Welcome to mirror list, hosted at ThFree Co, Russian Federation.

CSharpResolver.cs « Resolver « ICSharpCode.NRefactory.CSharp - github.com/xamarin/NRefactory.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: eb9495767b68cd99e6d1424f7edcb78e67968db9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
// Copyright (c) 2010-2013 AlphaSierraPapa for the SharpDevelop Team
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
// 
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using ICSharpCode.NRefactory.CSharp.TypeSystem;
using ICSharpCode.NRefactory.Semantics;
using ICSharpCode.NRefactory.TypeSystem;
using ICSharpCode.NRefactory.TypeSystem.Implementation;
using ICSharpCode.NRefactory.Utils;

namespace ICSharpCode.NRefactory.CSharp.Resolver
{
	/// <summary>
	/// Contains the main resolver logic.
	/// </summary>
	/// <remarks>
	/// This class is thread-safe.
	/// </remarks>
	public class CSharpResolver : ICodeContext
	{
		static readonly ResolveResult ErrorResult = ErrorResolveResult.UnknownError;
		readonly ICompilation compilation;
		internal readonly CSharpConversions conversions;
		readonly CSharpTypeResolveContext context;
		readonly bool checkForOverflow;
		readonly bool isWithinLambdaExpression;
		
		#region Constructor
		public CSharpResolver(ICompilation compilation)
		{
			if (compilation == null)
				throw new ArgumentNullException("compilation");
			this.compilation = compilation;
			this.conversions = CSharpConversions.Get(compilation);
			this.context = new CSharpTypeResolveContext(compilation.MainAssembly);
			
			var pc = compilation.MainAssembly.UnresolvedAssembly as CSharpProjectContent;
			if (pc != null) {
				this.checkForOverflow = pc.CompilerSettings.CheckForOverflow;
			}
		}
		
		public CSharpResolver(CSharpTypeResolveContext context)
		{
			if (context == null)
				throw new ArgumentNullException("context");
			this.compilation = context.Compilation;
			this.conversions = CSharpConversions.Get(compilation);
			this.context = context;
			if (context.CurrentTypeDefinition != null)
				currentTypeDefinitionCache = new TypeDefinitionCache(context.CurrentTypeDefinition);
		}
		
		private CSharpResolver(ICompilation compilation, CSharpConversions conversions, CSharpTypeResolveContext context, bool checkForOverflow, bool isWithinLambdaExpression, TypeDefinitionCache currentTypeDefinitionCache, ImmutableStack<IVariable> localVariableStack, ObjectInitializerContext objectInitializerStack)
		{
			this.compilation = compilation;
			this.conversions = conversions;
			this.context = context;
			this.checkForOverflow = checkForOverflow;
			this.isWithinLambdaExpression = isWithinLambdaExpression;
			this.currentTypeDefinitionCache = currentTypeDefinitionCache;
			this.localVariableStack = localVariableStack;
			this.objectInitializerStack = objectInitializerStack;
		}
		#endregion
		
		#region Properties
		/// <summary>
		/// Gets the compilation used by the resolver.
		/// </summary>
		public ICompilation Compilation {
			get { return compilation; }
		}
		
		/// <summary>
		/// Gets the current type resolve context.
		/// </summary>
		public CSharpTypeResolveContext CurrentTypeResolveContext {
			get { return context; }
		}

		IAssembly ITypeResolveContext.CurrentAssembly {
			get { return context.CurrentAssembly; }
		}
		
		CSharpResolver WithContext(CSharpTypeResolveContext newContext)
		{
			return new CSharpResolver(compilation, conversions, newContext, checkForOverflow, isWithinLambdaExpression, currentTypeDefinitionCache, localVariableStack, objectInitializerStack);
		}
		
		/// <summary>
		/// Gets whether the current context is <c>checked</c>.
		/// </summary>
		public bool CheckForOverflow {
			get { return checkForOverflow; }
		}
		
		/// <summary>
		/// Sets whether the current context is <c>checked</c>.
		/// </summary>
		public CSharpResolver WithCheckForOverflow(bool checkForOverflow)
		{
			if (checkForOverflow == this.checkForOverflow)
				return this;
			return new CSharpResolver(compilation, conversions, context, checkForOverflow, isWithinLambdaExpression, currentTypeDefinitionCache, localVariableStack, objectInitializerStack);
		}
		
		/// <summary>
		/// Gets whether the resolver is currently within a lambda expression or anonymous method.
		/// </summary>
		public bool IsWithinLambdaExpression {
			get { return isWithinLambdaExpression; }
		}
		
		/// <summary>
		/// Sets whether the resolver is currently within a lambda expression.
		/// </summary>
		public CSharpResolver WithIsWithinLambdaExpression(bool isWithinLambdaExpression)
		{
			return new CSharpResolver(compilation, conversions, context, checkForOverflow, isWithinLambdaExpression, currentTypeDefinitionCache, localVariableStack, objectInitializerStack);
		}
		
		/// <summary>
		/// Gets the current member definition that is used to look up identifiers as parameters
		/// or type parameters.
		/// </summary>
		public IMember CurrentMember {
			get { return context.CurrentMember; }
		}
		
		/// <summary>
		/// Sets the current member definition.
		/// </summary>
		/// <remarks>Don't forget to also set CurrentTypeDefinition when setting CurrentMember;
		/// setting one of the properties does not automatically set the other.</remarks>
		public CSharpResolver WithCurrentMember(IMember member)
		{
			return WithContext(context.WithCurrentMember(member));
		}
		
		ITypeResolveContext ITypeResolveContext.WithCurrentMember(IMember member)
		{
			return WithCurrentMember(member);
		}
		
		/// <summary>
		/// Gets the current using scope that is used to look up identifiers as class names.
		/// </summary>
		public ResolvedUsingScope CurrentUsingScope {
			get { return context.CurrentUsingScope; }
		}
		
		/// <summary>
		/// Sets the current using scope that is used to look up identifiers as class names.
		/// </summary>
		public CSharpResolver WithCurrentUsingScope(ResolvedUsingScope usingScope)
		{
			return WithContext(context.WithUsingScope(usingScope));
		}
		#endregion
		
		#region Per-CurrentTypeDefinition Cache
		readonly TypeDefinitionCache currentTypeDefinitionCache;
		
		/// <summary>
		/// Gets the current type definition.
		/// </summary>
		public ITypeDefinition CurrentTypeDefinition {
			get { return context.CurrentTypeDefinition; }
		}
		
		/// <summary>
		/// Sets the current type definition.
		/// </summary>
		public CSharpResolver WithCurrentTypeDefinition(ITypeDefinition typeDefinition)
		{
			if (this.CurrentTypeDefinition == typeDefinition)
				return this;
			
			TypeDefinitionCache newTypeDefinitionCache;
			if (typeDefinition != null)
				newTypeDefinitionCache = new TypeDefinitionCache(typeDefinition);
			else
				newTypeDefinitionCache = null;
			
			return new CSharpResolver(compilation, conversions, context.WithCurrentTypeDefinition(typeDefinition),
			                          checkForOverflow, isWithinLambdaExpression, newTypeDefinitionCache, localVariableStack, objectInitializerStack);
		}
		
