shot hashing.
+ * For better performance, prefer one-shot functions whenever applicable.
+ *
+ * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
+ * Use already declared XXH3_createState() and XXH3_freeState().
+ *
+ * All reset and streaming functions have same meaning as their 64-bit counterpart.
+ */
+
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
@@ -647,8 +907,9 @@ XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePt
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
-
-/* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
+/* Following helper functions make it possible to compare XXH128_hast_t values.
+ * Since XXH128_hash_t is a structure, this capability is not offered by the language.
+ * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
/*!
* XXH128_isEqual():
@@ -674,6 +935,190 @@ XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_has
XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
+#endif /* XXH_NO_LONG_LONG */
+
+/*!
+ * @}
+ */
+#endif /* XXHASH_H_5627135585666179 */
+
+
+
+#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
+#define XXHASH_H_STATIC_13879238742
+/* ****************************************************************************
+ * This section contains declarations which are not guaranteed to remain stable.
+ * They may change in future versions, becoming incompatible with a different
+ * version of the library.
+ * These declarations should only be used with static linking.
+ * Never use them in association with dynamic linking!
+ ***************************************************************************** */
+
+/*
+ * These definitions are only present to allow static allocation
+ * of XXH states, on stack or in a struct, for example.
+ * Never **ever** access their members directly.
+ */
+
+/*!
+ * @internal
+ * @brief Structure for XXH32 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
+ * an opaque type. This allows fields to safely be changed.
+ *
+ * Typedef'd to @ref XXH32_state_t.
+ * Do not access the members of this struct directly.
+ * @see XXH64_state_s, XXH3_state_s
+ */
+struct XXH32_state_s {
+ XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
+ XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
+ XXH32_hash_t v[4]; /*!< Accumulator lanes */
+ XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
+ XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
+ XXH32_hash_t reserved; /*!< Reserved field. Do not read or write to it, it may be removed. */
+}; /* typedef'd to XXH32_state_t */
+
+
+#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
+
+/*!
+ * @internal
+ * @brief Structure for XXH64 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
+ * an opaque type. This allows fields to safely be changed.
+ *
+ * Typedef'd to @ref XXH64_state_t.
+ * Do not access the members of this struct directly.
+ * @see XXH32_state_s, XXH3_state_s
+ */
+struct XXH64_state_s {
+ XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
+ XXH64_hash_t v[4]; /*!< Accumulator lanes */
+ XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
+ XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
+ XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
+ XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it, it may be removed. */
+}; /* typedef'd to XXH64_state_t */
+
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
+# include <stdalign.h>
+# define XXH_ALIGN(n) alignas(n)
+#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
+/* In C++ alignas() is a keyword */
+# define XXH_ALIGN(n) alignas(n)
+#elif defined(__GNUC__)
+# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
+#elif defined(_MSC_VER)
+# define XXH_ALIGN(n) __declspec(align(n))
+#else
+# define XXH_ALIGN(n) /* disabled */
+#endif
+
+/* Old GCC versions only accept the attribute after the type in structures. */
+#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
+ && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
+ && defined(__GNUC__)
+# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
+#else
+# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
+#endif
+
+/*!
+ * @brief The size of the internal XXH3 buffer.
+ *
+ * This is the optimal update size for incremental hashing.
+ *
+ * @see XXH3_64b_update(), XXH3_128b_update().
+ */
+#define XXH3_INTERNALBUFFER_SIZE 256
+
+/*!
+ * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
+ *
+ * This is the size used in @ref XXH3_kSecret and the seeded functions.
+ *
+ * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
+ */
+#define XXH3_SECRET_DEFAULT_SIZE 192
+
+/*!
+ * @internal
+ * @brief Structure for XXH3 streaming API.
+ *
+ * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
+ * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
+ * Otherwise it is an opaque type.
+ * Never use this definition in combination with dynamic library.
+ * This allows fields to safely be changed in the future.
+ *
+ * @note ** This structure has a strict alignment requirement of 64 bytes!! **
+ * Do not allocate this with `malloc()` or `new`,
+ * it will not be sufficiently aligned.
+ * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
+ *
+ * Typedef'd to @ref XXH3_state_t.
+ * Do never access the members of this struct directly.
+ *
+ * @see XXH3_INITSTATE() for stack initialization.
+ * @see XXH3_createState(), XXH3_freeState().
+ * @see XXH32_state_s, XXH64_state_s
+ */
+struct XXH3_state_s {
+ XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
+ /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
+ XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
+ /*!< Used to store a custom secret generated from a seed. */
+ XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
+ /*!< The internal buffer. @see XXH32_state_s::mem32 */
+ XXH32_hash_t bufferedSize;
+ /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
+ XXH32_hash_t useSeed;
+ /*!< Reserved field. Needed for padding on 64-bit. */
+ size_t nbStripesSoFar;
+ /*!< Number or stripes processed. */
+ XXH64_hash_t totalLen;
+ /*!< Total length hashed. 64-bit even on 32-bit targets. */
+ size_t nbStripesPerBlock;
+ /*!< Number of stripes per block. */
+ size_t secretLimit;
+ /*!< Size of @ref customSecret or @ref extSecret */
+ XXH64_hash_t seed;
+ /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
+ XXH64_hash_t reserved64;
+ /*!< Reserved field. */
+ const unsigned char* extSecret;
+ /*!< Reference to an external secret for the _withSecret variants, NULL
+ * for other variants. */
+ /* note: there may be some padding at the end due to alignment on 64 bytes */
+}; /* typedef'd to XXH3_state_t */
+
+#undef XXH_ALIGN_MEMBER
+
+/*!
+ * @brief Initializes a stack-allocated `XXH3_state_s`.
+ *
+ * When the @ref XXH3_state_t structure is merely emplaced on stack,
+ * it should be initialized with XXH3_INITSTATE() or a memset()
+ * in case its first reset uses XXH3_NNbits_reset_withSeed().
+ * This init can be omitted if the first reset uses default or _withSecret mode.
+ * This operation isn't necessary when the state is created with XXH3_createState().
+ * Note that this doesn't prepare the state for a streaming operation,
+ * it's still necessary to use XXH3_NNbits_reset*() afterwards.
+ */
+#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
+
+
+/* XXH128() :
+ * simple alias to pre-selected XXH3_128bits variant
+ */
+XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
+
+
/* === Experimental API === */
/* Symbols defined below must be considered tied to a specific library version. */
@@ -686,32 +1131,92 @@ XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t*
* as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
*
* The function accepts as input a custom seed of any length and any content,
- * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
- * into an already allocated buffer secretBuffer.
- * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
+ * and derives from it a high-entropy secret of length @secretSize
+ * into an already allocated buffer @secretBuffer.
+ * @secretSize must be >= XXH3_SECRET_SIZE_MIN
*
* The generated secret can then be used with any `*_withSecret()` variant.
* Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
* `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
* are part of this list. They all accept a `secret` parameter
- * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
+ * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
* _and_ feature very high entropy (consist of random-looking bytes).
* These conditions can be a high bar to meet, so
- * this function can be used to generate a secret of proper quality.
+ * XXH3_generateSecret() can be employed to ensure proper quality.
*
* customSeed can be anything. It can have any size, even small ones,
- * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes.
- * The resulting `secret` will nonetheless provide all expected qualities.
+ * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes.
+ * The resulting `secret` will nonetheless provide all required qualities.
*
- * Supplying NULL as the customSeed copies the default secret into `secretBuffer`.
* When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
*/
-XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize);
+XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize);
-#endif /* XXH_NO_LONG_LONG */
+/*
+ * XXH3_generateSecret_fromSeed():
+ *
+ * Generate the same secret as the _withSeed() variants.
+ *
+ * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily).
+ * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes.
+ *
+ * The generated secret can be used in combination with
+ *`*_withSecret()` and `_withSecretandSeed()` variants.
+ * This generator is notably useful in combination with `_withSecretandSeed()`,
+ * as a way to emulate a faster `_withSeed()` variant.
+ */
+XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed);
+
+/*
+ * *_withSecretandSeed() :
+ * These variants generate hash values using either
+ * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
+ * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX).
+ *
+ * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
+ * `_withSeed()` has to generate the secret on the fly for "large" keys.
+ * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
+ * `_withSecret()` has to generate the masks on the fly for "small" keys,
+ * which requires more instructions than _withSeed() variants.
+ * Therefore, _withSecretandSeed variant combines the best of both worlds.
+ *
+ * When @secret has been generated by XXH3_generateSecret_fromSeed(),
+ * this variant produces *exactly* the same results as `_withSeed()` variant,
+ * hence offering only a pure speed benefit on "large" input,
+ * by skipping the need to regenerate the secret for every large input.
+ *
+ * Another usage scenario is to hash the secret to a 64-bit hash value,
+ * for example with XXH3_64bits(), which then becomes the seed,
+ * and then employ both the seed and the secret in _withSecretandSeed().
+ * On top of speed, an added benefit is that each bit in the secret
+ * has a 50% chance to swap each bit in the output,
+ * via its impact to the seed.
+ * This is not guaranteed when using the secret directly in "small data" scenarios,
+ * because only portions of the secret are employed for small data.
+ */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecretandSeed(const void* data, size_t len,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed);
+
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecretandSeed(const void* data, size_t len,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed64);
+
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed64);
+
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
+ const void* secret, size_t secretSize,
+ XXH64_hash_t seed64);
+#endif /* XXH_NO_LONG_LONG */
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
# define XXH_IMPLEMENTATION
#endif
@@ -727,17 +1232,23 @@ XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSe
/*-**********************************************************************
* xxHash implementation
*-**********************************************************************
- * xxHash's implementation used to be found in xxhash.c.
+ * xxHash's implementation used to be hosted inside xxhash.c.
*
- * However, code inlining requires the implementation to be visible to the
- * compiler, usually within the header.
+ * However, inlining requires implementation to be visible to the compiler,
+ * hence be included alongside the header.
+ * Previously, implementation was hosted inside xxhash.c,
+ * which was then #included when inlining was activated.
+ * This construction created issues with a few build and install systems,
+ * as it required xxhash.c to be stored in /include directory.
*
- * As a workaround, xxhash.c used to be included within xxhash.h. This caused
- * some issues with some build systems, especially ones which treat .c files
- * as source files.
+ * xxHash implementation is now directly integrated within xxhash.h.
+ * As a consequence, xxhash.c is no longer needed in /include.
*
- * Therefore, the implementation is now directly integrated within xxhash.h.
- * Another small advantage is that xxhash.c is no longer needed in /include.
+ * xxhash.c is still available and is still useful.
+ * In a "normal" setup, when xxhash is not inlined,
+ * xxhash.h only exposes the prototypes and public symbols,
+ * while xxhash.c can be built into an object file xxhash.o
+ * which can then be linked into the final binary.
************************************************************************/
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
@@ -747,68 +1258,91 @@ XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSe
/* *************************************
* Tuning parameters
***************************************/
+
+/*!
+ * @defgroup tuning Tuning parameters
+ * @{
+ *
+ * Various macros to control xxHash's behavior.
+ */
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Define this to disable 64-bit code.
+ *
+ * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
+ */
+# define XXH_NO_LONG_LONG
+# undef XXH_NO_LONG_LONG /* don't actually */
/*!
- * XXH_FORCE_MEMORY_ACCESS:
+ * @brief Controls how unaligned memory is accessed.
+ *
* By default, access to unaligned memory is controlled by `memcpy()`, which is
* safe and portable.
*
* Unfortunately, on some target/compiler combinations, the generated assembly
* is sub-optimal.
*
- * The below switch allow to select a different access method for improved
- * performance.
- * Method 0 (default):
- * Use `memcpy()`. Safe and portable.
- * Method 1:
- * `__attribute__((packed))` statement. It depends on compiler extensions
- * and is therefore not portable.
- * This method is safe if your compiler supports it, and *generally* as
- * fast or faster than `memcpy`.
- * Method 2:
- * Direct access via cast. This method doesn't depend on the compiler but
- * violates the C standard.
- * It can generate buggy code on targets which do not support unaligned
- * memory accesses.
- * But in some circumstances, it's the only known way to get the most
- * performance (ie GCC + ARMv6)
- * Method 3:
- * Byteshift. This can generate the best code on old compilers which don't
+ * The below switch allow selection of a different access method
+ * in the search for improved performance.
+ *
+ * @par Possible options:
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
+ * @par
+ * Use `memcpy()`. Safe and portable. Note that most modern compilers will
+ * eliminate the function call and treat it as an unaligned access.
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
+ * @par
+ * Depends on compiler extensions and is therefore not portable.
+ * This method is safe _if_ your compiler supports it,
+ * and *generally* as fast or faster than `memcpy`.
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
+ * @par
+ * Casts directly and dereferences. This method doesn't depend on the
+ * compiler, but it violates the C standard as it directly dereferences an
+ * unaligned pointer. It can generate buggy code on targets which do not
+ * support unaligned memory accesses, but in some circumstances, it's the
+ * only known way to get the most performance.
+ *
+ * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
+ * @par
+ * Also portable. This can generate the best code on old compilers which don't
* inline small `memcpy()` calls, and it might also be faster on big-endian
- * systems which lack a native byteswap instruction.
- * See https://stackoverflow.com/a/32095106/646947 for details.
- * Prefer these methods in priority order (0 > 1 > 2 > 3)
- */
-#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
-# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
-# define XXH_FORCE_MEMORY_ACCESS 2
-# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
- (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
-# define XXH_FORCE_MEMORY_ACCESS 1
-# endif
-#endif
-
-/*!
- * XXH_ACCEPT_NULL_INPUT_POINTER:
- * If the input pointer is NULL, xxHash's default behavior is to dereference it,
- * triggering a segfault.
- * When this macro is enabled, xxHash actively checks the input for a null pointer.
- * If it is, the result for null input pointers is the same as a zero-length input.
+ * systems which lack a native byteswap instruction. However, some compilers
+ * will emit literal byteshifts even if the target supports unaligned access.
+ * .
+ *
+ * @warning
+ * Methods 1 and 2 rely on implementation-defined behavior. Use these with
+ * care, as what works on one compiler/platform/optimization level may cause
+ * another to read garbage data or even crash.
+ *
+ * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
+ *
+ * Prefer these methods in priority order (0 > 3 > 1 > 2)
*/
-#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
-# define XXH_ACCEPT_NULL_INPUT_POINTER 0
-#endif
+# define XXH_FORCE_MEMORY_ACCESS 0
/*!
- * XXH_FORCE_ALIGN_CHECK:
- * This is an important performance trick
- * for architectures without decent unaligned memory access performance.
- * It checks for input alignment, and when conditions are met,
- * uses a "fast path" employing direct 32-bit/64-bit read,
- * resulting in _dramatically faster_ read speed.
+ * @def XXH_FORCE_ALIGN_CHECK
+ * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
+ * and XXH64() only).