		ITypeResolveContext ITypeResolveContext.WithCurrentTypeDefinition(ITypeDefinition typeDefinition)
		{
			return WithCurrentTypeDefinition(typeDefinition);
		}
		
		sealed class TypeDefinitionCache
		{
			public readonly ITypeDefinition TypeDefinition;
			public readonly Dictionary<string, ResolveResult> SimpleNameLookupCacheExpression = new Dictionary<string, ResolveResult>();
			public readonly Dictionary<string, ResolveResult> SimpleNameLookupCacheInvocationTarget = new Dictionary<string, ResolveResult>();
			public readonly Dictionary<string, ResolveResult> SimpleTypeLookupCache = new Dictionary<string, ResolveResult>();
			
			public TypeDefinitionCache(ITypeDefinition typeDefinition)
			{
				this.TypeDefinition = typeDefinition;
			}
		}
		#endregion
		
		#region Local Variable Management
		
		// We store the local variables in an immutable stack.
		// The beginning of a block is marked by a null entry.
		
		// This data structure is used to allow efficient cloning of the resolver with its local variable context.
		readonly ImmutableStack<IVariable> localVariableStack = ImmutableStack<IVariable>.Empty;
		
		CSharpResolver WithLocalVariableStack(ImmutableStack<IVariable> stack)
		{
			return new CSharpResolver(compilation, conversions, context, checkForOverflow, isWithinLambdaExpression, currentTypeDefinitionCache, stack, objectInitializerStack);
		}
		
		/// <summary>
		/// Opens a new scope for local variables.
		/// </summary>
		public CSharpResolver PushBlock()
		{
			return WithLocalVariableStack(localVariableStack.Push(null));
		}
		
		/// <summary>
		/// Closes the current scope for local variables; removing all variables in that scope.
		/// </summary>
		public CSharpResolver PopBlock()
		{
			var stack = localVariableStack;
			IVariable removedVar;
			do {
				removedVar = stack.Peek();
				stack = stack.Pop();
			} while (removedVar != null);
			return WithLocalVariableStack(stack);
		}
		
		/// <summary>
		/// Adds a new variable or lambda parameter to the current block.
		/// </summary>
		public CSharpResolver AddVariable(IVariable variable)
		{
			if (variable == null)
				throw new ArgumentNullException("variable");
			return WithLocalVariableStack(localVariableStack.Push(variable));
		}
		
		/// <summary>
		/// Removes the variable that was just added.
		/// </summary>
		public CSharpResolver PopLastVariable()
		{
			if (localVariableStack.Peek() == null)
				throw new InvalidOperationException("There is no variable within the current block.");
			return WithLocalVariableStack(localVariableStack.Pop());
		}
		
		/// <summary>
		/// Gets all currently visible local variables and lambda parameters.
		/// Does not include method parameters.
		/// </summary>
		public IEnumerable<IVariable> LocalVariables {
			get {
				return localVariableStack.Where(v => v != null);
			}
		}
		#endregion
		
		#region Object Initializer Context
		sealed class ObjectInitializerContext
		{
			internal readonly ResolveResult initializedObject;
			internal readonly ObjectInitializerContext prev;
			
			public ObjectInitializerContext(ResolveResult initializedObject, CSharpResolver.ObjectInitializerContext prev)
			{
				this.initializedObject = initializedObject;
				this.prev = prev;
			}
		}
		
		readonly ObjectInitializerContext objectInitializerStack;
		
		CSharpResolver WithObjectInitializerStack(ObjectInitializerContext stack)
		{
			return new CSharpResolver(compilation, conversions, context, checkForOverflow, isWithinLambdaExpression, currentTypeDefinitionCache, localVariableStack, stack);
		}
		
		/// <summary>
		/// Pushes the type of the object that is currently being initialized.
		/// </summary>
		public CSharpResolver PushObjectInitializer(ResolveResult initializedObject)
		{
			if (initializedObject == null)
				throw new ArgumentNullException("initializedObject");
			return WithObjectInitializerStack(new ObjectInitializerContext(initializedObject, objectInitializerStack));
		}
		
		public CSharpResolver PopObjectInitializer()
		{
			if (objectInitializerStack == null)
				throw new InvalidOperationException();
			return WithObjectInitializerStack(objectInitializerStack.prev);
		}
		
		/// <summary>
		/// Gets whether this context is within an object initializer.
		/// </summary>
		public bool IsInObjectInitializer {
			get { return objectInitializerStack != null; }
		}
		
		/// <summary>
		/// Gets the current object initializer. This usually is an <see cref="InitializedObjectResolveResult"/>
		/// or (for nested initializers) a semantic tree based on an <see cref="InitializedObjectResolveResult"/>.
		/// Returns ErrorResolveResult if there is no object initializer.
		/// </summary>
		public ResolveResult CurrentObjectInitializer {
			get {
				return objectInitializerStack != null ? objectInitializerStack.initializedObject : ErrorResult;
			}
		}
		
		/// <summary>
		/// Gets the type of the object currently being initialized.
		/// Returns SharedTypes.Unknown if no object initializer is currently open (or if the object initializer
		/// has unknown type).
		/// </summary>
		public IType CurrentObjectInitializerType {
			get { return CurrentObjectInitializer.Type; }
		}
		#endregion
		
		#region Clone
		/// <summary>
		/// Creates a copy of this CSharp resolver.
		/// </summary>
		[Obsolete("CSharpResolver is immutable, cloning is no longer necessary")]
		public CSharpResolver Clone()
		{
			return this;
		}
		#endregion
		
		#region ResolveUnaryOperator
		#region ResolveUnaryOperator method
		public ResolveResult ResolveUnaryOperator(UnaryOperatorType op, ResolveResult expression)
		{
			if (expression.Type.Kind == TypeKind.Dynamic) {
				if (op == UnaryOperatorType.Await) {
					return new AwaitResolveResult(SpecialType.Dynamic, new DynamicInvocationResolveResult(new DynamicMemberResolveResult(expression, "GetAwaiter"), DynamicInvocationType.Invocation, EmptyList<ResolveResult>.Instance), SpecialType.Dynamic, null, null, null);
				}
				else {
					return UnaryOperatorResolveResult(SpecialType.Dynamic, op, expression);
				}
			}
			