*
- * The check costs one initial branch per hash, which is generally negligible, but not zero.
- * Moreover, it's not useful to generate binary for an additional code path
- * if memory access uses same instruction for both aligned and unaligned adresses.
+ * This is an important performance trick for architectures without decent
+ * unaligned memory access performance.
+ *
+ * It checks for input alignment, and when conditions are met, uses a "fast
+ * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
+ * faster_ read speed.
+ *
+ * The check costs one initial branch per hash, which is generally negligible,
+ * but not zero.
+ *
+ * Moreover, it's not useful to generate an additional code path if memory
+ * access uses the same instruction for both aligned and unaligned
+ * addresses (e.g. x86 and aarch64).
*
* In these cases, the alignment check can be removed by setting this macro to 0.
* Then the code will always use unaligned memory access.
@@ -817,17 +1351,11 @@ XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSe
*
* This option does not affect XXH3 (only XXH32 and XXH64).
*/
-#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
-# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
- || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
-# define XXH_FORCE_ALIGN_CHECK 0
-# else
-# define XXH_FORCE_ALIGN_CHECK 1
-# endif
-#endif
+# define XXH_FORCE_ALIGN_CHECK 0
/*!
- * XXH_NO_INLINE_HINTS:
+ * @def XXH_NO_INLINE_HINTS
+ * @brief When non-zero, sets all functions to `static`.
*
* By default, xxHash tries to force the compiler to inline almost all internal
* functions.
@@ -845,6 +1373,63 @@ XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSe
* When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
* -fno-inline with GCC or Clang, this will automatically be defined.
*/
+# define XXH_NO_INLINE_HINTS 0
+
+/*!
+ * @def XXH32_ENDJMP
+ * @brief Whether to use a jump for `XXH32_finalize`.
+ *
+ * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
+ * This is generally preferable for performance,
+ * but depending on exact architecture, a jmp may be preferable.
+ *
+ * This setting is only possibly making a difference for very small inputs.
+ */
+# define XXH32_ENDJMP 0
+
+/*!
+ * @internal
+ * @brief Redefines old internal names.
+ *
+ * For compatibility with code that uses xxHash's internals before the names
+ * were changed to improve namespacing. There is no other reason to use this.
+ */
+# define XXH_OLD_NAMES
+# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
+#endif /* XXH_DOXYGEN */
+/*!
+ * @}
+ */
+
+#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+ /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */
+# if !defined(__clang__) && \
+( \
+ (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
+ ( \
+ defined(__GNUC__) && ( \
+ (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \
+ ( \
+ defined(__mips__) && \
+ (__mips <= 5 || __mips_isa_rev < 6) && \
+ (!defined(__mips16) || defined(__mips_mips16e2)) \
+ ) \
+ ) \
+ ) \
+)
+# define XXH_FORCE_MEMORY_ACCESS 1
+# endif
+#endif
+
+#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
+# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
+ || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
+# define XXH_FORCE_ALIGN_CHECK 0
+# else
+# define XXH_FORCE_ALIGN_CHECK 1
+# endif
+#endif
+
#ifndef XXH_NO_INLINE_HINTS
# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
|| defined(__NO_INLINE__) /* -O0, -fno-inline */
@@ -854,36 +1439,44 @@ XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSe
# endif
#endif
+#ifndef XXH32_ENDJMP
+/* generally preferable for performance */
+# define XXH32_ENDJMP 0
+#endif
+
/*!
- * XXH_REROLL:
- * Whether to reroll XXH32_finalize, and XXH64_finalize,
- * instead of using an unrolled jump table/if statement loop.
- *
- * This is automatically defined on -Os/-Oz on GCC and Clang.
+ * @defgroup impl Implementation
+ * @{
*/
-#ifndef XXH_REROLL
-# if defined(__OPTIMIZE_SIZE__)
-# define XXH_REROLL 1
-# else
-# define XXH_REROLL 0
-# endif
-#endif
/* *************************************
* Includes & Memory related functions
***************************************/
-/*!
- * Modify the local functions below should you wish to use some other memory
- * routines for malloc() and free()
+/*
+ * Modify the local functions below should you wish to use
+ * different memory routines for malloc() and free()
*/
#include <stdlib.h>
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than malloc().
+ */
static void* XXH_malloc(size_t s) { return malloc(s); }
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than free().
+ */
static void XXH_free(void* p) { free(p); }
-/*! and for memcpy() */
#include <string.h>
+
+/*!
+ * @internal
+ * @brief Modify this function to use a different routine than memcpy().
+ */
static void* XXH_memcpy(void* dest, const void* src, size_t size)
{
return memcpy(dest,src,size);
@@ -900,19 +1493,19 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size)
#endif
#if XXH_NO_INLINE_HINTS /* disable inlining hints */
-# if defined(__GNUC__)
+# if defined(__GNUC__) || defined(__clang__)
# define XXH_FORCE_INLINE static __attribute__((unused))
# else
# define XXH_FORCE_INLINE static
# endif
# define XXH_NO_INLINE static
/* enable inlining hints */
+#elif defined(__GNUC__) || defined(__clang__)
+# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
+# define XXH_NO_INLINE static __attribute__((noinline))
#elif defined(_MSC_VER) /* Visual Studio */
# define XXH_FORCE_INLINE static __forceinline
# define XXH_NO_INLINE static __declspec(noinline)
-#elif defined(__GNUC__)
-# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
-# define XXH_NO_INLINE static __attribute__((noinline))
#elif defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
# define XXH_FORCE_INLINE static inline
@@ -927,7 +1520,11 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size)
/* *************************************
* Debug
***************************************/
-/*
+/*!
+ * @ingroup tuning
+ * @def XXH_DEBUGLEVEL
+ * @brief Sets the debugging level.
+ *
* XXH_DEBUGLEVEL is expected to be defined externally, typically via the
* compiler's command line options. The value must be a number.
*/
@@ -947,8 +1544,39 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size)
#endif
/* note: use after variable declarations */
-#define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
+#ifndef XXH_STATIC_ASSERT
+# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
+# include <assert.h>
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
+# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
+# else
+# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
+# endif
+# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
+#endif
+/*!
+ * @internal
+ * @def XXH_COMPILER_GUARD(var)
+ * @brief Used to prevent unwanted optimizations for @p var.
+ *
+ * It uses an empty GCC inline assembly statement with a register constraint
+ * which forces @p var into a general purpose register (eg eax, ebx, ecx
+ * on x86) and marks it as modified.
+ *
+ * This is used in a few places to avoid unwanted autovectorization (e.g.
+ * XXH32_round()). All vectorization we want is explicit via intrinsics,
+ * and _usually_ isn't wanted elsewhere.
+ *
+ * We also use it to prevent unwanted constant folding for AArch64 in
+ * XXH3_initCustomSecret_scalar().
+ */
+#if defined(__GNUC__) || defined(__clang__)
+# define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
+#else
+# define XXH_COMPILER_GUARD(var) ((void)0)
+#endif
/* *************************************
* Basic Types
@@ -971,6 +1599,56 @@ typedef XXH32_hash_t xxh_u32;
/* *** Memory access *** */
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_read32(const void* ptr)
+ * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit native endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readLE32(const void* ptr)
+ * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readBE32(const void* ptr)
+ * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ *
+ * @param ptr The pointer to read from.
+ * @return The 32-bit big endian integer from the bytes at @p ptr.
+ */
+
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
+ * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
+ *
+ * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
+ * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
+ * always @ref XXH_alignment::XXH_unaligned.
+ *
+ * @param ptr The pointer to read from.
+ * @param align Whether @p ptr is aligned.
+ * @pre
+ * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
+ * aligned.
+ * @return The 32-bit little endian integer from the bytes at @p ptr.
+ */
+
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
* Manual byteshift. Best for old compilers which don't inline memcpy.
@@ -1005,28 +1683,35 @@ static xxh_u32 XXH_read32(const void* ptr)
/*
* Portable and safe solution. Generally efficient.
- * see: https://stackoverflow.com/a/32095106/646947
+ * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
*/
static xxh_u32 XXH_read32(const void* memPtr)
{
xxh_u32 val;
- memcpy(&val, memPtr, sizeof(val));
+ XXH_memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
-/* *** Endianess *** */
-typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
+/* *** Endianness *** */
/*!
- * XXH_CPU_LITTLE_ENDIAN:
+ * @ingroup tuning
+ * @def XXH_CPU_LITTLE_ENDIAN
+ * @brief Whether the target is little endian.
+ *
* Defined to 1 if the target is little endian, or 0 if it is big endian.
* It can be defined externally, for example on the compiler command line.
*
- * If it is not defined, a runtime check (which is usually constant folded)
- * is used instead.
+ * If it is not defined,
+ * a runtime check (which is usually constant folded) is used instead.
+ *
+ * @note
+ * This is not necessarily defined to an integer constant.
+ *
+ * @see XXH_isLittleEndian() for the runtime check.
*/
#ifndef XXH_CPU_LITTLE_ENDIAN
/*
@@ -1041,8 +1726,11 @@ typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
# define XXH_CPU_LITTLE_ENDIAN 0
# else
-/*
- * runtime test, presumed to simplify to a constant by compiler
+/*!
+ * @internal
+ * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
+ *
+ * Most compilers will constant fold this.
*/
static int XXH_isLittleEndian(void)
{
@@ -1071,6 +1759,19 @@ static int XXH_isLittleEndian(void)
# define XXH_HAS_BUILTIN(x) 0
#endif
+/*!
+ * @internal
+ * @def XXH_rotl32(x,r)
+ * @brief 32-bit rotate left.
+ *
+ * @param x The 32-bit integer to be rotated.
+ * @param r The number of bits to rotate.
+ * @pre
+ * @p r > 0 && @p r < 32
+ * @note
+ * @p x and @p r may be evaluated multiple times.
+ * @return The rotated result.
+ */
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
&& XXH_HAS_BUILTIN(__builtin_rotateleft64)
# define XXH_rotl32 __builtin_rotateleft32
@@ -1084,6 +1785,14 @@ static int XXH_isLittleEndian(void)
# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
#endif
+/*!
+ * @internal
+ * @fn xxh_u32 XXH_swap32(xxh_u32 x)
+ * @brief A 32-bit byteswap.
+ *
+ * @param x The 32-bit integer to byteswap.
+ * @return @p x, byteswapped.
+ */
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap32 _byteswap_ulong
#elif XXH_GCC_VERSION >= 403
@@ -1102,7 +1811,15 @@ static xxh_u32 XXH_swap32 (xxh_u32 x)
/* ***************************
* Memory reads
*****************************/
-typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
+
+/*!
+ * @internal
+ * @brief Enum to indicate whether a pointer is aligned.
+ */
+typedef enum {
+ XXH_aligned, /*!< Aligned */
+ XXH_unaligned /*!< Possibly unaligned */
+} XXH_alignment;
/*
* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
@@ -1155,17 +1872,25 @@ XXH_readLE32_align(const void* ptr, XXH_alignment align)
/* *************************************
* Misc
***************************************/
+/*! @ingroup public */
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
/* *******************************************************************
* 32-bit hash functions
*********************************************************************/
-static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */
-static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */
-static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */
-static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */
-static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */
+/*!
+ * @}
+ * @defgroup xxh32_impl XXH32 implementation
+ * @ingroup impl
+ * @{
+ */
+ /* #define instead of static const, to be used as initializers */
+#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */
+#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */
+#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */
+#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */
+#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */
#ifdef XXH_OLD_NAMES
# define PRIME32_1 XXH_PRIME32_1
@@ -1175,18 +1900,28 @@ static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011
# define PRIME32_5 XXH_PRIME32_5
#endif
+/*!
+ * @internal
+ * @brief Normal stripe processing routine.
+ *
+ * This shuffles the bits so that any bit from @p input impacts several bits in
+ * @p acc.
+ *
+ * @param acc The accumulator lane.
+ * @param input The stripe of input to mix.
+ * @return The mixed accumulator lane.
+ */
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
{
acc += input * XXH_PRIME32_2;
acc = XXH_rotl32(acc, 13);
acc *= XXH_PRIME32_1;
-#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
+#if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
/*
* UGLY HACK:
- * This inline assembly hack forces acc into a normal register. This is the
- * only thing that prevents GCC and Clang from autovectorizing the XXH32
- * loop (pragmas and attributes don't work for some resason) without globally
- * disabling SSE4.1.
+ * A compiler fence is the only thing that prevents GCC and Clang from
+ * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
+ * reason) without globally disabling SSE4.1.
*
* The reason we want to avoid vectorization is because despite working on
* 4 integers at a time, there are multiple factors slowing XXH32 down on
@@ -1211,27 +1946,25 @@ static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
* can load data, while v3 can multiply. SSE forces them to operate
* together.
*
- * How this hack works:
- * __asm__("" // Declare an assembly block but don't declare any instructions
- * : // However, as an Input/Output Operand,
- * "+r" // constrain a read/write operand (+) as a general purpose register (r).
- * (acc) // and set acc as the operand
- * );
- *
- * Because of the 'r', the compiler has promised that seed will be in a
- * general purpose register and the '+' says that it will be 'read/write',
- * so it has to assume it has changed. It is like volatile without all the
- * loads and stores.
- *
- * Since the argument has to be in a normal register (not an SSE register),
- * each time XXH32_round is called, it is impossible to vectorize.
+ * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
+ * and it is pointless writing a NEON implementation that is basically the
+ * same speed as scalar for XXH32.
*/
- __asm__("" : "+r" (acc));
+ XXH_COMPILER_GUARD(acc);
#endif
return acc;
}
-/* mix all bits */
+/*!
+ * @internal
+ * @brief Mixes all bits to finalize the hash.
+ *
+ * The final mix ensures that all input bits have a chance to impact any bit in
+ * the output digest, resulting in an unbiased distribution.
+ *
+ * @param h32 The hash to avalanche.
+ * @return The avalanched hash.
+ */
static xxh_u32 XXH32_avalanche(xxh_u32 h32)
{
h32 ^= h32 >> 15;
@@ -1244,6 +1977,20 @@ static xxh_u32 XXH32_avalanche(xxh_u32 h32)
#define XXH_get32bits(p) XXH_readLE32_align(p, align)
+/*!
+ * @internal
+ * @brief Processes the last 0-15 bytes of @p ptr.
+ *
+ * There may be up to 15 bytes remaining to consume from the input.
+ * This final stage will digest them to ensure that all input bytes are present
+ * in the final mix.
+ *
+ * @param h32 The hash to finalize.
+ * @param ptr The pointer to the remaining input.
+ * @param len The remaining length, modulo 16.
+ * @param align Whether @p ptr is aligned.
+ * @return The finalized hash.
+ */
static xxh_u32
XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
@@ -1258,8 +2005,10 @@ XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
} while (0)
- /* Compact rerolled version */
- if (XXH_REROLL) {
+ if (ptr==NULL) XXH_ASSERT(len == 0);
+
+ /* Compact rerolled version; generally faster */
+ if (!XXH32_ENDJMP) {
len &= 15;
while (len >= 4) {
XXH_PROCESS4;
@@ -1273,41 +2022,41 @@ XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
} else {
switch(len&15) /* or switch(bEnd - p) */ {
case 12: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 8: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 4: XXH_PROCESS4;
return XXH32_avalanche(h32);
case 13: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 9: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 5: XXH_PROCESS4;
XXH_PROCESS1;
return XXH32_avalanche(h32);
case 14: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 10: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 6: XXH_PROCESS4;
XXH_PROCESS1;
XXH_PROCESS1;
return XXH32_avalanche(h32);
case 15: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 11: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 7: XXH_PROCESS4;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 3: XXH_PROCESS1;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 2: XXH_PROCESS1;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 1: XXH_PROCESS1;
- /* fallthrough */
+ XXH_FALLTHROUGH;
case 0: return XXH32_avalanche(h32);
}
XXH_ASSERT(0);
@@ -1323,20 +2072,23 @@ XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
# undef XXH_PROCESS4
#endif
+/*!
+ * @internal
+ * @brief The implementation for @ref XXH32().
+ *
+ * @param input , len , seed Directly passed from @ref XXH32().
+ * @param align Whether @p input is aligned.
+ * @return The calculated hash.
+ */
XXH_FORCE_INLINE xxh_u32
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
{
- const xxh_u8* bEnd = input + len;
xxh_u32 h32;
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
- if (input==NULL) {
- len=0;
- bEnd=input=(const xxh_u8*)(size_t)16;
- }
-#endif
+ if (input==NULL) XXH_ASSERT(len == 0);
if (len>=16) {
+ const xxh_u8* const bEnd = input + len;
const xxh_u8* const limit = bEnd - 15;
xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
xxh_u32 v2 = seed + XXH_PRIME32_2;
@@ -1361,7 +2113,7 @@ XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment
return XXH32_finalize(h32, input, len&15, align);
}
-
+/*! @ingroup xxh32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
{
#if 0
@@ -1370,9 +2122,7 @@ XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t s
XXH32_reset(&state, seed);
XXH32_update(&state, (const xxh_u8*)input, len);
return XXH32_digest(&state);
-
#else
-
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
@@ -1385,45 +2135,49 @@ XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t s
/******* Hash streaming *******/
-
+/*!
+ * @ingroup xxh32_family
+ */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
+/*! @ingroup xxh32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
+/*! @ingroup xxh32_family */
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
{
- memcpy(dstState, srcState, sizeof(*dstState));
+ XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
+/*! @ingroup xxh32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
{
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state));
- state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
- state.v2 = seed + XXH_PRIME32_2;
- state.v3 = seed + 0;
- state.v4 = seed - XXH_PRIME32_1;
+ state.v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
+ state.v[1] = seed + XXH_PRIME32_2;
+ state.v[2] = seed + 0;
+ state.v[3] = seed - XXH_PRIME32_1;
/* do not write into reserved, planned to be removed in a future version */
- memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
+ XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
return XXH_OK;
}
+/*! @ingroup xxh32_family */
XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
{
- if (input==NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
+ if (input==NULL) {
+ XXH_ASSERT(len == 0);
return XXH_OK;
-#else
- return XXH_ERROR;
-#endif
+ }
{ const xxh_u8* p = (const xxh_u8*)input;
const xxh_u8* const bEnd = p + len;
@@ -1440,10 +2194,10 @@ XXH32_update(XXH32_state_t* state, const void* input, size_t len)
if (state->memsize) { /* some data left from previous update */
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
{ const xxh_u32* p32 = state->mem32;
- state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
- state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
- state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
- state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
+ state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
+ state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
+ state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
+ state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
}
p += 16-state->memsize;
state->memsize = 0;
@@ -1451,22 +2205,14 @@ XXH32_update(XXH32_state_t* state, const void* input, size_t len)
if (p <= bEnd-16) {
const xxh_u8* const limit = bEnd - 16;
- xxh_u32 v1 = state->v1;
- xxh_u32 v2 = state->v2;
- xxh_u32 v3 = state->v3;
- xxh_u32 v4 = state->v4;
do {
- v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
- v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
- v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
- v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
+ state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
+ state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
+ state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
+ state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
} while (p<=limit);
- state->v1 = v1;
- state->v2 = v2;
- state->v3 = v3;
- state->v4 = v4;
}
if (p < bEnd) {
@@ -1479,17 +2225,18 @@ XXH32_update(XXH32_state_t* state, const void* input, size_t len)
}
-XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
+/*! @ingroup xxh32_family */
+XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
{
xxh_u32 h32;
if (state->large_len) {
- h32 = XXH_rotl32(state->v1, 1)
- + XXH_rotl32(state->v2, 7)
- + XXH_rotl32(state->v3, 12)
- + XXH_rotl32(state->v4, 18);
+ h32 = XXH_rotl32(state->v[0], 1)
+ + XXH_rotl32(state->v[1], 7)
+ + XXH_rotl32(state->v[2], 12)
+ + XXH_rotl32(state->v[3], 18);
} else {
- h32 = state->v3 /* == seed */ + XXH_PRIME32_5;
+ h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
}
h32 += state->total_len_32;
@@ -1500,7 +2247,8 @@ XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
/******* Canonical representation *******/
-/*
+/*!
+ * @ingroup xxh32_family
* The default return values from XXH functions are unsigned 32 and 64 bit
* integers.
*
@@ -1517,9 +2265,9 @@ XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t
{
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
- memcpy(dst, &hash, sizeof(*dst));
+ XXH_memcpy(dst, &hash, sizeof(*dst));
}
-
+/*! @ingroup xxh32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
@@ -1531,7 +2279,11 @@ XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src
/* *******************************************************************
* 64-bit hash functions
*********************************************************************/
-
+/*!
+ * @}
+ * @ingroup impl
+ * @{
+ */
/******* Memory access *******/
typedef XXH64_hash_t xxh_u64;
@@ -1540,35 +2292,6 @@ typedef XXH64_hash_t xxh_u64;
# define U64 xxh_u64
#endif
-/*!
- * XXH_REROLL_XXH64:
- * Whether to reroll the XXH64_finalize() loop.
- *
- * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
- * performance gain on 64-bit hosts, as only one jump is required.
- *
- * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
- * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
- * to unroll. The code becomes ridiculously large (the largest function in the
- * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
- * also slightly faster because it fits into cache better and is more likely
- * to be inlined by the compiler.
- *
- * If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
- */
-#ifndef XXH_REROLL_XXH64
-# if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
- || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
- || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
- || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
- || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
- || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
-# define XXH_REROLL_XXH64 1
-# else
-# define XXH_REROLL_XXH64 0
-# endif
-#endif /* !defined(XXH_REROLL_XXH64) */
-
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
* Manual byteshift. Best for old compilers which don't inline memcpy.
@@ -1577,7 +2300,10 @@ typedef XXH64_hash_t xxh_u64;
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
-static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
+static xxh_u64 XXH_read64(const void* memPtr)
+{
+ return *(const xxh_u64*) memPtr;
+}
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
@@ -1600,12 +2326,12 @@ static xxh_u64 XXH_read64(const void* ptr)
/*
* Portable and safe solution. Generally efficient.
- * see: https://stackoverflow.com/a/32095106/646947
+ * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
*/
static xxh_u64 XXH_read64(const void* memPtr)
{
xxh_u64 val;
- memcpy(&val, memPtr, sizeof(val));
+ XXH_memcpy(&val, memPtr, sizeof(val));
return val;
}
@@ -1616,7 +2342,7 @@ static xxh_u64 XXH_read64(const void* memPtr)
#elif XXH_GCC_VERSION >= 403
# define XXH_swap64 __builtin_bswap64
#else
-static xxh_u64 XXH_swap64 (xxh_u64 x)
+static xxh_u64 XXH_swap64(xxh_u64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
@@ -1682,12 +2408,18 @@ XXH_readLE64_align(const void* ptr, XXH_alignment align)
/******* xxh64 *******/
-
-static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
-static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
-static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
-static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
-static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
+/*!
+ * @}
+ * @defgroup xxh64_impl XXH64 implementation
+ * @ingroup impl
+ * @{
+ */
+/* #define rather that static const, to be used as initializers */
+#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
+#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
+#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
+#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
+#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
#ifdef XXH_OLD_NAMES
# define PRIME64_1 XXH_PRIME64_1
@@ -1729,126 +2461,27 @@ static xxh_u64 XXH64_avalanche(xxh_u64 h64)
static xxh_u64
XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
-#define XXH_PROCESS1_64 do { \
- h64 ^= (*ptr++) * XXH_PRIME64_5; \
- h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \
-} while (0)
-
-#define XXH_PROCESS4_64 do { \
- h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \
- ptr += 4; \
- h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \
-} while (0)
-
-#define XXH_PROCESS8_64 do { \
- xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
- ptr += 8; \
- h64 ^= k1; \
- h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; \
-} while (0)
-
- /* Rerolled version for 32-bit targets is faster and much smaller. */
- if (XXH_REROLL || XXH_REROLL_XXH64) {
- len &= 31;
- while (len >= 8) {
- XXH_PROCESS8_64;
- len -= 8;
- }
- if (len >= 4) {
- XXH_PROCESS4_64;
- len -= 4;
- }
- while (len > 0) {
- XXH_PROCESS1_64;
- --len;
- }
- return XXH64_avalanche(h64);
- } else {
- switch(len & 31) {
- case 24: XXH_PROCESS8_64;
- /* fallthrough */
- case 16: XXH_PROCESS8_64;
- /* fallthrough */
- case 8: XXH_PROCESS8_64;
- return XXH64_avalanche(h64);
-
- case 28: XXH_PROCESS8_64;
- /* fallthrough */
- case 20: XXH_PROCESS8_64;
- /* fallthrough */
- case 12: XXH_PROCESS8_64;
- /* fallthrough */
- case 4: XXH_PROCESS4_64;
- return XXH64_avalanche(h64);
-
- case 25: XXH_PROCESS8_64;
- /* fallthrough */
- case 17: XXH_PROCESS8_64;
- /* fallthrough */
- case 9: XXH_PROCESS8_64;
- XXH_PROCESS1_64;
- return XXH64_avalanche(h64);
-
- case 29: XXH_PROCESS8_64;
- /* fallthrough */
- case 21: XXH_PROCESS8_64;
- /* fallthrough */
- case 13: XXH_PROCESS8_64;
- /* fallthrough */
- case 5: XXH_PROCESS4_64;
- XXH_PROCESS1_64;
- return XXH64_avalanche(h64);
-
- case 26: XXH_PROCESS8_64;
- /* fallthrough */
- case 18: XXH_PROCESS8_64;
- /* fallthrough */
- case 10: XXH_PROCESS8_64;
- XXH_PROCESS1_64;
- XXH_PROCESS1_64;
- return XXH64_avalanche(h64);
-
- case 30: XXH_PROCESS8_64;
- /* fallthrough */
- case 22: XXH_PROCESS8_64;
- /* fallthrough */
- case 14: XXH_PROCESS8_64;
- /* fallthrough */
- case 6: XXH_PROCESS4_64;
- XXH_PROCESS1_64;
- XXH_PROCESS1_64;
- return XXH64_avalanche(h64);
-
- case 27: XXH_PROCESS8_64;
- /* fallthrough */
- case 19: XXH_PROCESS8_64;
- /* fallthrough */
- case 11: XXH_PROCESS8_64;
- XXH_PROCESS1_64;
- XXH_PROCESS1_64;
- XXH_PROCESS1_64;
- return XXH64_avalanche(h64);
-
- case 31: XXH_PROCESS8_64;
- /* fallthrough */
- case 23: XXH_PROCESS8_64;
- /* fallthrough */
- case 15: XXH_PROCESS8_64;
- /* fallthrough */
- case 7: XXH_PROCESS4_64;
- /* fallthrough */
- case 3: XXH_PROCESS1_64;
- /* fallthrough */
- case 2: XXH_PROCESS1_64;
- /* fallthrough */
- case 1: XXH_PROCESS1_64;
- /* fallthrough */
- case 0: return XXH64_avalanche(h64);
- }
+ if (ptr==NULL) XXH_ASSERT(len == 0);
+ len &= 31;
+ while (len >= 8) {
+ xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
+ ptr += 8;
+ h64 ^= k1;
+ h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
+ len -= 8;
}
- /* impossible to reach */
- XXH_ASSERT(0);
- return 0; /* unreachable, but some compilers complain without it */
+ if (len >= 4) {
+ h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
+ ptr += 4;
+ h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
+ len -= 4;
+ }
+ while (len > 0) {
+ h64 ^= (*ptr++) * XXH_PRIME64_5;
+ h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
+ --len;
+ }
+ return XXH64_avalanche(h64);
}
#ifdef XXH_OLD_NAMES
@@ -1864,18 +2497,12 @@ XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
XXH_FORCE_INLINE xxh_u64
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
{
- const xxh_u8* bEnd = input + len;
xxh_u64 h64;
-
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
- if (input==NULL) {
- len=0;
- bEnd=input=(const xxh_u8*)(size_t)32;
- }
-#endif
+ if (input==NULL) XXH_ASSERT(len == 0);
if (len>=32) {
- const xxh_u8* const limit = bEnd - 32;
+ const xxh_u8* const bEnd = input + len;
+ const xxh_u8* const limit = bEnd - 31;
xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
xxh_u64 v2 = seed + XXH_PRIME64_2;
xxh_u64 v3 = seed + 0;
@@ -1886,7 +2513,7 @@ XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment
v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
- } while (input<=limit);
+ } while (input<limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
@@ -1904,6 +2531,7 @@ XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment
}
+/*! @ingroup xxh64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
{
#if 0
@@ -1912,9 +2540,7 @@ XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t s
XXH64_reset(&state, seed);
XXH64_update(&state, (const xxh_u8*)input, len);
return XXH64_digest(&state);
-
#else
-
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
@@ -1927,43 +2553,46 @@ XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t s
/******* Hash Streaming *******/
+/*! @ingroup xxh64_family*/
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
+/*! @ingroup xxh64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
+/*! @ingroup xxh64_family */
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
{
- memcpy(dstState, srcState, sizeof(*dstState));
+ XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
+/*! @ingroup xxh64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
{
XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state));
- state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
- state.v2 = seed + XXH_PRIME64_2;
- state.v3 = seed + 0;
- state.v4 = seed - XXH_PRIME64_1;
+ state.v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
+ state.v[1] = seed + XXH_PRIME64_2;
+ state.v[2] = seed + 0;
+ state.v[3] = seed - XXH_PRIME64_1;
/* do not write into reserved64, might be removed in a future version */
- memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
+ XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
return XXH_OK;
}
+/*! @ingroup xxh64_family */
XXH_PUBLIC_API XXH_errorcode
XXH64_update (XXH64_state_t* state, const void* input, size_t len)
{
- if (input==NULL)
-#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
+ if (input==NULL) {
+ XXH_ASSERT(len == 0);
return XXH_OK;
-#else
- return XXH_ERROR;
-#endif
+ }
{ const xxh_u8* p = (const xxh_u8*)input;
const xxh_u8* const bEnd = p + len;
@@ -1978,32 +2607,24 @@ XXH64_update (XXH64_state_t* state, const void* input, size_t len)
if (state->memsize) { /* tmp buffer is full */
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
- state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
- state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
- state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
- state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
- p += 32-state->memsize;
+ state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
+ state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
+ state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
+ state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
+ p += 32 - state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd) {
const xxh_u8* const limit = bEnd - 32;
- xxh_u64 v1 = state->v1;
- xxh_u64 v2 = state->v2;
- xxh_u64 v3 = state->v3;
- xxh_u64 v4 = state->v4;
do {
- v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
- v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
- v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
- v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
+ state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
+ state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
+ state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
+ state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
} while (p<=limit);
- state->v1 = v1;
- state->v2 = v2;
- state->v3 = v3;
- state->v4 = v4;
}
if (p < bEnd) {
@@ -2016,23 +2637,19 @@ XXH64_update (XXH64_state_t* state, const void* input, size_t len)
}
-XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
+/*! @ingroup xxh64_family */
+XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
{
xxh_u64 h64;
if (state->total_len >= 32) {
- xxh_u64 const v1 = state->v1;
- xxh_u64 const v2 = state->v2;
- xxh_u64 const v3 = state->v3;
- xxh_u64 const v4 = state->v4;
-
- h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
- h64 = XXH64_mergeRound(h64, v1);
- h64 = XXH64_mergeRound(h64, v2);
- h64 = XXH64_mergeRound(h64, v3);
- h64 = XXH64_mergeRound(h64, v4);
+ h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
+ h64 = XXH64_mergeRound(h64, state->v[0]);
+ h64 = XXH64_mergeRound(h64, state->v[1]);
+ h64 = XXH64_mergeRound(h64, state->v[2]);
+ h64 = XXH64_mergeRound(h64, state->v[3]);
} else {
- h64 = state->v3 /*seed*/ + XXH_PRIME64_5;
+ h64 = state->v[2] /*seed*/ + XXH_PRIME64_5;
}
h64 += (xxh_u64) state->total_len;
@@ -2043,31 +2660,2918 @@ XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
/******* Canonical representation *******/
+/*! @ingroup xxh64_family */
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
- memcpy(dst, &hash, sizeof(*dst));
+ XXH_memcpy(dst, &hash, sizeof(*dst));
}
+/*! @ingroup xxh64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}
-
+#ifndef XXH_NO_XXH3
/* *********************************************************************
* XXH3
* New generation hash designed for speed on small keys and vectorization
************************************************************************ */
+/*!