			// C# 4.0 spec: §7.3.3 Unary operator overload resolution
			string overloadableOperatorName = GetOverloadableOperatorName(op);
			if (overloadableOperatorName == null) {
				switch (op) {
					case UnaryOperatorType.Dereference:
						PointerType p = expression.Type as PointerType;
						if (p != null)
							return UnaryOperatorResolveResult(p.ElementType, op, expression);
						else
							return ErrorResult;
					case UnaryOperatorType.AddressOf:
						return UnaryOperatorResolveResult(new PointerType(expression.Type), op, expression);
					case UnaryOperatorType.Await: {
						ResolveResult getAwaiterMethodGroup = ResolveMemberAccess(expression, "GetAwaiter", EmptyList<IType>.Instance, NameLookupMode.InvocationTarget);
						ResolveResult getAwaiterInvocation = ResolveInvocation(getAwaiterMethodGroup, new ResolveResult[0], argumentNames: null, allowOptionalParameters: false);

						var lookup = CreateMemberLookup();
						IMethod getResultMethod;
						IType awaitResultType;
						var getResultMethodGroup = lookup.Lookup(getAwaiterInvocation, "GetResult", EmptyList<IType>.Instance, true) as MethodGroupResolveResult;
						if (getResultMethodGroup != null) {
							var getResultOR = getResultMethodGroup.PerformOverloadResolution(compilation, new ResolveResult[0], allowExtensionMethods: false, conversions: conversions);
							getResultMethod = getResultOR.FoundApplicableCandidate ? getResultOR.GetBestCandidateWithSubstitutedTypeArguments() as IMethod : null;
							awaitResultType = getResultMethod != null ? getResultMethod.ReturnType : SpecialType.UnknownType;
						}
						else {
							getResultMethod = null;
							awaitResultType = SpecialType.UnknownType;
						}

						var isCompletedRR = lookup.Lookup(getAwaiterInvocation, "IsCompleted", EmptyList<IType>.Instance, false);
						var isCompletedProperty = (isCompletedRR is MemberResolveResult ? ((MemberResolveResult)isCompletedRR).Member as IProperty : null);
						if (isCompletedProperty != null && (!isCompletedProperty.ReturnType.IsKnownType(KnownTypeCode.Boolean) || !isCompletedProperty.CanGet))
							isCompletedProperty = null;

						var interfaceOnCompleted = compilation.FindType(KnownTypeCode.INotifyCompletion).GetMethods().FirstOrDefault(x => x.Name == "OnCompleted");
						var interfaceUnsafeOnCompleted = compilation.FindType(KnownTypeCode.ICriticalNotifyCompletion).GetMethods().FirstOrDefault(x => x.Name == "UnsafeOnCompleted");

						IMethod onCompletedMethod = null;
						var candidates = getAwaiterInvocation.Type.GetMethods().Where(x => x.ImplementedInterfaceMembers.Select(y => y.MemberDefinition).Contains(interfaceUnsafeOnCompleted)).ToList();
						if (candidates.Count == 0) {
							candidates = getAwaiterInvocation.Type.GetMethods().Where(x => x.ImplementedInterfaceMembers.Select(y => y.MemberDefinition).Contains(interfaceOnCompleted)).ToList();
							if (candidates.Count == 1)
								onCompletedMethod = candidates[0];
						}
						else if (candidates.Count == 1) {
							onCompletedMethod = candidates[0];
						}

						return new AwaitResolveResult(awaitResultType, getAwaiterInvocation, getAwaiterInvocation.Type, isCompletedProperty, onCompletedMethod, getResultMethod);
					}

					default:
						return ErrorResolveResult.UnknownError;
				}
			}
			// If the type is nullable, get the underlying type:
			IType type = NullableType.GetUnderlyingType(expression.Type);
			bool isNullable = NullableType.IsNullable(expression.Type);
			
			// the operator is overloadable:
			OverloadResolution userDefinedOperatorOR = CreateOverloadResolution(new[] { expression });
			foreach (var candidate in GetUserDefinedOperatorCandidates(type, overloadableOperatorName)) {
				userDefinedOperatorOR.AddCandidate(candidate);
			}
			if (userDefinedOperatorOR.FoundApplicableCandidate) {
				return CreateResolveResultForUserDefinedOperator(userDefinedOperatorOR, UnaryOperatorExpression.GetLinqNodeType(op, this.CheckForOverflow));
			}
			
			expression = UnaryNumericPromotion(op, ref type, isNullable, expression);
			CSharpOperators.OperatorMethod[] methodGroup;
			CSharpOperators operators = CSharpOperators.Get(compilation);
			switch (op) {
				case UnaryOperatorType.Increment:
				case UnaryOperatorType.Decrement:
				case UnaryOperatorType.PostIncrement:
				case UnaryOperatorType.PostDecrement:
					// C# 4.0 spec: §7.6.9 Postfix increment and decrement operators
					// C# 4.0 spec: §7.7.5 Prefix increment and decrement operators
					TypeCode code = ReflectionHelper.GetTypeCode(type);
					if ((code >= TypeCode.Char && code <= TypeCode.Decimal) || type.Kind == TypeKind.Enum || type.Kind == TypeKind.Pointer)
						return UnaryOperatorResolveResult(expression.Type, op, expression, isNullable);
					else
						return new ErrorResolveResult(expression.Type);
				case UnaryOperatorType.Plus:
					methodGroup = operators.UnaryPlusOperators;
					break;
				case UnaryOperatorType.Minus:
					methodGroup = CheckForOverflow ? operators.CheckedUnaryMinusOperators : operators.UncheckedUnaryMinusOperators;
					break;
				case UnaryOperatorType.Not:
					methodGroup = operators.LogicalNegationOperators;
					break;
				case UnaryOperatorType.BitNot:
					if (type.Kind == TypeKind.Enum) {
						if (expression.IsCompileTimeConstant && !isNullable && expression.ConstantValue != null) {
							// evaluate as (E)(~(U)x);
							var U = compilation.FindType(expression.ConstantValue.GetType());
							var unpackedEnum = new ConstantResolveResult(U, expression.ConstantValue);
							var rr = ResolveUnaryOperator(op, unpackedEnum);
							rr = WithCheckForOverflow(false).ResolveCast(type, rr);
							if (rr.IsCompileTimeConstant)
								return rr;
						} 
						return UnaryOperatorResolveResult(expression.Type, op, expression, isNullable);
					} else {
						methodGroup = operators.BitwiseComplementOperators;
						break;
					}
				default:
					throw new InvalidOperationException();
			}
			OverloadResolution builtinOperatorOR = CreateOverloadResolution(new[] { expression });
			foreach (var candidate in methodGroup) {
				builtinOperatorOR.AddCandidate(candidate);
			}
			CSharpOperators.UnaryOperatorMethod m = (CSharpOperators.UnaryOperatorMethod)builtinOperatorOR.BestCandidate;
			IType resultType = m.ReturnType;
			if (builtinOperatorOR.BestCandidateErrors != OverloadResolutionErrors.None) {
				if (userDefinedOperatorOR.BestCandidate != null) {
					// If there are any user-defined operators, prefer those over the built-in operators.
					// It'll be a more informative error.
					return CreateResolveResultForUserDefinedOperator(userDefinedOperatorOR, UnaryOperatorExpression.GetLinqNodeType(op, this.CheckForOverflow));
				} else if (builtinOperatorOR.BestCandidateAmbiguousWith != null) {
					// If the best candidate is ambiguous, just use the input type instead
					// of picking one of the ambiguous overloads.
					return new ErrorResolveResult(expression.Type);
				} else {
					return new ErrorResolveResult(resultType);
				}
			} else if (expression.IsCompileTimeConstant && m.CanEvaluateAtCompileTime) {
				object val;
				try {
					val = m.Invoke(this, expression.ConstantValue);
				} catch (ArithmeticException) {
					return new ErrorResolveResult(resultType);
				}
				return new ConstantResolveResult(resultType, val);
			} else {
				expression = Convert(expression, m.Parameters[0].Type, builtinOperatorOR.ArgumentConversions[0]);
				return UnaryOperatorResolveResult(resultType, op, expression,
				                                  builtinOperatorOR.BestCandidate is OverloadResolution.ILiftedOperator);
			}
		}
		