+ * @}
+ * @defgroup xxh3_impl XXH3 implementation
+ * @ingroup impl
+ * @{
+ */
-#include "tracy_xxh3.h"
+/* === Compiler specifics === */
+#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
+# define XXH_RESTRICT /* disable */
+#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
+# define XXH_RESTRICT restrict
+#else
+/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
+# define XXH_RESTRICT /* disable */
+#endif
+
+#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
+ || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
+ || defined(__clang__)
+# define XXH_likely(x) __builtin_expect(x, 1)
+# define XXH_unlikely(x) __builtin_expect(x, 0)
+#else
+# define XXH_likely(x) (x)
+# define XXH_unlikely(x) (x)
+#endif
+
+#if defined(__GNUC__)
+# if defined(__AVX2__)
+# include <immintrin.h>
+# elif defined(__SSE2__)
+# include <emmintrin.h>
+# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
+# define inline __inline__ /* circumvent a clang bug */
+# include <arm_neon.h>
+# undef inline
+# endif
+#elif defined(_MSC_VER)
+# include <intrin.h>
+#endif
+
+/*
+ * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
+ * remaining a true 64-bit/128-bit hash function.
+ *
+ * This is done by prioritizing a subset of 64-bit operations that can be
+ * emulated without too many steps on the average 32-bit machine.
+ *
+ * For example, these two lines seem similar, and run equally fast on 64-bit:
+ *
+ * xxh_u64 x;
+ * x ^= (x >> 47); // good
+ * x ^= (x >> 13); // bad
+ *
+ * However, to a 32-bit machine, there is a major difference.
+ *
+ * x ^= (x >> 47) looks like this:
+ *
+ * x.lo ^= (x.hi >> (47 - 32));
+ *
+ * while x ^= (x >> 13) looks like this:
+ *
+ * // note: funnel shifts are not usually cheap.
+ * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
+ * x.hi ^= (x.hi >> 13);
+ *
+ * The first one is significantly faster than the second, simply because the
+ * shift is larger than 32. This means:
+ * - All the bits we need are in the upper 32 bits, so we can ignore the lower
+ * 32 bits in the shift.
+ * - The shift result will always fit in the lower 32 bits, and therefore,
+ * we can ignore the upper 32 bits in the xor.
+ *
+ * Thanks to this optimization, XXH3 only requires these features to be efficient:
+ *
+ * - Usable unaligned access
+ * - A 32-bit or 64-bit ALU
+ * - If 32-bit, a decent ADC instruction
+ * - A 32 or 64-bit multiply with a 64-bit result
+ * - For the 128-bit variant, a decent byteswap helps short inputs.
+ *
+ * The first two are already required by XXH32, and almost all 32-bit and 64-bit
+ * platforms which can run XXH32 can run XXH3 efficiently.
+ *
+ * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
+ * notable exception.
+ *
+ * First of all, Thumb-1 lacks support for the UMULL instruction which
+ * performs the important long multiply. This means numerous __aeabi_lmul
+ * calls.
+ *
+ * Second of all, the 8 functional registers are just not enough.
+ * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
+ * Lo registers, and this shuffling results in thousands more MOVs than A32.
+ *
+ * A32 and T32 don't have this limitation. They can access all 14 registers,
+ * do a 32->64 multiply with UMULL, and the flexible operand allowing free
+ * shifts is helpful, too.
+ *
+ * Therefore, we do a quick sanity check.
+ *
+ * If compiling Thumb-1 for a target which supports ARM instructions, we will
+ * emit a warning, as it is not a "sane" platform to compile for.
+ *
+ * Usually, if this happens, it is because of an accident and you probably need
+ * to specify -march, as you likely meant to compile for a newer architecture.
+ *
+ * Credit: large sections of the vectorial and asm source code paths
+ * have been contributed by @easyaspi314
+ */
+#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
+# warning "XXH3 is highly inefficient without ARM or Thumb-2."
+#endif
+
+/* ==========================================
+ * Vectorization detection
+ * ========================================== */
+
+#ifdef XXH_DOXYGEN
+/*!
+ * @ingroup tuning
+ * @brief Overrides the vectorization implementation chosen for XXH3.
+ *
+ * Can be defined to 0 to disable SIMD or any of the values mentioned in
+ * @ref XXH_VECTOR_TYPE.
+ *
+ * If this is not defined, it uses predefined macros to determine the best
+ * implementation.
+ */
+# define XXH_VECTOR XXH_SCALAR
+/*!
+ * @ingroup tuning
+ * @brief Possible values for @ref XXH_VECTOR.
+ *
+ * Note that these are actually implemented as macros.
+ *
+ * If this is not defined, it is detected automatically.
+ * @ref XXH_X86DISPATCH overrides this.
+ */
+enum XXH_VECTOR_TYPE /* fake enum */ {
+ XXH_SCALAR = 0, /*!< Portable scalar version */
+ XXH_SSE2 = 1, /*!<
+ * SSE2 for Pentium 4, Opteron, all x86_64.
+ *
+ * @note SSE2 is also guaranteed on Windows 10, macOS, and
+ * Android x86.
+ */
+ XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
+ XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
+ XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */
+ XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
+};
+/*!
+ * @ingroup tuning
+ * @brief Selects the minimum alignment for XXH3's accumulators.
+ *
+ * When using SIMD, this should match the alignment reqired for said vector
+ * type, so, for example, 32 for AVX2.
+ *
+ * Default: Auto detected.
+ */
+# define XXH_ACC_ALIGN 8
+#endif
+
+/* Actual definition */
+#ifndef XXH_DOXYGEN
+# define XXH_SCALAR 0
+# define XXH_SSE2 1
+# define XXH_AVX2 2
+# define XXH_AVX512 3
+# define XXH_NEON 4
+# define XXH_VSX 5
+#endif
+
+#ifndef XXH_VECTOR /* can be defined on command line */
+# if defined(__AVX512F__)
+# define XXH_VECTOR XXH_AVX512
+# elif defined(__AVX2__)
+# define XXH_VECTOR XXH_AVX2
+# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
+# define XXH_VECTOR XXH_SSE2
+# elif ( \
+ defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
+ || defined(_M_ARM64) || defined(_M_ARM_ARMV7VE) /* msvc */ \
+ ) && ( \
+ defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
+ )
+# define XXH_VECTOR XXH_NEON
+# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
+ || (defined(__s390x__) && defined(__VEC__)) \
+ && defined(__GNUC__) /* TODO: IBM XL */
+# define XXH_VECTOR XXH_VSX
+# else
+# define XXH_VECTOR XXH_SCALAR
+# endif
+#endif
+
+/*
+ * Controls the alignment of the accumulator,
+ * for compatibility with aligned vector loads, which are usually faster.
+ */
+#ifndef XXH_ACC_ALIGN
+# if defined(XXH_X86DISPATCH)
+# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
+# elif XXH_VECTOR == XXH_SCALAR /* scalar */
+# define XXH_ACC_ALIGN 8
+# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
+# define XXH_ACC_ALIGN 16
+# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
+# define XXH_ACC_ALIGN 32
+# elif XXH_VECTOR == XXH_NEON /* neon */
+# define XXH_ACC_ALIGN 16
+# elif XXH_VECTOR == XXH_VSX /* vsx */
+# define XXH_ACC_ALIGN 16
+# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
+# define XXH_ACC_ALIGN 64
+# endif
+#endif
+
+#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
+ || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
+# define XXH_SEC_ALIGN XXH_ACC_ALIGN
+#else
+# define XXH_SEC_ALIGN 8
+#endif
+
+/*
+ * UGLY HACK:
+ * GCC usually generates the best code with -O3 for xxHash.
+ *
+ * However, when targeting AVX2, it is overzealous in its unrolling resulting
+ * in code roughly 3/4 the speed of Clang.
+ *
+ * There are other issues, such as GCC splitting _mm256_loadu_si256 into
+ * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
+ * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
+ *
+ * That is why when compiling the AVX2 version, it is recommended to use either
+ * -O2 -mavx2 -march=haswell
+ * or
+ * -O2 -mavx2 -mno-avx256-split-unaligned-load
+ * for decent performance, or to use Clang instead.
+ *
+ * Fortunately, we can control the first one with a pragma that forces GCC into
+ * -O2, but the other one we can't control without "failed to inline always
+ * inline function due to target mismatch" warnings.
+ */
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+# pragma GCC push_options
+# pragma GCC optimize("-O2")
+#endif
+
+
+#if XXH_VECTOR == XXH_NEON
+/*
+ * NEON's setup for vmlal_u32 is a little more complicated than it is on
+ * SSE2, AVX2, and VSX.
+ *
+ * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
+ *
+ * To do the same operation, the 128-bit 'Q' register needs to be split into
+ * two 64-bit 'D' registers, performing this operation::
+ *
+ * [ a | b ]
+ * | '---------. .--------' |
+ * | x |
+ * | .---------' '--------. |
+ * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
+ *
+ * Due to significant changes in aarch64, the fastest method for aarch64 is
+ * completely different than the fastest method for ARMv7-A.
+ *
+ * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
+ * D11 will modify the high half of Q5. This is similar to how modifying AH
+ * will only affect bits 8-15 of AX on x86.
+ *
+ * VZIP takes two registers, and puts even lanes in one register and odd lanes
+ * in the other.
+ *
+ * On ARMv7-A, this strangely modifies both parameters in place instead of
+ * taking the usual 3-operand form.
+ *
+ * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
+ * lower and upper halves of the Q register to end up with the high and low
+ * halves where we want - all in one instruction.
+ *
+ * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
+ *
+ * Unfortunately we need inline assembly for this: Instructions modifying two
+ * registers at once is not possible in GCC or Clang's IR, and they have to
+ * create a copy.
+ *
+ * aarch64 requires a different approach.
+ *
+ * In order to make it easier to write a decent compiler for aarch64, many
+ * quirks were removed, such as conditional execution.
+ *
+ * NEON was also affected by this.
+ *
+ * aarch64 cannot access the high bits of a Q-form register, and writes to a
+ * D-form register zero the high bits, similar to how writes to W-form scalar
+ * registers (or DWORD registers on x86_64) work.
+ *
+ * The formerly free vget_high intrinsics now require a vext (with a few
+ * exceptions)
+ *
+ * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
+ * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
+ * operand.
+ *
+ * The equivalent of the VZIP.32 on the lower and upper halves would be this
+ * mess:
+ *
+ * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
+ * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
+ * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
+ *
+ * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
+ *
+ * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
+ * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
+ *
+ * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
+ */
+
+/*!
+ * Function-like macro:
+ * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
+ * {
+ * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
+ * outHi = (uint32x2_t)(in >> 32);
+ * in = UNDEFINED;
+ * }
+ */
+# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
+ && defined(__GNUC__) \
+ && !defined(__aarch64__) && !defined(__arm64__) && !defined(_M_ARM64)
+# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
+ do { \
+ /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
+ /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
+ /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
+ __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
+ (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
+ (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
+ } while (0)
+# else
+# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
+ do { \
+ (outLo) = vmovn_u64 (in); \
+ (outHi) = vshrn_n_u64 ((in), 32); \
+ } while (0)
+# endif
+#endif /* XXH_VECTOR == XXH_NEON */
+
+/*
+ * VSX and Z Vector helpers.
+ *
+ * This is very messy, and any pull requests to clean this up are welcome.
+ *
+ * There are a lot of problems with supporting VSX and s390x, due to
+ * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
+ */
+#if XXH_VECTOR == XXH_VSX
+# if defined(__s390x__)
+# include <s390intrin.h>
+# else
+/* gcc's altivec.h can have the unwanted consequence to unconditionally
+ * #define bool, vector, and pixel keywords,
+ * with bad consequences for programs already using these keywords for other purposes.
+ * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
+ * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
+ * but it seems that, in some cases, it isn't.
+ * Force the build macro to be defined, so that keywords are not altered.