		OperatorResolveResult UnaryOperatorResolveResult(IType resultType, UnaryOperatorType op, ResolveResult expression, bool isLifted = false)
		{
			return new OperatorResolveResult(
				resultType, UnaryOperatorExpression.GetLinqNodeType(op, this.CheckForOverflow),
				null, isLifted, new[] { expression });
		}
		#endregion
		
		#region UnaryNumericPromotion
		ResolveResult UnaryNumericPromotion(UnaryOperatorType op, ref IType type, bool isNullable, ResolveResult expression)
		{
			// C# 4.0 spec: §7.3.6.1
			TypeCode code = ReflectionHelper.GetTypeCode(type);
			if (isNullable && type.Kind == TypeKind.Null)
				code = TypeCode.SByte; // cause promotion of null to int32
			switch (op) {
				case UnaryOperatorType.Minus:
					if (code == TypeCode.UInt32) {
						type = compilation.FindType(KnownTypeCode.Int64);
						return Convert(expression, MakeNullable(type, isNullable),
						               isNullable ? Conversion.ImplicitNullableConversion : Conversion.ImplicitNumericConversion);
					}
					goto case UnaryOperatorType.Plus;
				case UnaryOperatorType.Plus:
				case UnaryOperatorType.BitNot:
					if (code >= TypeCode.Char && code <= TypeCode.UInt16) {
						type = compilation.FindType(KnownTypeCode.Int32);
						return Convert(expression, MakeNullable(type, isNullable),
						               isNullable ? Conversion.ImplicitNullableConversion : Conversion.ImplicitNumericConversion);
					}
					break;
			}
			return expression;
		}
		#endregion
		
		#region GetOverloadableOperatorName
		static string GetOverloadableOperatorName(UnaryOperatorType op)
		{
			switch (op) {
				case UnaryOperatorType.Not:
					return "op_LogicalNot";
				case UnaryOperatorType.BitNot:
					return "op_OnesComplement";
				case UnaryOperatorType.Minus:
					return "op_UnaryNegation";
				case UnaryOperatorType.Plus:
					return "op_UnaryPlus";
				case UnaryOperatorType.Increment:
				case UnaryOperatorType.PostIncrement:
					return "op_Increment";
				case UnaryOperatorType.Decrement:
				case UnaryOperatorType.PostDecrement:
					return "op_Decrement";
				default:
					return null;
			}
		}
		#endregion
		#endregion
		
		#region ResolveBinaryOperator
		#region ResolveBinaryOperator method
		public ResolveResult ResolveBinaryOperator(BinaryOperatorType op, ResolveResult lhs, ResolveResult rhs)
		{
			if (lhs.Type.Kind == TypeKind.Dynamic || rhs.Type.Kind == TypeKind.Dynamic) {
				lhs = Convert(lhs, SpecialType.Dynamic);
				rhs = Convert(rhs, SpecialType.Dynamic);
				return BinaryOperatorResolveResult(SpecialType.Dynamic, lhs, op, rhs);
			}
			
			// C# 4.0 spec: §7.3.4 Binary operator overload resolution
			string overloadableOperatorName = GetOverloadableOperatorName(op);
			if (overloadableOperatorName == null) {
				
				// Handle logical and/or exactly as bitwise and/or:
				// - If the user overloads a bitwise operator, that implicitly creates the corresponding logical operator.
				// - If both inputs are compile-time constants, it doesn't matter that we don't short-circuit.
				// - If inputs aren't compile-time constants, we don't evaluate anything, so again it doesn't matter that we don't short-circuit
				if (op == BinaryOperatorType.ConditionalAnd) {
					overloadableOperatorName = GetOverloadableOperatorName(BinaryOperatorType.BitwiseAnd);
				} else if (op == BinaryOperatorType.ConditionalOr) {
					overloadableOperatorName = GetOverloadableOperatorName(BinaryOperatorType.BitwiseOr);
				} else if (op == BinaryOperatorType.NullCoalescing) {
					// null coalescing operator is not overloadable and needs to be handled separately
					return ResolveNullCoalescingOperator(lhs, rhs);
				} else {
					return ErrorResolveResult.UnknownError;
				}
			}
			
			// If the type is nullable, get the underlying type:
			bool isNullable = NullableType.IsNullable(lhs.Type) || NullableType.IsNullable(rhs.Type);
			IType lhsType = NullableType.GetUnderlyingType(lhs.Type);
			IType rhsType = NullableType.GetUnderlyingType(rhs.Type);
			
			// the operator is overloadable:
			OverloadResolution userDefinedOperatorOR = CreateOverloadResolution(new[] { lhs, rhs });
			HashSet<IParameterizedMember> userOperatorCandidates = new HashSet<IParameterizedMember>();
			userOperatorCandidates.UnionWith(GetUserDefinedOperatorCandidates(lhsType, overloadableOperatorName));
			userOperatorCandidates.UnionWith(GetUserDefinedOperatorCandidates(rhsType, overloadableOperatorName));
			foreach (var candidate in userOperatorCandidates) {
				userDefinedOperatorOR.AddCandidate(candidate);
			}
			if (userDefinedOperatorOR.FoundApplicableCandidate) {
				return CreateResolveResultForUserDefinedOperator(userDefinedOperatorOR, BinaryOperatorExpression.GetLinqNodeType(op, this.CheckForOverflow));
			}
			
			if (lhsType.Kind == TypeKind.Null && rhsType.IsReferenceType == false
			    || lhsType.IsReferenceType == false && rhsType.Kind == TypeKind.Null)
			{
				isNullable = true;
			}
			if (op == BinaryOperatorType.ShiftLeft || op == BinaryOperatorType.ShiftRight) {
				// special case: the shift operators allow "var x = null << null", producing int?.
				if (lhsType.Kind == TypeKind.Null && rhsType.Kind == TypeKind.Null)
					isNullable = true;
				// for shift operators, do unary promotion independently on both arguments
				lhs = UnaryNumericPromotion(UnaryOperatorType.Plus, ref lhsType, isNullable, lhs);
				rhs = UnaryNumericPromotion(UnaryOperatorType.Plus, ref rhsType, isNullable, rhs);
			} else {
				bool allowNullableConstants = op == BinaryOperatorType.Equality || op == BinaryOperatorType.InEquality;
				if (!BinaryNumericPromotion(isNullable, ref lhs, ref rhs, allowNullableConstants))
					return new ErrorResolveResult(lhs.Type);
			}
			// re-read underlying types after numeric promotion
			lhsType = NullableType.GetUnderlyingType(lhs.Type);
			rhsType = NullableType.GetUnderlyingType(rhs.Type);
			