+ */
+# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
+# define __APPLE_ALTIVEC__
+# endif
+# include <altivec.h>
+# endif
+
+typedef __vector unsigned long long xxh_u64x2;
+typedef __vector unsigned char xxh_u8x16;
+typedef __vector unsigned xxh_u32x4;
+
+# ifndef XXH_VSX_BE
+# if defined(__BIG_ENDIAN__) \
+ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+# define XXH_VSX_BE 1
+# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
+# warning "-maltivec=be is not recommended. Please use native endianness."
+# define XXH_VSX_BE 1
+# else
+# define XXH_VSX_BE 0
+# endif
+# endif /* !defined(XXH_VSX_BE) */
+
+# if XXH_VSX_BE
+# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
+# define XXH_vec_revb vec_revb
+# else
+/*!
+ * A polyfill for POWER9's vec_revb().
+ */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
+{
+ xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
+ 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
+ return vec_perm(val, val, vByteSwap);
+}
+# endif
+# endif /* XXH_VSX_BE */
+
+/*!
+ * Performs an unaligned vector load and byte swaps it on big endian.
+ */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
+{
+ xxh_u64x2 ret;
+ XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
+# if XXH_VSX_BE
+ ret = XXH_vec_revb(ret);
+# endif
+ return ret;
+}
+
+/*
+ * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
+ *
+ * These intrinsics weren't added until GCC 8, despite existing for a while,
+ * and they are endian dependent. Also, their meaning swap depending on version.
+ * */
+# if defined(__s390x__)
+ /* s390x is always big endian, no issue on this platform */
+# define XXH_vec_mulo vec_mulo
+# define XXH_vec_mule vec_mule
+# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
+/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
+# define XXH_vec_mulo __builtin_altivec_vmulouw
+# define XXH_vec_mule __builtin_altivec_vmuleuw
+# else
+/* gcc needs inline assembly */
+/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
+{
+ xxh_u64x2 result;
+ __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+ return result;
+}
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
+{
+ xxh_u64x2 result;
+ __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
+ return result;
+}
+# endif /* XXH_vec_mulo, XXH_vec_mule */
+#endif /* XXH_VECTOR == XXH_VSX */
+
+
+/* prefetch
+ * can be disabled, by declaring XXH_NO_PREFETCH build macro */
+#if defined(XXH_NO_PREFETCH)
+# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+#else
+# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
+# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
+# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
+# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
+# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+# else
+# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+# endif
+#endif /* XXH_NO_PREFETCH */
+
+
+/* ==========================================
+ * XXH3 default settings
+ * ========================================== */
+
+#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
+
+#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
+# error "default keyset is not large enough"
+#endif
+
+/*! Pseudorandom secret taken directly from FARSH. */
+XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
+ 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
+ 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
+ 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
+ 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
+ 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
+ 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
+ 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
+ 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
+ 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
+ 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
+ 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
+ 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
+};
+
+
+#ifdef XXH_OLD_NAMES
+# define kSecret XXH3_kSecret
+#endif
+
+#ifdef XXH_DOXYGEN
+/*!
+ * @brief Calculates a 32-bit to 64-bit long multiply.
+ *
+ * Implemented as a macro.
+ *
+ * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
+ * need to (but it shouldn't need to anyways, it is about 7 instructions to do
+ * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
+ * use that instead of the normal method.
+ *
+ * If you are compiling for platforms like Thumb-1 and don't have a better option,
+ * you may also want to write your own long multiply routine here.
+ *
+ * @param x, y Numbers to be multiplied
+ * @return 64-bit product of the low 32 bits of @p x and @p y.
+ */
+XXH_FORCE_INLINE xxh_u64
+XXH_mult32to64(xxh_u64 x, xxh_u64 y)
+{
+ return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
+}
+#elif defined(_MSC_VER) && defined(_M_IX86)
+# include <intrin.h>
+# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
+#else
+/*
+ * Downcast + upcast is usually better than masking on older compilers like
+ * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
+ *
+ * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
+ * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
+ */
+# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
+#endif
+
+/*!
+ * @brief Calculates a 64->128-bit long multiply.
+ *
+ * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
+ * version.
+ *
+ * @param lhs , rhs The 64-bit integers to be multiplied
+ * @return The 128-bit result represented in an @ref XXH128_hash_t.
+ */
+static XXH128_hash_t
+XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
+{
+ /*
+ * GCC/Clang __uint128_t method.
+ *
+ * On most 64-bit targets, GCC and Clang define a __uint128_t type.
+ * This is usually the best way as it usually uses a native long 64-bit
+ * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
+ *
+ * Usually.
+ *
+ * Despite being a 32-bit platform, Clang (and emscripten) define this type
+ * despite not having the arithmetic for it. This results in a laggy
+ * compiler builtin call which calculates a full 128-bit multiply.
+ * In that case it is best to use the portable one.
+ * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
+ */
+#if defined(__GNUC__) && !defined(__wasm__) \
+ && defined(__SIZEOF_INT128__) \
+ || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
+
+ __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
+ XXH128_hash_t r128;
+ r128.low64 = (xxh_u64)(product);
+ r128.high64 = (xxh_u64)(product >> 64);
+ return r128;
+
+ /*
+ * MSVC for x64's _umul128 method.
+ *
+ * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
+ *
+ * This compiles to single operand MUL on x64.
+ */
+#elif defined(_M_X64) || defined(_M_IA64)
+
+#ifndef _MSC_VER
+# pragma intrinsic(_umul128)
+#endif
+ xxh_u64 product_high;
+ xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
+ XXH128_hash_t r128;
+ r128.low64 = product_low;
+ r128.high64 = product_high;
+ return r128;
+
+ /*
+ * MSVC for ARM64's __umulh method.
+ *
+ * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
+ */
+#elif defined(_M_ARM64)
+
+#ifndef _MSC_VER
+# pragma intrinsic(__umulh)
+#endif
+ XXH128_hash_t r128;
+ r128.low64 = lhs * rhs;
+ r128.high64 = __umulh(lhs, rhs);
+ return r128;
+
+#else
+ /*
+ * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
+ *
+ * This is a fast and simple grade school multiply, which is shown below
+ * with base 10 arithmetic instead of base 0x100000000.
+ *
+ * 9 3 // D2 lhs = 93
+ * x 7 5 // D2 rhs = 75
+ * ----------
+ * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
+ * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
+ * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
+ * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
+ * ---------
+ * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
+ * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
+ * ---------
+ * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
+ *
+ * The reasons for adding the products like this are:
+ * 1. It avoids manual carry tracking. Just like how
+ * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
+ * This avoids a lot of complexity.
+ *
+ * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
+ * instruction available in ARM's Digital Signal Processing extension
+ * in 32-bit ARMv6 and later, which is shown below:
+ *
+ * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
+ * {
+ * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
+ * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
+ * *RdHi = (xxh_u32)(product >> 32);
+ * }
+ *
+ * This instruction was designed for efficient long multiplication, and
+ * allows this to be calculated in only 4 instructions at speeds
+ * comparable to some 64-bit ALUs.
+ *
+ * 3. It isn't terrible on other platforms. Usually this will be a couple
+ * of 32-bit ADD/ADCs.
+ */
+
+ /* First calculate all of the cross products. */
+ xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
+ xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
+ xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
+ xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
+
+ /* Now add the products together. These will never overflow. */
+ xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
+ xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
+ xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
+
+ XXH128_hash_t r128;
+ r128.low64 = lower;
+ r128.high64 = upper;
+ return r128;
+#endif
+}
+
+/*!
+ * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
+ *
+ * The reason for the separate function is to prevent passing too many structs
+ * around by value. This will hopefully inline the multiply, but we don't force it.
+ *
+ * @param lhs , rhs The 64-bit integers to multiply
+ * @return The low 64 bits of the product XOR'd by the high 64 bits.
+ * @see XXH_mult64to128()
+ */
+static xxh_u64
+XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
+{
+ XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
+ return product.low64 ^ product.high64;
+}
+
+/*! Seems to produce slightly better code on GCC for some reason. */
+XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
+{
+ XXH_ASSERT(0 <= shift && shift < 64);
+ return v64 ^ (v64 >> shift);
+}
+
+/*
+ * This is a fast avalanche stage,
+ * suitable when input bits are already partially mixed
+ */
+static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
+{
+ h64 = XXH_xorshift64(h64, 37);
+ h64 *= 0x165667919E3779F9ULL;
+ h64 = XXH_xorshift64(h64, 32);
+ return h64;
+}
+
+/*
+ * This is a stronger avalanche,
+ * inspired by Pelle Evensen's rrmxmx
+ * preferable when input has not been previously mixed
+ */
+static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
+{
+ /* this mix is inspired by Pelle Evensen's rrmxmx */
+ h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
+ h64 *= 0x9FB21C651E98DF25ULL;
+ h64 ^= (h64 >> 35) + len ;
+ h64 *= 0x9FB21C651E98DF25ULL;
+ return XXH_xorshift64(h64, 28);
+}
+
+
+/* ==========================================
+ * Short keys
+ * ==========================================
+ * One of the shortcomings of XXH32 and XXH64 was that their performance was
+ * sub-optimal on short lengths. It used an iterative algorithm which strongly
+ * favored lengths that were a multiple of 4 or 8.
+ *
+ * Instead of iterating over individual inputs, we use a set of single shot
+ * functions which piece together a range of lengths and operate in constant time.
+ *
+ * Additionally, the number of multiplies has been significantly reduced. This
+ * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
+ *
+ * Depending on the platform, this may or may not be faster than XXH32, but it
+ * is almost guaranteed to be faster than XXH64.
+ */
+
+/*
+ * At very short lengths, there isn't enough input to fully hide secrets, or use
+ * the entire secret.
+ *
+ * There is also only a limited amount of mixing we can do before significantly
+ * impacting performance.
+ *
+ * Therefore, we use different sections of the secret and always mix two secret
+ * samples with an XOR. This should have no effect on performance on the
+ * seedless or withSeed variants because everything _should_ be constant folded
+ * by modern compilers.
+ *
+ * The XOR mixing hides individual parts of the secret and increases entropy.
+ *
+ * This adds an extra layer of strength for custom secrets.
+ */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(1 <= len && len <= 3);
+ XXH_ASSERT(secret != NULL);
+ /*
+ * len = 1: combined = { input[0], 0x01, input[0], input[0] }
+ * len = 2: combined = { input[1], 0x02, input[0], input[1] }
+ * len = 3: combined = { input[2], 0x03, input[0], input[1] }
+ */
+ { xxh_u8 const c1 = input[0];
+ xxh_u8 const c2 = input[len >> 1];
+ xxh_u8 const c3 = input[len - 1];
+ xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
+ | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+ xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
+ xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
+ return XXH64_avalanche(keyed);
+ }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(4 <= len && len <= 8);
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+ { xxh_u32 const input1 = XXH_readLE32(input);
+ xxh_u32 const input2 = XXH_readLE32(input + len - 4);
+ xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
+ xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
+ xxh_u64 const keyed = input64 ^ bitflip;
+ return XXH3_rrmxmx(keyed, len);
+ }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(9 <= len && len <= 16);
+ { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
+ xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
+ xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
+ xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
+ xxh_u64 const acc = len
+ + XXH_swap64(input_lo) + input_hi
+ + XXH3_mul128_fold64(input_lo, input_hi);
+ return XXH3_avalanche(acc);
+ }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(len <= 16);
+ { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
+ if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
+ if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
+ return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
+ }
+}
+
+/*
+ * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
+ * multiplication by zero, affecting hashes of lengths 17 to 240.
+ *
+ * However, they are very unlikely.
+ *
+ * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
+ * unseeded non-cryptographic hashes, it does not attempt to defend itself
+ * against specially crafted inputs, only random inputs.
+ *
+ * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
+ * cancelling out the secret is taken an arbitrary number of times (addressed
+ * in XXH3_accumulate_512), this collision is very unlikely with random inputs
+ * and/or proper seeding:
+ *
+ * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
+ * function that is only called up to 16 times per hash with up to 240 bytes of
+ * input.
+ *
+ * This is not too bad for a non-cryptographic hash function, especially with
+ * only 64 bit outputs.
+ *
+ * The 128-bit variant (which trades some speed for strength) is NOT affected
+ * by this, although it is always a good idea to use a proper seed if you care
+ * about strength.
+ */
+XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
+ const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
+{
+#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
+ /*
+ * UGLY HACK:
+ * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
+ * slower code.
+ *
+ * By forcing seed64 into a register, we disrupt the cost model and
+ * cause it to scalarize. See `XXH32_round()`
+ *
+ * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
+ * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
+ * GCC 9.2, despite both emitting scalar code.
+ *
+ * GCC generates much better scalar code than Clang for the rest of XXH3,
+ * which is why finding a more optimal codepath is an interest.
+ */
+ XXH_COMPILER_GUARD(seed64);
+#endif
+ { xxh_u64 const input_lo = XXH_readLE64(input);
+ xxh_u64 const input_hi = XXH_readLE64(input+8);
+ return XXH3_mul128_fold64(
+ input_lo ^ (XXH_readLE64(secret) + seed64),
+ input_hi ^ (XXH_readLE64(secret+8) - seed64)
+ );
+ }
+}
+
+/* For mid range keys, XXH3 uses a Mum-hash variant. */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(16 < len && len <= 128);
+
+ { xxh_u64 acc = len * XXH_PRIME64_1;
+ if (len > 32) {
+ if (len > 64) {
+ if (len > 96) {
+ acc += XXH3_mix16B(input+48, secret+96, seed);
+ acc += XXH3_mix16B(input+len-64, secret+112, seed);
+ }
+ acc += XXH3_mix16B(input+32, secret+64, seed);
+ acc += XXH3_mix16B(input+len-48, secret+80, seed);
+ }
+ acc += XXH3_mix16B(input+16, secret+32, seed);
+ acc += XXH3_mix16B(input+len-32, secret+48, seed);
+ }
+ acc += XXH3_mix16B(input+0, secret+0, seed);
+ acc += XXH3_mix16B(input+len-16, secret+16, seed);
+
+ return XXH3_avalanche(acc);
+ }
+}
+
+#define XXH3_MIDSIZE_MAX 240
+
+XXH_NO_INLINE XXH64_hash_t
+XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+ #define XXH3_MIDSIZE_STARTOFFSET 3
+ #define XXH3_MIDSIZE_LASTOFFSET 17
+
+ { xxh_u64 acc = len * XXH_PRIME64_1;
+ int const nbRounds = (int)len / 16;
+ int i;
+ for (i=0; i<8; i++) {
+ acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
+ }
+ acc = XXH3_avalanche(acc);
+ XXH_ASSERT(nbRounds >= 8);
+#if defined(__clang__) /* Clang */ \
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
+ /*
+ * UGLY HACK:
+ * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
+ * In everywhere else, it uses scalar code.
+ *
+ * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
+ * would still be slower than UMAAL (see XXH_mult64to128).