			IEnumerable<CSharpOperators.OperatorMethod> methodGroup;
			CSharpOperators operators = CSharpOperators.Get(compilation);
			switch (op) {
				case BinaryOperatorType.Multiply:
					methodGroup = operators.MultiplicationOperators;
					break;
				case BinaryOperatorType.Divide:
					methodGroup = operators.DivisionOperators;
					break;
				case BinaryOperatorType.Modulus:
					methodGroup = operators.RemainderOperators;
					break;
				case BinaryOperatorType.Add:
					methodGroup = operators.AdditionOperators;
					{
						if (lhsType.Kind == TypeKind.Enum) {
							// E operator +(E x, U y);
							IType underlyingType = MakeNullable(GetEnumUnderlyingType(lhsType), isNullable);
							if (TryConvertEnum(ref rhs, underlyingType, ref isNullable, ref lhs)) {
								return HandleEnumOperator(isNullable, lhsType, op, lhs, rhs);
							}
						}
						if (rhsType.Kind == TypeKind.Enum) {
							// E operator +(U x, E y);
							IType underlyingType = MakeNullable(GetEnumUnderlyingType(rhsType), isNullable);
							if (TryConvertEnum(ref lhs, underlyingType, ref isNullable, ref rhs)) {
								return HandleEnumOperator(isNullable, rhsType, op, lhs, rhs);
							}
						}
						
						if (lhsType.Kind == TypeKind.Delegate && TryConvert(ref rhs, lhsType)) {
							return BinaryOperatorResolveResult(lhsType, lhs, op, rhs);
						} else if (rhsType.Kind == TypeKind.Delegate && TryConvert(ref lhs, rhsType)) {
							return BinaryOperatorResolveResult(rhsType, lhs, op, rhs);
						}
						
						if (lhsType is PointerType) {
							methodGroup = new [] {
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.Int32),
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.UInt32),
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.Int64),
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.UInt64)
							};
						} else if (rhsType is PointerType) {
							methodGroup = new [] {
								PointerArithmeticOperator(rhsType, KnownTypeCode.Int32, rhsType),
								PointerArithmeticOperator(rhsType, KnownTypeCode.UInt32, rhsType),
								PointerArithmeticOperator(rhsType, KnownTypeCode.Int64, rhsType),
								PointerArithmeticOperator(rhsType, KnownTypeCode.UInt64, rhsType)
							};
						}
						if (lhsType.Kind == TypeKind.Null && rhsType.Kind == TypeKind.Null)
							return new ErrorResolveResult(SpecialType.NullType);
					}
					break;
				case BinaryOperatorType.Subtract:
					methodGroup = operators.SubtractionOperators;
					{
						if (lhsType.Kind == TypeKind.Enum) {
							// U operator –(E x, E y);
							if (TryConvertEnum(ref rhs, lhs.Type, ref isNullable, ref lhs, allowConversionFromConstantZero: false)) {
								return HandleEnumSubtraction(isNullable, lhsType, lhs, rhs);
							}

							// E operator –(E x, U y);
							IType underlyingType = MakeNullable(GetEnumUnderlyingType(lhsType), isNullable);
							if (TryConvertEnum(ref rhs, underlyingType, ref isNullable, ref lhs)) {
								return HandleEnumOperator(isNullable, lhsType, op, lhs, rhs);
							}
						}
						if (rhsType.Kind == TypeKind.Enum) {
							// U operator –(E x, E y);
							if (TryConvertEnum(ref lhs, rhs.Type, ref isNullable, ref rhs)) {
								return HandleEnumSubtraction(isNullable, rhsType, lhs, rhs);
							}

							// E operator -(U x, E y);
							IType underlyingType = MakeNullable(GetEnumUnderlyingType(rhsType), isNullable);
							if (TryConvertEnum(ref lhs, underlyingType, ref isNullable, ref rhs)) {
								return HandleEnumOperator(isNullable, rhsType, op, lhs, rhs);
							}
						}
						
						if (lhsType.Kind == TypeKind.Delegate && TryConvert(ref rhs, lhsType)) {
							return BinaryOperatorResolveResult(lhsType, lhs, op, rhs);
						} else if (rhsType.Kind == TypeKind.Delegate && TryConvert(ref lhs, rhsType)) {
							return BinaryOperatorResolveResult(rhsType, lhs, op, rhs);
						}
						
						if (lhsType is PointerType) {
							if (rhsType is PointerType) {
								IType int64 = compilation.FindType(KnownTypeCode.Int64);
								if (lhsType.Equals(rhsType)) {
									return BinaryOperatorResolveResult(int64, lhs, op, rhs);
								} else {
									return new ErrorResolveResult(int64);
								}
							}
							methodGroup = new [] {
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.Int32),
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.UInt32),
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.Int64),
								PointerArithmeticOperator(lhsType, lhsType, KnownTypeCode.UInt64)
							};
						}
						
						if (lhsType.Kind == TypeKind.Null && rhsType.Kind == TypeKind.Null)
							return new ErrorResolveResult(SpecialType.NullType);
					}
					break;
				case BinaryOperatorType.ShiftLeft:
					methodGroup = operators.ShiftLeftOperators;
					break;
				case BinaryOperatorType.ShiftRight:
					methodGroup = operators.ShiftRightOperators;
					break;
				case BinaryOperatorType.Equality:
				case BinaryOperatorType.InEquality:
				case BinaryOperatorType.LessThan:
				case BinaryOperatorType.GreaterThan:
				case BinaryOperatorType.LessThanOrEqual:
				case BinaryOperatorType.GreaterThanOrEqual:
					{
						if (lhsType.Kind == TypeKind.Enum && TryConvert(ref rhs, lhs.Type)) {
							// bool operator op(E x, E y);
							return HandleEnumComparison(op, lhsType, isNullable, lhs, rhs);
						} else if (rhsType.Kind == TypeKind.Enum && TryConvert(ref lhs, rhs.Type)) {
							// bool operator op(E x, E y);
							return HandleEnumComparison(op, rhsType, isNullable, lhs, rhs);
						} else if (lhsType is PointerType && rhsType is PointerType) {
							return BinaryOperatorResolveResult(compilation.FindType(KnownTypeCode.Boolean), lhs, op, rhs);
						}
						if (op == BinaryOperatorType.Equality || op == BinaryOperatorType.InEquality) {
							if (lhsType.IsReferenceType == true && rhsType.IsReferenceType == true) {
								// If it's a reference comparison
								if (op == BinaryOperatorType.Equality)
									methodGroup = operators.ReferenceEqualityOperators;
								else
									methodGroup = operators.ReferenceInequalityOperators;
								break;
							} else if (lhsType.Kind == TypeKind.Null && IsNullableTypeOrNonValueType(rhs.Type)
							           || IsNullableTypeOrNonValueType(lhs.Type) && rhsType.Kind == TypeKind.Null) {
								// compare type parameter or nullable type with the null literal
								return BinaryOperatorResolveResult(compilation.FindType(KnownTypeCode.Boolean), lhs, op, rhs);
							}
						}
						switch (op) {
							case BinaryOperatorType.Equality:
								methodGroup = operators.ValueEqualityOperators;
								break;
							case BinaryOperatorType.InEquality:
								methodGroup = operators.ValueInequalityOperators;
								break;
							case BinaryOperatorType.LessThan:
								methodGroup = operators.LessThanOperators;
								break;
							case BinaryOperatorType.GreaterThan:
								methodGroup = operators.GreaterThanOperators;
								break;
							case BinaryOperatorType.LessThanOrEqual:
								methodGroup = operators.LessThanOrEqualOperators;
								break;
							case BinaryOperatorType.GreaterThanOrEqual:
								methodGroup = operators.GreaterThanOrEqualOperators;
								break;
							default:
								throw new InvalidOperationException();
						}
					}
					break;
				case BinaryOperatorType.BitwiseAnd:
				case BinaryOperatorType.BitwiseOr:
				case BinaryOperatorType.ExclusiveOr:
					{
						if (lhsType.Kind == TypeKind.Enum) {
							// bool operator op(E x, E y);
							if (TryConvertEnum(ref rhs, lhs.Type, ref isNullable, ref lhs)) {
								return HandleEnumOperator(isNullable, lhsType, op, lhs, rhs);
							}
						}

						if (rhsType.Kind == TypeKind.Enum) {
							// bool operator op(E x, E y);
							if (TryConvertEnum (ref lhs, rhs.Type, ref isNullable, ref rhs)) {
								return HandleEnumOperator(isNullable, rhsType, op, lhs, rhs);
							}
						}
						
						switch (op) {
							case BinaryOperatorType.BitwiseAnd:
								methodGroup = operators.BitwiseAndOperators;
								break;
							case BinaryOperatorType.BitwiseOr:
								methodGroup = operators.BitwiseOrOperators;
								break;
							case BinaryOperatorType.ExclusiveOr:
								methodGroup = operators.BitwiseXorOperators;
								break;
							default:
								throw new InvalidOperationException();
						}
					}
					break;
				case BinaryOperatorType.ConditionalAnd:
					methodGroup = operators.LogicalAndOperators;
					break;
				case BinaryOperatorType.ConditionalOr:
					methodGroup = operators.LogicalOrOperators;
					break;
				default:
					throw new InvalidOperationException();
			}
			OverloadResolution builtinOperatorOR = CreateOverloadResolution(new[] { lhs, rhs });
			foreach (var candidate in methodGroup) {
				builtinOperatorOR.AddCandidate(candidate);
			}
			CSharpOperators.BinaryOperatorMethod m = (CSharpOperators.BinaryOperatorMethod)builtinOperatorOR.BestCandidate;
			IType resultType = m.ReturnType;
			if (builtinOperatorOR.BestCandidateErrors != OverloadResolutionErrors.None) {
				// If there are any user-defined operators, prefer those over the built-in operators.
				// It'll be a more informative error.
				if (userDefinedOperatorOR.BestCandidate != null)
					return CreateResolveResultForUserDefinedOperator(userDefinedOperatorOR, BinaryOperatorExpression.GetLinqNodeType(op, this.CheckForOverflow));
				else
					return new ErrorResolveResult(resultType);
			} else if (lhs.IsCompileTimeConstant && rhs.IsCompileTimeConstant && m.CanEvaluateAtCompileTime) {
				object val;
				try {
					val = m.Invoke(this, lhs.ConstantValue, rhs.ConstantValue);
				} catch (ArithmeticException) {
					return new ErrorResolveResult(resultType);
				}
				return new ConstantResolveResult(resultType, val);
			} else {
				lhs = Convert(lhs, m.Parameters[0].Type, builtinOperatorOR.ArgumentConversions[0]);
				rhs = Convert(rhs, m.Parameters[1].Type, builtinOperatorOR.ArgumentConversions[1]);
				return BinaryOperatorResolveResult(resultType, lhs, op, rhs,
				                                   builtinOperatorOR.BestCandidate is OverloadResolution.ILiftedOperator);
			}
		}
		
		bool IsNullableTypeOrNonValueType(IType type)
		{
			return NullableType.IsNullable(type) || type.IsReferenceType != false;
		}
		
		ResolveResult BinaryOperatorResolveResult(IType resultType, ResolveResult lhs, BinaryOperatorType op, ResolveResult rhs, bool isLifted = false)
		{
			return new OperatorResolveResult(
				resultType, BinaryOperatorExpression.GetLinqNodeType(op, this.CheckForOverflow),
				null, isLifted, new[] { lhs, rhs });
		}
		#endregion
		
		#region Pointer arithmetic
		CSharpOperators.BinaryOperatorMethod PointerArithmeticOperator(IType resultType, IType inputType1, KnownTypeCode inputType2)
		{
			return PointerArithmeticOperator(resultType, inputType1, compilation.FindType(inputType2));
		}
		
		CSharpOperators.BinaryOperatorMethod PointerArithmeticOperator(IType resultType, KnownTypeCode inputType1, IType inputType2)
		{
			return PointerArithmeticOperator(resultType, compilation.FindType(inputType1), inputType2);
		}
		
		CSharpOperators.BinaryOperatorMethod PointerArithmeticOperator(IType resultType, IType inputType1, IType inputType2)
		{
			return new CSharpOperators.BinaryOperatorMethod(compilation) {
				ReturnType = resultType,
				Parameters = {
					new DefaultParameter(inputType1, string.Empty),
					new DefaultParameter(inputType2, string.Empty)
				}
			};
		}
		#endregion
		
		#region Enum helper methods
		IType GetEnumUnderlyingType(IType enumType)
		{
			ITypeDefinition def = enumType.GetDefinition();
			return def != null ? def.EnumUnderlyingType : SpecialType.UnknownType;
		}
		
		/// <summary>
		/// Handle the case where an enum value is compared with another enum value
		/// bool operator op(E x, E y);
		/// </summary>
		ResolveResult HandleEnumComparison(BinaryOperatorType op, IType enumType, bool isNullable, ResolveResult lhs, ResolveResult rhs)
		{
			// evaluate as ((U)x op (U)y)
			IType elementType = GetEnumUnderlyingType(enumType);
			if (lhs.IsCompileTimeConstant && rhs.IsCompileTimeConstant && !isNullable && elementType.Kind != TypeKind.Enum) {
				var rr = ResolveBinaryOperator(op, ResolveCast(elementType, lhs), ResolveCast(elementType, rhs));
				if (rr.IsCompileTimeConstant)
					return rr;
			}
			IType resultType = compilation.FindType(KnownTypeCode.Boolean);
			return BinaryOperatorResolveResult(resultType, lhs, op, rhs, isNullable);
		}
		