+ *
+ * Unfortunately, Clang doesn't handle the long multiplies properly and
+ * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
+ * scalarized into an ugly mess of VMOV.32 instructions.
+ *
+ * This mess is difficult to avoid without turning autovectorization
+ * off completely, but they are usually relatively minor and/or not
+ * worth it to fix.
+ *
+ * This loop is the easiest to fix, as unlike XXH32, this pragma
+ * _actually works_ because it is a loop vectorization instead of an
+ * SLP vectorization.
+ */
+ #pragma clang loop vectorize(disable)
+#endif
+ for (i=8 ; i < nbRounds; i++) {
+ acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
+ }
+ /* last bytes */
+ acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
+ return XXH3_avalanche(acc);
+ }
+}
+
+
+/* ======= Long Keys ======= */
+
+#define XXH_STRIPE_LEN 64
+#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
+#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
+
+#ifdef XXH_OLD_NAMES
+# define STRIPE_LEN XXH_STRIPE_LEN
+# define ACC_NB XXH_ACC_NB
+#endif
+
+XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
+{
+ if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
+ XXH_memcpy(dst, &v64, sizeof(v64));
+}
+
+/* Several intrinsic functions below are supposed to accept __int64 as argument,
+ * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
+ * However, several environments do not define __int64 type,
+ * requiring a workaround.
+ */
+#if !defined (__VMS) \
+ && (defined (__cplusplus) \
+ || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
+ typedef int64_t xxh_i64;
+#else
+ /* the following type must have a width of 64-bit */
+ typedef long long xxh_i64;
+#endif
+
+/*
+ * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
+ *
+ * It is a hardened version of UMAC, based off of FARSH's implementation.
+ *
+ * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
+ * implementations, and it is ridiculously fast.
+ *
+ * We harden it by mixing the original input to the accumulators as well as the product.
+ *
+ * This means that in the (relatively likely) case of a multiply by zero, the
+ * original input is preserved.
+ *
+ * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
+ * cross-pollination, as otherwise the upper and lower halves would be
+ * essentially independent.
+ *
+ * This doesn't matter on 64-bit hashes since they all get merged together in
+ * the end, so we skip the extra step.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+
+#if (XXH_VECTOR == XXH_AVX512) \
+ || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
+
+#ifndef XXH_TARGET_AVX512
+# define XXH_TARGET_AVX512 /* disable attribute target */
+#endif
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ __m512i* const xacc = (__m512i *) acc;
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+
+ {
+ /* data_vec = input[0]; */
+ __m512i const data_vec = _mm512_loadu_si512 (input);
+ /* key_vec = secret[0]; */
+ __m512i const key_vec = _mm512_loadu_si512 (secret);
+ /* data_key = data_vec ^ key_vec; */
+ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
+ /* xacc[0] += swap(data_vec); */
+ __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
+ __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
+ /* xacc[0] += product; */
+ *xacc = _mm512_add_epi64(product, sum);
+ }
+}
+
+/*
+ * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
+ *
+ * Multiplication isn't perfect, as explained by Google in HighwayHash:
+ *
+ * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
+ * // varying degrees. In descending order of goodness, bytes
+ * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
+ * // As expected, the upper and lower bytes are much worse.
+ *
+ * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
+ *
+ * Since our algorithm uses a pseudorandom secret to add some variance into the
+ * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
+ *
+ * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
+ * extraction.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
+ { __m512i* const xacc = (__m512i*) acc;
+ const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
+
+ /* xacc[0] ^= (xacc[0] >> 47) */
+ __m512i const acc_vec = *xacc;
+ __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
+ __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
+ /* xacc[0] ^= secret; */
+ __m512i const key_vec = _mm512_loadu_si512 (secret);
+ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
+
+ /* xacc[0] *= XXH_PRIME32_1; */
+ __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
+ __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
+ __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
+ *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
+ }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX512 void
+XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
+ XXH_ASSERT(((size_t)customSecret & 63) == 0);
+ (void)(&XXH_writeLE64);
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
+ __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64));
+
+ const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
+ __m512i* const dest = ( __m512i*) customSecret;
+ int i;
+ XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
+ XXH_ASSERT(((size_t)dest & 63) == 0);
+ for (i=0; i < nbRounds; ++i) {
+ /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
+ * this will warn "discards 'const' qualifier". */
+ union {
+ const __m512i* cp;
+ void* p;
+ } remote_const_void;
+ remote_const_void.cp = src + i;
+ dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
+ } }
+}
+
+#endif
+
+#if (XXH_VECTOR == XXH_AVX2) \
+ || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
+
+#ifndef XXH_TARGET_AVX2
+# define XXH_TARGET_AVX2 /* disable attribute target */
+#endif
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
+XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
+ { __m256i* const xacc = (__m256i *) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i* const xinput = (const __m256i *) input;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i* const xsecret = (const __m256i *) secret;
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
+ /* data_vec = xinput[i]; */
+ __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
+ /* key_vec = xsecret[i]; */
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
+ /* data_key = data_vec ^ key_vec; */
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
+ /* xacc[i] += swap(data_vec); */
+ __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+ __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
+ /* xacc[i] += product; */
+ xacc[i] = _mm256_add_epi64(product, sum);
+ } }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void
+XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 31) == 0);
+ { __m256i* const xacc = (__m256i*) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+ const __m256i* const xsecret = (const __m256i *) secret;
+ const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m256i const acc_vec = xacc[i];
+ __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
+ __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
+ /* xacc[i] ^= xsecret; */
+ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
+ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
+
+ /* xacc[i] *= XXH_PRIME32_1; */
+ __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
+ __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
+ xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
+ }
+ }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
+ XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
+ (void)(&XXH_writeLE64);
+ XXH_PREFETCH(customSecret);
+ { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
+
+ const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret);
+ __m256i* dest = ( __m256i*) customSecret;
+
+# if defined(__GNUC__) || defined(__clang__)
+ /*
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+ * - do not extract the secret from sse registers in the internal loop
+ * - use less common registers, and avoid pushing these reg into stack
+ */
+ XXH_COMPILER_GUARD(dest);
+# endif
+ XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
+ XXH_ASSERT(((size_t)dest & 31) == 0);
+
+ /* GCC -O2 need unroll loop manually */
+ dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
+ dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
+ dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
+ dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
+ dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
+ dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
+ }
+}
+
+#endif
+
+/* x86dispatch always generates SSE2 */
+#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
+
+#ifndef XXH_TARGET_SSE2
+# define XXH_TARGET_SSE2 /* disable attribute target */
+#endif
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
+XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ /* SSE2 is just a half-scale version of the AVX2 version. */
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ { __m128i* const xacc = (__m128i *) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i* const xinput = (const __m128i *) input;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i* const xsecret = (const __m128i *) secret;
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
+ /* data_vec = xinput[i]; */
+ __m128i const data_vec = _mm_loadu_si128 (xinput+i);
+ /* key_vec = xsecret[i]; */
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
+ /* data_key = data_vec ^ key_vec; */
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
+ /* data_key_lo = data_key >> 32; */
+ __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+ __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
+ /* xacc[i] += swap(data_vec); */
+ __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
+ __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
+ /* xacc[i] += product; */
+ xacc[i] = _mm_add_epi64(product, sum);
+ } }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void
+XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ { __m128i* const xacc = (__m128i*) acc;
+ /* Unaligned. This is mainly for pointer arithmetic, and because
+ * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+ const __m128i* const xsecret = (const __m128i *) secret;
+ const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47) */
+ __m128i const acc_vec = xacc[i];
+ __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
+ __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
+ /* xacc[i] ^= xsecret[i]; */
+ __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
+ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
+
+ /* xacc[i] *= XXH_PRIME32_1; */
+ __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
+ __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
+ __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
+ xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
+ }
+ }
+}
+
+XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+ (void)(&XXH_writeLE64);
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
+
+# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
+ /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
+ XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
+ __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
+# else
+ __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
+# endif
+ int i;
+
+ const void* const src16 = XXH3_kSecret;
+ __m128i* dst16 = (__m128i*) customSecret;
+# if defined(__GNUC__) || defined(__clang__)
+ /*
+ * On GCC & Clang, marking 'dest' as modified will cause the compiler:
+ * - do not extract the secret from sse registers in the internal loop
+ * - use less common registers, and avoid pushing these reg into stack
+ */
+ XXH_COMPILER_GUARD(dst16);
+# endif
+ XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
+ XXH_ASSERT(((size_t)dst16 & 15) == 0);
+
+ for (i=0; i < nbRounds; ++i) {
+ dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
+ } }
+}
+
+#endif
+
+#if (XXH_VECTOR == XXH_NEON)
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+ {
+ uint64x2_t* const xacc = (uint64x2_t *) acc;
+ /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
+ uint8_t const* const xinput = (const uint8_t *) input;
+ uint8_t const* const xsecret = (const uint8_t *) secret;
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
+ /* data_vec = xinput[i]; */
+ uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
+ /* key_vec = xsecret[i]; */
+ uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
+ uint64x2_t data_key;
+ uint32x2_t data_key_lo, data_key_hi;
+ /* xacc[i] += swap(data_vec); */
+ uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
+ uint64x2_t const swapped = vextq_u64(data64, data64, 1);
+ xacc[i] = vaddq_u64 (xacc[i], swapped);
+ /* data_key = data_vec ^ key_vec; */
+ data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
+ /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
+ * data_key_hi = (uint32x2_t) (data_key >> 32);
+ * data_key = UNDEFINED; */
+ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+ /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
+ xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
+
+ }
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+ { uint64x2_t* xacc = (uint64x2_t*) acc;
+ uint8_t const* xsecret = (uint8_t const*) secret;
+ uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
+
+ size_t i;
+ for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47); */
+ uint64x2_t acc_vec = xacc[i];
+ uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
+ uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
+
+ /* xacc[i] ^= xsecret[i]; */
+ uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16));
+ uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec));
+
+ /* xacc[i] *= XXH_PRIME32_1 */
+ uint32x2_t data_key_lo, data_key_hi;
+ /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
+ * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
+ * xacc[i] = UNDEFINED; */
+ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+ { /*
+ * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
+ *
+ * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
+ * incorrectly "optimize" this:
+ * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
+ * shifted = vshll_n_u32(tmp, 32);
+ * to this:
+ * tmp = "vmulq_u64"(a, b); // no such thing!
+ * shifted = vshlq_n_u64(tmp, 32);
+ *
+ * However, unlike SSE, Clang lacks a 64-bit multiply routine
+ * for NEON, and it scalarizes two 64-bit multiplies instead.
+ *
+ * vmull_u32 has the same timing as vmul_u32, and it avoids
+ * this bug completely.
+ * See https://bugs.llvm.org/show_bug.cgi?id=39967
+ */
+ uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
+ /* xacc[i] = prod_hi << 32; */
+ xacc[i] = vshlq_n_u64(prod_hi, 32);
+ /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
+ xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
+ }
+ } }
+}
+
+#endif
+
+#if (XXH_VECTOR == XXH_VSX)
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ /* presumed aligned */
+ unsigned long long* const xacc = (unsigned long long*) acc;
+ xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
+ xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
+ xxh_u64x2 const v32 = { 32, 32 };
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+ /* data_vec = xinput[i]; */
+ xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
+ /* key_vec = xsecret[i]; */
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
+ /* shuffled = (data_key << 32) | (data_key >> 32); */
+ xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
+ /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
+ xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
+ /* acc_vec = xacc[i]; */
+ xxh_u64x2 acc_vec = vec_xl(0, xacc + 2 * i);
+ acc_vec += product;
+
+ /* swap high and low halves */
+#ifdef __s390x__
+ acc_vec += vec_permi(data_vec, data_vec, 2);
+#else
+ acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
+#endif
+ /* xacc[i] = acc_vec; */
+ vec_xst(acc_vec, 0, xacc + 2 * i);
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+ { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
+ const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
+ /* constants */
+ xxh_u64x2 const v32 = { 32, 32 };
+ xxh_u64x2 const v47 = { 47, 47 };
+ xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
+ size_t i;
+ for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
+ /* xacc[i] ^= (xacc[i] >> 47); */
+ xxh_u64x2 const acc_vec = xacc[i];
+ xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
+
+ /* xacc[i] ^= xsecret[i]; */
+ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+ xxh_u64x2 const data_key = data_vec ^ key_vec;
+
+ /* xacc[i] *= XXH_PRIME32_1 */
+ /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
+ xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
+ /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
+ xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
+ xacc[i] = prod_odd + (prod_even << v32);
+ } }
+}
+
+#endif
+
+/* scalar variants - universal */
+
+XXH_FORCE_INLINE void
+XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
+ const void* XXH_RESTRICT input,
+ const void* XXH_RESTRICT secret)
+{
+ xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
+ const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
+ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
+ size_t i;
+ XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
+ for (i=0; i < XXH_ACC_NB; i++) {
+ xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
+ xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
+ xacc[i ^ 1] += data_val; /* swap adjacent lanes */
+ xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+ xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
+ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
+ size_t i;
+ XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
+ for (i=0; i < XXH_ACC_NB; i++) {
+ xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
+ xxh_u64 acc64 = xacc[i];
+ acc64 = XXH_xorshift64(acc64, 47);
+ acc64 ^= key64;
+ acc64 *= XXH_PRIME32_1;
+ xacc[i] = acc64;
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+ /*
+ * We need a separate pointer for the hack below,
+ * which requires a non-const pointer.
+ * Any decent compiler will optimize this out otherwise.
+ */
+ const xxh_u8* kSecretPtr = XXH3_kSecret;
+ XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+
+#if defined(__clang__) && defined(__aarch64__)
+ /*
+ * UGLY HACK:
+ * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
+ * placed sequentially, in order, at the top of the unrolled loop.
+ *
+ * While MOVK is great for generating constants (2 cycles for a 64-bit
+ * constant compared to 4 cycles for LDR), long MOVK chains stall the
+ * integer pipelines:
+ * I L S
+ * MOVK
+ * MOVK
+ * MOVK
+ * MOVK
+ * ADD
+ * SUB STR
+ * STR
+ * By forcing loads from memory (as the asm line causes Clang to assume
+ * that XXH3_kSecretPtr has been changed), the pipelines are used more
+ * efficiently:
+ * I L S
+ * LDR
+ * ADD LDR
+ * SUB STR
+ * STR
+ * XXH3_64bits_withSeed, len == 256, Snapdragon 835
+ * without hack: 2654.4 MB/s
+ * with hack: 3202.9 MB/s
+ */
+ XXH_COMPILER_GUARD(kSecretPtr);
+#endif
+ /*
+ * Note: in debug mode, this overrides the asm optimization
+ * and Clang will emit MOVK chains again.
+ */
+ XXH_ASSERT(kSecretPtr == XXH3_kSecret);
+
+ { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
+ int i;
+ for (i=0; i < nbRounds; i++) {
+ /*
+ * The asm hack causes Clang to assume that kSecretPtr aliases with
+ * customSecret, and on aarch64, this prevented LDP from merging two
+ * loads together for free. Putting the loads together before the stores
+ * properly generates LDP.