		/// <summary>
		/// Handle the case where an enum value is subtracted from another enum value
		/// U operator –(E x, E y);
		/// </summary>
		ResolveResult HandleEnumSubtraction(bool isNullable, IType enumType, ResolveResult lhs, ResolveResult rhs)
		{
			// evaluate as (U)((U)x – (U)y)
			IType elementType = GetEnumUnderlyingType(enumType);
			if (lhs.IsCompileTimeConstant && rhs.IsCompileTimeConstant && !isNullable && elementType.Kind != TypeKind.Enum) {
				var rr = ResolveBinaryOperator(BinaryOperatorType.Subtract, ResolveCast(elementType, lhs), ResolveCast(elementType, rhs));
				rr = WithCheckForOverflow(false).ResolveCast(elementType, rr);
				if (rr.IsCompileTimeConstant)
					return rr;
			}
			IType resultType = MakeNullable(elementType, isNullable);
			return BinaryOperatorResolveResult(resultType, lhs, BinaryOperatorType.Subtract, rhs, isNullable);
		}
		
		/// <summary>
		/// Handle the following enum operators:
		/// E operator +(E x, U y);
		/// E operator +(U x, E y);
		/// E operator –(E x, U y);
		/// E operator &amp;(E x, E y);
		/// E operator |(E x, E y);
		/// E operator ^(E x, E y);
		/// </summary>
		ResolveResult HandleEnumOperator(bool isNullable, IType enumType, BinaryOperatorType op, ResolveResult lhs, ResolveResult rhs)
		{
			// evaluate as (E)((U)x op (U)y)
			if (lhs.IsCompileTimeConstant && rhs.IsCompileTimeConstant && !isNullable) {
				IType elementType = GetEnumUnderlyingType(enumType);
				if (elementType.Kind != TypeKind.Enum) {
					var rr = ResolveBinaryOperator(op, ResolveCast(elementType, lhs), ResolveCast(elementType, rhs));
					rr = WithCheckForOverflow(false).ResolveCast(enumType, rr);
					if (rr.IsCompileTimeConstant) // only report result if it's a constant; use the regular OperatorResolveResult codepath otherwise
						return rr;
				}
			}
			IType resultType = MakeNullable(enumType, isNullable);
			return BinaryOperatorResolveResult(resultType, lhs, op, rhs, isNullable);
		}
		
		IType MakeNullable(IType type, bool isNullable)
		{
			if (isNullable)
				return NullableType.Create(compilation, type);
			else
				return type;
		}
		#endregion
		
		#region BinaryNumericPromotion
		bool BinaryNumericPromotion(bool isNullable, ref ResolveResult lhs, ref ResolveResult rhs, bool allowNullableConstants)
		{
			// C# 4.0 spec: §7.3.6.2
			TypeCode lhsCode = ReflectionHelper.GetTypeCode(NullableType.GetUnderlyingType(lhs.Type));
			TypeCode rhsCode = ReflectionHelper.GetTypeCode(NullableType.GetUnderlyingType(rhs.Type));
			// if one of the inputs is the null literal, promote that to the type of the other operand
			if (isNullable && lhs.Type.Kind == TypeKind.Null && rhsCode >= TypeCode.Boolean && rhsCode <= TypeCode.Decimal) {
				lhs = CastTo(rhsCode, isNullable, lhs, allowNullableConstants);
				lhsCode = rhsCode;
			} else if (isNullable && rhs.Type.Kind == TypeKind.Null && lhsCode >= TypeCode.Boolean && lhsCode <= TypeCode.Decimal) {
				rhs = CastTo(lhsCode, isNullable, rhs, allowNullableConstants);
				rhsCode = lhsCode;
			}
			bool bindingError = false;
			if (lhsCode >= TypeCode.Char && lhsCode <= TypeCode.Decimal
			    && rhsCode >= TypeCode.Char && rhsCode <= TypeCode.Decimal)
			{
				TypeCode targetType;
				if (lhsCode == TypeCode.Decimal || rhsCode == TypeCode.Decimal) {
					targetType = TypeCode.Decimal;
					bindingError = (lhsCode == TypeCode.Single || lhsCode == TypeCode.Double
					                || rhsCode == TypeCode.Single || rhsCode == TypeCode.Double);
				} else if (lhsCode == TypeCode.Double || rhsCode == TypeCode.Double) {
					targetType = TypeCode.Double;
				} else if (lhsCode == TypeCode.Single || rhsCode == TypeCode.Single) {
					targetType = TypeCode.Single;
				} else if (lhsCode == TypeCode.UInt64 || rhsCode == TypeCode.UInt64) {
					targetType = TypeCode.UInt64;
					bindingError = IsSigned(lhsCode, lhs) || IsSigned(rhsCode, rhs);
				} else if (lhsCode == TypeCode.Int64 || rhsCode == TypeCode.Int64) {
					targetType = TypeCode.Int64;
				} else if (lhsCode == TypeCode.UInt32 || rhsCode == TypeCode.UInt32) {
					targetType = (IsSigned(lhsCode, lhs) || IsSigned(rhsCode, rhs)) ? TypeCode.Int64 : TypeCode.UInt32;
				} else {
					targetType = TypeCode.Int32;
				}
				lhs = CastTo(targetType, isNullable, lhs, allowNullableConstants);
				rhs = CastTo(targetType, isNullable, rhs, allowNullableConstants);
			}
			return !bindingError;
		}
		
		bool IsSigned(TypeCode code, ResolveResult rr)
		{
			// Determine whether the rr with code==ReflectionHelper.GetTypeCode(NullableType.GetUnderlyingType(rr.Type))
			// is a signed primitive type.
			switch (code) {
				case TypeCode.SByte:
				case TypeCode.Int16:
					return true;
				case TypeCode.Int32:
					// for int, consider implicit constant expression conversion
					if (rr.IsCompileTimeConstant && rr.ConstantValue != null && (int)rr.ConstantValue >= 0)
						return false;
					else
						return true;
				case TypeCode.Int64:
					// for long, consider implicit constant expression conversion
					if (rr.IsCompileTimeConstant && rr.ConstantValue != null && (long)rr.ConstantValue >= 0)
						return false;
					else
						return true;
				default:
					return false;
			}
		}
		