+ */
+ xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
+ xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
+ XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
+ XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
+ } }
+}
+
+
+typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
+typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
+typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
+
+
+#if (XXH_VECTOR == XXH_AVX512)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
+#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
+
+#elif (XXH_VECTOR == XXH_AVX2)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
+#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
+#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
+
+#elif (XXH_VECTOR == XXH_SSE2)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
+#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
+#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
+
+#elif (XXH_VECTOR == XXH_NEON)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_neon
+#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+#elif (XXH_VECTOR == XXH_VSX)
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
+#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+#else /* scalar */
+
+#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
+#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
+#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
+
+#endif
+
+
+
+#ifndef XXH_PREFETCH_DIST
+# ifdef __clang__
+# define XXH_PREFETCH_DIST 320
+# else
+# if (XXH_VECTOR == XXH_AVX512)
+# define XXH_PREFETCH_DIST 512
+# else
+# define XXH_PREFETCH_DIST 384
+# endif
+# endif /* __clang__ */
+#endif /* XXH_PREFETCH_DIST */
+
+/*
+ * XXH3_accumulate()
+ * Loops over XXH3_accumulate_512().
+ * Assumption: nbStripes will not overflow the secret size
+ */
+XXH_FORCE_INLINE void
+XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
+ const xxh_u8* XXH_RESTRICT input,
+ const xxh_u8* XXH_RESTRICT secret,
+ size_t nbStripes,
+ XXH3_f_accumulate_512 f_acc512)
+{
+ size_t n;
+ for (n = 0; n < nbStripes; n++ ) {
+ const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
+ XXH_PREFETCH(in + XXH_PREFETCH_DIST);
+ f_acc512(acc,
+ in,
+ secret + n*XXH_SECRET_CONSUME_RATE);
+ }
+}
+
+XXH_FORCE_INLINE void
+XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
+ const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
+ size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
+ size_t const nb_blocks = (len - 1) / block_len;
+
+ size_t n;
+
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+
+ for (n = 0; n < nb_blocks; n++) {
+ XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
+ f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
+ }
+
+ /* last partial block */
+ XXH_ASSERT(len > XXH_STRIPE_LEN);
+ { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
+ XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
+ XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
+
+ /* last stripe */
+ { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
+#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
+ f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
+ } }
+}
+
+XXH_FORCE_INLINE xxh_u64
+XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
+{
+ return XXH3_mul128_fold64(
+ acc[0] ^ XXH_readLE64(secret),
+ acc[1] ^ XXH_readLE64(secret+8) );
+}
+
+static XXH64_hash_t
+XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
+{
+ xxh_u64 result64 = start;
+ size_t i = 0;
+
+ for (i = 0; i < 4; i++) {
+ result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
+#if defined(__clang__) /* Clang */ \
+ && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
+ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
+ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
+ /*
+ * UGLY HACK:
+ * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
+ * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
+ * XXH3_64bits, len == 256, Snapdragon 835:
+ * without hack: 2063.7 MB/s
+ * with hack: 2560.7 MB/s
+ */
+ XXH_COMPILER_GUARD(result64);
+#endif
+ }
+
+ return XXH3_avalanche(result64);
+}
+
+#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
+ XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
+ const void* XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
+
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
+
+ /* converge into final hash */
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
+ /* do not align on 8, so that the secret is different from the accumulator */
+#define XXH_SECRET_MERGEACCS_START 11
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
+}
+
+/*
+ * It's important for performance to transmit secret's size (when it's static)
+ * so that the compiler can properly optimize the vectorized loop.
+ * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
+ */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64;
+ return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*
+ * It's preferable for performance that XXH3_hashLong is not inlined,
+ * as it results in a smaller function for small data, easier to the instruction cache.
+ * Note that inside this no_inline function, we do inline the internal loop,
+ * and provide a statically defined secret size to allow optimization of vector loop.
+ */
+XXH_NO_INLINE XXH64_hash_t
+XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64; (void)secret; (void)secretLen;
+ return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*
+ * XXH3_hashLong_64b_withSeed():
+ * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
+ * and then use this key for long mode hashing.
+ *
+ * This operation is decently fast but nonetheless costs a little bit of time.
+ * Try to avoid it whenever possible (typically when seed==0).
+ *
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
+ XXH64_hash_t seed,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble,
+ XXH3_f_initCustomSecret f_initSec)
+{
+ if (seed == 0)
+ return XXH3_hashLong_64b_internal(input, len,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ f_acc512, f_scramble);
+ { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ f_initSec(secret, seed);
+ return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
+ f_acc512, f_scramble);
+ }
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH64_hash_t
+XXH3_hashLong_64b_withSeed(const void* input, size_t len,
+ XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
+{
+ (void)secret; (void)secretLen;
+ return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
+ XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
+}
+
+
+typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
+ XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
+
+XXH_FORCE_INLINE XXH64_hash_t
+XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
+ XXH3_hashLong64_f f_hashLong)
+{
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+ /*
+ * If an action is to be taken if `secretLen` condition is not respected,
+ * it should be done here.
+ * For now, it's a contract pre-condition.
+ * Adding a check and a branch here would cost performance at every hash.
+ * Also, note that function signature doesn't offer room to return an error.
+ */
+ if (len <= 16)
+ return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
+ if (len <= 128)
+ return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
+}
+
+
+/* === Public entry point === */
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
+{
+ return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+{
+ return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+{
+ return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
+}
+
+XXH_PUBLIC_API XXH64_hash_t
+XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
+ return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize);
+}
+
+
+/* === XXH3 streaming === */
+
+/*
+ * Malloc's a pointer that is always aligned to align.
+ *
+ * This must be freed with `XXH_alignedFree()`.
+ *
+ * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
+ * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
+ * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
+ *
+ * This underalignment previously caused a rather obvious crash which went
+ * completely unnoticed due to XXH3_createState() not actually being tested.
+ * Credit to RedSpah for noticing this bug.
+ *
+ * The alignment is done manually: Functions like posix_memalign or _mm_malloc
+ * are avoided: To maintain portability, we would have to write a fallback
+ * like this anyways, and besides, testing for the existence of library
+ * functions without relying on external build tools is impossible.
+ *
+ * The method is simple: Overallocate, manually align, and store the offset
+ * to the original behind the returned pointer.
+ *
+ * Align must be a power of 2 and 8 <= align <= 128.
+ */
+static void* XXH_alignedMalloc(size_t s, size_t align)
+{
+ XXH_ASSERT(align <= 128 && align >= 8); /* range check */
+ XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
+ XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
+ { /* Overallocate to make room for manual realignment and an offset byte */
+ xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
+ if (base != NULL) {
+ /*
+ * Get the offset needed to align this pointer.
+ *
+ * Even if the returned pointer is aligned, there will always be
+ * at least one byte to store the offset to the original pointer.
+ */
+ size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
+ /* Add the offset for the now-aligned pointer */
+ xxh_u8* ptr = base + offset;
+
+ XXH_ASSERT((size_t)ptr % align == 0);
+
+ /* Store the offset immediately before the returned pointer. */
+ ptr[-1] = (xxh_u8)offset;
+ return ptr;
+ }
+ return NULL;
+ }
+}
+/*
+ * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
+ * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
+ */
+static void XXH_alignedFree(void* p)
+{
+ if (p != NULL) {
+ xxh_u8* ptr = (xxh_u8*)p;
+ /* Get the offset byte we added in XXH_malloc. */
+ xxh_u8 offset = ptr[-1];
+ /* Free the original malloc'd pointer */
+ xxh_u8* base = ptr - offset;
+ XXH_free(base);
+ }
+}
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
+{
+ XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
+ if (state==NULL) return NULL;
+ XXH3_INITSTATE(state);
+ return state;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
+{
+ XXH_alignedFree(statePtr);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API void
+XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
+{
+ XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
+}
+
+static void
+XXH3_reset_internal(XXH3_state_t* statePtr,
+ XXH64_hash_t seed,
+ const void* secret, size_t secretSize)
+{
+ size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
+ size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
+ XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
+ XXH_ASSERT(statePtr != NULL);
+ /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
+ memset((char*)statePtr + initStart, 0, initLength);
+ statePtr->acc[0] = XXH_PRIME32_3;
+ statePtr->acc[1] = XXH_PRIME64_1;
+ statePtr->acc[2] = XXH_PRIME64_2;
+ statePtr->acc[3] = XXH_PRIME64_3;
+ statePtr->acc[4] = XXH_PRIME64_4;
+ statePtr->acc[5] = XXH_PRIME32_2;
+ statePtr->acc[6] = XXH_PRIME64_5;
+ statePtr->acc[7] = XXH_PRIME32_1;
+ statePtr->seed = seed;
+ statePtr->useSeed = (seed != 0);
+ statePtr->extSecret = (const unsigned char*)secret;
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
+ statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset(XXH3_state_t* statePtr)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ XXH3_reset_internal(statePtr, 0, secret, secretSize);
+ if (secret == NULL) return XXH_ERROR;
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ if (seed==0) return XXH3_64bits_reset(statePtr);
+ if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
+ XXH3_initCustomSecret(statePtr->customSecret, seed);
+ XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64)
+{
+ if (statePtr == NULL) return XXH_ERROR;
+ if (secret == NULL) return XXH_ERROR;
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+ XXH3_reset_internal(statePtr, seed64, secret, secretSize);
+ statePtr->useSeed = 1; /* always, even if seed64==0 */
+ return XXH_OK;
+}
+
+/* Note : when XXH3_consumeStripes() is invoked,
+ * there must be a guarantee that at least one more byte must be consumed from input
+ * so that the function can blindly consume all stripes using the "normal" secret segment */
+XXH_FORCE_INLINE void
+XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
+ size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
+ const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
+ XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
+ if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
+ /* need a scrambling operation */
+ size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
+ size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
+ XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
+ f_scramble(acc, secret + secretLimit);
+ XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
+ *nbStripesSoFarPtr = nbStripesAfterBlock;
+ } else {
+ XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
+ *nbStripesSoFarPtr += nbStripes;
+ }
+}
+
+#ifndef XXH3_STREAM_USE_STACK
+# ifndef __clang__ /* clang doesn't need additional stack space */
+# define XXH3_STREAM_USE_STACK 1
+# endif
+#endif
+/*
+ * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
+ */
+XXH_FORCE_INLINE XXH_errorcode
+XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
+ const xxh_u8* XXH_RESTRICT input, size_t len,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ if (input==NULL) {
+ XXH_ASSERT(len == 0);
+ return XXH_OK;
+ }
+
+ XXH_ASSERT(state != NULL);
+ { const xxh_u8* const bEnd = input + len;
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
+ /* For some reason, gcc and MSVC seem to suffer greatly
+ * when operating accumulators directly into state.
+ * Operating into stack space seems to enable proper optimization.
+ * clang, on the other hand, doesn't seem to need this trick */
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc));
+#else
+ xxh_u64* XXH_RESTRICT const acc = state->acc;
+#endif
+ state->totalLen += len;
+ XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
+
+ /* small input : just fill in tmp buffer */
+ if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {
+ XXH_memcpy(state->buffer + state->bufferedSize, input, len);
+ state->bufferedSize += (XXH32_hash_t)len;
+ return XXH_OK;
+ }
+
+ /* total input is now > XXH3_INTERNALBUFFER_SIZE */
+ #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
+ XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
+
+ /*
+ * Internal buffer is partially filled (always, except at beginning)
+ * Complete it, then consume it.
+ */
+ if (state->bufferedSize) {
+ size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
+ XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
+ input += loadSize;
+ XXH3_consumeStripes(acc,
+ &state->nbStripesSoFar, state->nbStripesPerBlock,
+ state->buffer, XXH3_INTERNALBUFFER_STRIPES,
+ secret, state->secretLimit,
+ f_acc512, f_scramble);
+ state->bufferedSize = 0;
+ }
+ XXH_ASSERT(input < bEnd);
+
+ /* large input to consume : ingest per full block */
+ if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) {
+ size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
+ XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar);
+ /* join to current block's end */
+ { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar;
+ XXH_ASSERT(nbStripes <= nbStripes);
+ XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512);
+ f_scramble(acc, secret + state->secretLimit);
+ state->nbStripesSoFar = 0;
+ input += nbStripesToEnd * XXH_STRIPE_LEN;
+ nbStripes -= nbStripesToEnd;
+ }
+ /* consume per entire blocks */
+ while(nbStripes >= state->nbStripesPerBlock) {
+ XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512);
+ f_scramble(acc, secret + state->secretLimit);
+ input += state->nbStripesPerBlock * XXH_STRIPE_LEN;
+ nbStripes -= state->nbStripesPerBlock;
+ }
+ /* consume last partial block */
+ XXH3_accumulate(acc, input, secret, nbStripes, f_acc512);
+ input += nbStripes * XXH_STRIPE_LEN;
+ XXH_ASSERT(input < bEnd); /* at least some bytes left */
+ state->nbStripesSoFar = nbStripes;
+ /* buffer predecessor of last partial stripe */
+ XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
+ XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN);
+ } else {
+ /* content to consume <= block size */
+ /* Consume input by a multiple of internal buffer size */
+ if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
+ const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
+ do {
+ XXH3_consumeStripes(acc,
+ &state->nbStripesSoFar, state->nbStripesPerBlock,
+ input, XXH3_INTERNALBUFFER_STRIPES,
+ secret, state->secretLimit,
+ f_acc512, f_scramble);
+ input += XXH3_INTERNALBUFFER_SIZE;
+ } while (input<limit);
+ /* buffer predecessor of last partial stripe */
+ XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
+ }
+ }
+
+ /* Some remaining input (always) : buffer it */
+ XXH_ASSERT(input < bEnd);
+ XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
+ XXH_ASSERT(state->bufferedSize == 0);
+ XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
+ state->bufferedSize = (XXH32_hash_t)(bEnd-input);
+#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
+ /* save stack accumulators into state */
+ memcpy(state->acc, acc, sizeof(acc));
+#endif
+ }
+
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
+{
+ return XXH3_update(state, (const xxh_u8*)input, len,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+
+XXH_FORCE_INLINE void
+XXH3_digest_long (XXH64_hash_t* acc,
+ const XXH3_state_t* state,
+ const unsigned char* secret)
+{
+ /*
+ * Digest on a local copy. This way, the state remains unaltered, and it can
+ * continue ingesting more input afterwards.
+ */
+ XXH_memcpy(acc, state->acc, sizeof(state->acc));
+ if (state->bufferedSize >= XXH_STRIPE_LEN) {
+ size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
+ size_t nbStripesSoFar = state->nbStripesSoFar;
+ XXH3_consumeStripes(acc,
+ &nbStripesSoFar, state->nbStripesPerBlock,
+ state->buffer, nbStripes,
+ secret, state->secretLimit,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+ /* last stripe */
+ XXH3_accumulate_512(acc,
+ state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+ } else { /* bufferedSize < XXH_STRIPE_LEN */
+ xxh_u8 lastStripe[XXH_STRIPE_LEN];
+ size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
+ XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
+ XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
+ XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
+ XXH3_accumulate_512(acc,
+ lastStripe,
+ secret + state->secretLimit - XXH_SECRET_LASTACC_START);
+ }
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
+{
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+ XXH3_digest_long(acc, state, secret);
+ return XXH3_mergeAccs(acc,
+ secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
+ }
+ /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
+ if (state->useSeed)
+ return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+ return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
+ secret, state->secretLimit + XXH_STRIPE_LEN);
+}
+
+
+
+/* ==========================================
+ * XXH3 128 bits (a.k.a XXH128)
+ * ==========================================
+ * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
+ * even without counting the significantly larger output size.
+ *
+ * For example, extra steps are taken to avoid the seed-dependent collisions
+ * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
+ *
+ * This strength naturally comes at the cost of some speed, especially on short
+ * lengths. Note that longer hashes are about as fast as the 64-bit version
+ * due to it using only a slight modification of the 64-bit loop.
+ *
+ * XXH128 is also more oriented towards 64-bit machines. It is still extremely
+ * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
+ */
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ /* A doubled version of 1to3_64b with different constants. */
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(1 <= len && len <= 3);
+ XXH_ASSERT(secret != NULL);
+ /*
+ * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
+ * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
+ * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
+ */
+ { xxh_u8 const c1 = input[0];
+ xxh_u8 const c2 = input[len >> 1];
+ xxh_u8 const c3 = input[len - 1];
+ xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
+ | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+ xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
+ xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
+ xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
+ xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
+ xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
+ XXH128_hash_t h128;
+ h128.low64 = XXH64_avalanche(keyed_lo);
+ h128.high64 = XXH64_avalanche(keyed_hi);
+ return h128;
+ }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(4 <= len && len <= 8);
+ seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+ { xxh_u32 const input_lo = XXH_readLE32(input);
+ xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
+ xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
+ xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
+ xxh_u64 const keyed = input_64 ^ bitflip;
+
+ /* Shift len to the left to ensure it is even, this avoids even multiplies. */
+ XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
+
+ m128.high64 += (m128.low64 << 1);
+ m128.low64 ^= (m128.high64 >> 3);
+
+ m128.low64 = XXH_xorshift64(m128.low64, 35);
+ m128.low64 *= 0x9FB21C651E98DF25ULL;
+ m128.low64 = XXH_xorshift64(m128.low64, 28);
+ m128.high64 = XXH3_avalanche(m128.high64);
+ return m128;
+ }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(input != NULL);
+ XXH_ASSERT(secret != NULL);
+ XXH_ASSERT(9 <= len && len <= 16);
+ { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
+ xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
+ xxh_u64 const input_lo = XXH_readLE64(input);
+ xxh_u64 input_hi = XXH_readLE64(input + len - 8);
+ XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
+ /*
+ * Put len in the middle of m128 to ensure that the length gets mixed to
+ * both the low and high bits in the 128x64 multiply below.
+ */
+ m128.low64 += (xxh_u64)(len - 1) << 54;
+ input_hi ^= bitfliph;
+ /*
+ * Add the high 32 bits of input_hi to the high 32 bits of m128, then
+ * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
+ * the high 64 bits of m128.
+ *
+ * The best approach to this operation is different on 32-bit and 64-bit.
+ */
+ if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
+ /*
+ * 32-bit optimized version, which is more readable.
+ *
+ * On 32-bit, it removes an ADC and delays a dependency between the two
+ * halves of m128.high64, but it generates an extra mask on 64-bit.
+ */
+ m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
+ } else {
+ /*
+ * 64-bit optimized (albeit more confusing) version.
+ *
+ * Uses some properties of addition and multiplication to remove the mask:
+ *
+ * Let:
+ * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
+ * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
+ * c = XXH_PRIME32_2
+ *
+ * a + (b * c)
+ * Inverse Property: x + y - x == y
+ * a + (b * (1 + c - 1))
+ * Distributive Property: x * (y + z) == (x * y) + (x * z)
+ * a + (b * 1) + (b * (c - 1))
+ * Identity Property: x * 1 == x
+ * a + b + (b * (c - 1))
+ *
+ * Substitute a, b, and c:
+ * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
+ *
+ * Since input_hi.hi + input_hi.lo == input_hi, we get this:
+ * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
+ */
+ m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
+ }
+ /* m128 ^= XXH_swap64(m128 >> 64); */
+ m128.low64 ^= XXH_swap64(m128.high64);
+
+ { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
+ XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
+ h128.high64 += m128.high64 * XXH_PRIME64_2;
+
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = XXH3_avalanche(h128.high64);
+ return h128;
+ } }
+}
+
+/*
+ * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
+ */
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+ XXH_ASSERT(len <= 16);
+ { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
+ if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
+ if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
+ { XXH128_hash_t h128;
+ xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
+ xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
+ h128.low64 = XXH64_avalanche(seed ^ bitflipl);
+ h128.high64 = XXH64_avalanche( seed ^ bitfliph);
+ return h128;
+ } }
+}
+
+/*
+ * A bit slower than XXH3_mix16B, but handles multiply by zero better.
+ */
+XXH_FORCE_INLINE XXH128_hash_t
+XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
+ const xxh_u8* secret, XXH64_hash_t seed)
+{
+ acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
+ acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
+ acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
+ acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
+ return acc;
+}
+
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(16 < len && len <= 128);
+
+ { XXH128_hash_t acc;
+ acc.low64 = len * XXH_PRIME64_1;
+ acc.high64 = 0;
+ if (len > 32) {
+ if (len > 64) {
+ if (len > 96) {
+ acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
+ }
+ acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
+ }
+ acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
+ }
+ acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
+ { XXH128_hash_t h128;
+ h128.low64 = acc.low64 + acc.high64;
+ h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ + (acc.high64 * XXH_PRIME64_4)
+ + ((len - seed) * XXH_PRIME64_2);
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+ return h128;
+ }
+ }
+}
+
+XXH_NO_INLINE XXH128_hash_t
+XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH64_hash_t seed)
+{
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
+ XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+ { XXH128_hash_t acc;
+ int const nbRounds = (int)len / 32;
+ int i;
+ acc.low64 = len * XXH_PRIME64_1;
+ acc.high64 = 0;
+ for (i=0; i<4; i++) {
+ acc = XXH128_mix32B(acc,
+ input + (32 * i),
+ input + (32 * i) + 16,
+ secret + (32 * i),
+ seed);
+ }
+ acc.low64 = XXH3_avalanche(acc.low64);
+ acc.high64 = XXH3_avalanche(acc.high64);
+ XXH_ASSERT(nbRounds >= 4);
+ for (i=4 ; i < nbRounds; i++) {
+ acc = XXH128_mix32B(acc,
+ input + (32 * i),
+ input + (32 * i) + 16,
+ secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
+ seed);
+ }
+ /* last bytes */
+ acc = XXH128_mix32B(acc,
+ input + len - 16,
+ input + len - 32,
+ secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
+ 0ULL - seed);
+
+ { XXH128_hash_t h128;
+ h128.low64 = acc.low64 + acc.high64;
+ h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ + (acc.high64 * XXH_PRIME64_4)
+ + ((len - seed) * XXH_PRIME64_2);
+ h128.low64 = XXH3_avalanche(h128.low64);
+ h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+ return h128;
+ }
+ }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
+ const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble)
+{
+ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
+
+ XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
+
+ /* converge into final hash */
+ XXH_STATIC_ASSERT(sizeof(acc) == 64);
+ XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ { XXH128_hash_t h128;
+ h128.low64 = XXH3_mergeAccs(acc,
+ secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)len * XXH_PRIME64_1);
+ h128.high64 = XXH3_mergeAccs(acc,
+ secret + secretSize
+ - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+ ~((xxh_u64)len * XXH_PRIME64_2));
+ return h128;
+ }
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t
+XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64,
+ const void* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64; (void)secret; (void)secretLen;
+ return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*
+ * It's important for performance to pass @secretLen (when it's static)
+ * to the compiler, so that it can properly optimize the vectorized loop.
+ */
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64,
+ const void* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)seed64;
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
+ XXH64_hash_t seed64,
+ XXH3_f_accumulate_512 f_acc512,
+ XXH3_f_scrambleAcc f_scramble,
+ XXH3_f_initCustomSecret f_initSec)
+{
+ if (seed64 == 0)
+ return XXH3_hashLong_128b_internal(input, len,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ f_acc512, f_scramble);
+ { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ f_initSec(secret, seed64);
+ return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
+ f_acc512, f_scramble);
+ }
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined.
+ */
+XXH_NO_INLINE XXH128_hash_t
+XXH3_hashLong_128b_withSeed(const void* input, size_t len,
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
+{
+ (void)secret; (void)secretLen;
+ return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
+ XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
+}
+
+typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
+ XXH64_hash_t, const void* XXH_RESTRICT, size_t);
+
+XXH_FORCE_INLINE XXH128_hash_t
+XXH3_128bits_internal(const void* input, size_t len,
+ XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
+ XXH3_hashLong128_f f_hl128)
+{
+ XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
+ /*
+ * If an action is to be taken if `secret` conditions are not respected,
+ * it should be done here.
+ * For now, it's a contract pre-condition.
+ * Adding a check and a branch here would cost performance at every hash.
+ */
+ if (len <= 16)
+ return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
+ if (len <= 128)
+ return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
+ return f_hl128(input, len, seed64, secret, secretLen);
+}
+
+
+/* === Public XXH128 API === */
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
+{
+ return XXH3_128bits_internal(input, len, 0,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ XXH3_hashLong_128b_default);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+{
+ return XXH3_128bits_internal(input, len, 0,
+ (const xxh_u8*)secret, secretSize,
+ XXH3_hashLong_128b_withSecret);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+{
+ return XXH3_128bits_internal(input, len, seed,
+ XXH3_kSecret, sizeof(XXH3_kSecret),
+ XXH3_hashLong_128b_withSeed);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+ if (len <= XXH3_MIDSIZE_MAX)
+ return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
+ return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH128(const void* input, size_t len, XXH64_hash_t seed)
+{
+ return XXH3_128bits_withSeed(input, len, seed);
+}
+
+
+/* === XXH3 128-bit streaming === */
+
+/*
+ * All initialization and update functions are identical to 64-bit streaming variant.
+ * The only difference is the finalization routine.
+ */
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset(XXH3_state_t* statePtr)
+{
+ return XXH3_64bits_reset(statePtr);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+{
+ return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+{
+ return XXH3_64bits_reset_withSeed(statePtr, seed);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed)
+{
+ return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
+{
+ return XXH3_update(state, (const xxh_u8*)input, len,
+ XXH3_accumulate_512, XXH3_scrambleAcc);
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
+{
+ const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
+ if (state->totalLen > XXH3_MIDSIZE_MAX) {
+ XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
+ XXH3_digest_long(acc, state, secret);
+ XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+ { XXH128_hash_t h128;
+ h128.low64 = XXH3_mergeAccs(acc,
+ secret + XXH_SECRET_MERGEACCS_START,
+ (xxh_u64)state->totalLen * XXH_PRIME64_1);
+ h128.high64 = XXH3_mergeAccs(acc,
+ secret + state->secretLimit + XXH_STRIPE_LEN
+ - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+ ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
+ return h128;
+ }
+ }
+ /* len <= XXH3_MIDSIZE_MAX : short code */
+ if (state->seed)
+ return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+ return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
+ secret, state->secretLimit + XXH_STRIPE_LEN);
+}
+
+/* 128-bit utility functions */
+
+#include <string.h> /* memcmp, memcpy */
+
+/* return : 1 is equal, 0 if different */
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
+{
+ /* note : XXH128_hash_t is compact, it has no padding byte */
+ return !(memcmp(&h1, &h2, sizeof(h1)));
+}
+
+/* This prototype is compatible with stdlib's qsort().
+ * return : >0 if *h128_1 > *h128_2
+ * <0 if *h128_1 < *h128_2
+ * =0 if *h128_1 == *h128_2 */
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
+{
+ XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
+ XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
+ int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
+ /* note : bets that, in most cases, hash values are different */
+ if (hcmp) return hcmp;
+ return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
+}
+
+
+/*====== Canonical representation ======*/
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API void
+XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
+{
+ XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
+ if (XXH_CPU_LITTLE_ENDIAN) {
+ hash.high64 = XXH_swap64(hash.high64);
+ hash.low64 = XXH_swap64(hash.low64);
+ }
+ XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
+ XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH128_hash_t
+XXH128_hashFromCanonical(const XXH128_canonical_t* src)
+{
+ XXH128_hash_t h;
+ h.high64 = XXH_readBE64(src);
+ h.low64 = XXH_readBE64(src->digest + 8);
+ return h;
+}
+
+
+
+/* ==========================================
+ * Secret generators
+ * ==========================================
+ */
+#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
+
+static void XXH3_combine16(void* dst, XXH128_hash_t h128)
+{
+ XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
+ XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API XXH_errorcode
+XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize)
+{
+ XXH_ASSERT(secretBuffer != NULL);
+ if (secretBuffer == NULL) return XXH_ERROR;
+ XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+ if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
+ if (customSeedSize == 0) {
+ customSeed = XXH3_kSecret;
+ customSeedSize = XXH_SECRET_DEFAULT_SIZE;
+ }
+ XXH_ASSERT(customSeed != NULL);
+ if (customSeed == NULL) return XXH_ERROR;
+
+ /* Fill secretBuffer with a copy of customSeed - repeat as needed */
+ { size_t pos = 0;
+ while (pos < secretSize) {
+ size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
+ memcpy((char*)secretBuffer + pos, customSeed, toCopy);
+ pos += toCopy;
+ } }
+
+ { size_t const nbSeg16 = secretSize / 16;
+ size_t n;
+ XXH128_canonical_t scrambler;
+ XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
+ for (n=0; n<nbSeg16; n++) {
+ XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
+ XXH3_combine16((char*)secretBuffer + n*16, h128);
+ }
+ /* last segment */
+ XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
+ }
+ return XXH_OK;
+}
+
+/*! @ingroup xxh3_family */
+XXH_PUBLIC_API void
+XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
+{
+ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+ XXH3_initCustomSecret(secret, seed);
+ XXH_ASSERT(secretBuffer != NULL);
+ memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
+}
+
+
+
+/* Pop our optimization override from above */
+#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
+ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
+ && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+# pragma GCC pop_options
+#endif
#endif /* XXH_NO_LONG_LONG */
+#endif /* XXH_NO_XXH3 */
+/*!
+ * @}
+ */
#endif /* XXH_IMPLEMENTATION */