		ResolveResult CastTo(TypeCode targetType, bool isNullable, ResolveResult expression, bool allowNullableConstants)
		{
			IType elementType = compilation.FindType(targetType);
			IType nullableType = MakeNullable(elementType, isNullable);
			if (nullableType.Equals(expression.Type))
				return expression;
			if (allowNullableConstants && expression.IsCompileTimeConstant) {
				if (expression.ConstantValue == null)
					return new ConstantResolveResult(nullableType, null);
				ResolveResult rr = ResolveCast(elementType, expression);
				if (rr.IsError)
					return rr;
				Debug.Assert(rr.IsCompileTimeConstant);
				return new ConstantResolveResult(nullableType, rr.ConstantValue);
			} else {
				return Convert(expression, nullableType,
				               isNullable ? Conversion.ImplicitNullableConversion : Conversion.ImplicitNumericConversion);
			}
		}
		#endregion
		
		#region GetOverloadableOperatorName
		static string GetOverloadableOperatorName(BinaryOperatorType op)
		{
			switch (op) {
				case BinaryOperatorType.Add:
					return "op_Addition";
				case BinaryOperatorType.Subtract:
					return "op_Subtraction";
				case BinaryOperatorType.Multiply:
					return "op_Multiply";
				case BinaryOperatorType.Divide:
					return "op_Division";
				case BinaryOperatorType.Modulus:
					return "op_Modulus";
				case BinaryOperatorType.BitwiseAnd:
					return "op_BitwiseAnd";
				case BinaryOperatorType.BitwiseOr:
					return "op_BitwiseOr";
				case BinaryOperatorType.ExclusiveOr:
					return "op_ExclusiveOr";
				case BinaryOperatorType.ShiftLeft:
					return "op_LeftShift";
				case BinaryOperatorType.ShiftRight:
					return "op_RightShift";
				case BinaryOperatorType.Equality:
					return "op_Equality";
				case BinaryOperatorType.InEquality:
					return "op_Inequality";
				case BinaryOperatorType.GreaterThan:
					return "op_GreaterThan";
				case BinaryOperatorType.LessThan:
					return "op_LessThan";
				case BinaryOperatorType.GreaterThanOrEqual:
					return "op_GreaterThanOrEqual";
				case BinaryOperatorType.LessThanOrEqual:
					return "op_LessThanOrEqual";
				default:
					return null;
			}
		}
		#endregion
		
		#region Null coalescing operator
		ResolveResult ResolveNullCoalescingOperator(ResolveResult lhs, ResolveResult rhs)
		{
			if (NullableType.IsNullable(lhs.Type)) {
				IType a0 = NullableType.GetUnderlyingType(lhs.Type);
				if (TryConvert(ref rhs, a0)) {
					return BinaryOperatorResolveResult(a0, lhs, BinaryOperatorType.NullCoalescing, rhs);
				}
			}
			if (TryConvert(ref rhs, lhs.Type)) {
				return BinaryOperatorResolveResult(lhs.Type, lhs, BinaryOperatorType.NullCoalescing, rhs);
			}
			if (TryConvert(ref lhs, rhs.Type)) {
				return BinaryOperatorResolveResult(rhs.Type, lhs, BinaryOperatorType.NullCoalescing, rhs);
			} else {
				return new ErrorResolveResult(lhs.Type);
			}
		}
		#endregion
		#endregion
		
		#region Get user-defined operator candidates
		IEnumerable<IParameterizedMember> GetUserDefinedOperatorCandidates(IType type, string operatorName)
		{
			if (operatorName == null)
				return EmptyList<IMethod>.Instance;
			TypeCode c = ReflectionHelper.GetTypeCode(type);
			if (TypeCode.Boolean <= c && c <= TypeCode.Decimal || c == TypeCode.String) {
				// The .NET framework contains some of C#'s built-in operators as user-defined operators.
				// However, we must not use those as user-defined operators (we would skip numeric promotion).
				return EmptyList<IMethod>.Instance;
			}
			// C# 4.0 spec: §7.3.5 Candidate user-defined operators
			var operators = type.GetMethods(m => m.IsOperator && m.Name == operatorName).ToList();
			LiftUserDefinedOperators(operators);
			return operators;
		}
		
		void LiftUserDefinedOperators(List<IMethod> operators)
		{
			int nonLiftedMethodCount = operators.Count;
			// Construct lifted operators
			for (int i = 0; i < nonLiftedMethodCount; i++) {
				var liftedMethod = LiftUserDefinedOperator(operators[i]);
				if (liftedMethod != null)
					operators.Add(liftedMethod);
			}
		}
		
		LiftedUserDefinedOperator LiftUserDefinedOperator(IMethod m)
		{
			if (IsComparisonOperator(m)) {
				if (!m.ReturnType.Equals(compilation.FindType(KnownTypeCode.Boolean)))
					return null; // cannot lift this operator
			} else {
				if (!NullableType.IsNonNullableValueType(m.ReturnType))
					return null; // cannot lift this operator
			}
			for (int i = 0; i < m.Parameters.Count; i++) {
				if (!NullableType.IsNonNullableValueType(m.Parameters[i].Type))
					return null; // cannot lift this operator
			}
			return new LiftedUserDefinedOperator(m);
		}
		
		static bool IsComparisonOperator(IMethod m)
		{
			var type = OperatorDeclaration.GetOperatorType(m.Name);
			return type.HasValue && type.Value.IsComparisonOperator();
		}
		
		sealed class LiftedUserDefinedOperator : SpecializedMethod, OverloadResolution.ILiftedOperator
		{
			internal readonly IParameterizedMember nonLiftedOperator;
			
			public LiftedUserDefinedOperator(IMethod nonLiftedMethod)
				: base((IMethod)nonLiftedMethod.MemberDefinition, nonLiftedMethod.Substitution)
			{
				this.nonLiftedOperator = nonLiftedMethod;
				var substitution = new MakeNullableVisitor(nonLiftedMethod.Compilation, nonLiftedMethod.Substitution);
				this.Parameters = base.CreateParameters(substitution);
				// Comparison operators keep the 'bool' return type even when lifted.
				if (IsComparisonOperator(nonLiftedMethod))
					this.ReturnType = nonLiftedMethod.ReturnType;
				else
					this.ReturnType = nonLiftedMethod.ReturnType.AcceptVisitor(substitution);
			}
			
			public IList<IParameter> NonLiftedParameters {
				get { return nonLiftedOperator.Parameters; }
			}
			
			public override bool Equals(object obj)
			{
				LiftedUserDefinedOperator op = obj as LiftedUserDefinedOperator;
				return op != null && this.nonLiftedOperator.Equals(op.nonLiftedOperator);
			}
			
			public override int GetHashCode()
			{
				return nonLiftedOperator.GetHashCode() ^ 0x7191254;
			}
		}
		
		sealed class MakeNullableVisitor : TypeVisitor
		{
			readonly ICompilation compilation;
			readonly TypeParameterSubstitution typeParameterSubstitution;
			
			public MakeNullableVisitor(ICompilation compilation, TypeParameterSubstitution typeParameterSubstitution)
			{
				this.compilation = compilation;
				this.typeParameterSubstitution = typeParameterSubstitution;
			}
			
			public override IType VisitTypeDefinition(ITypeDefinition type)
			{
				return NullableType.Create(compilation, type.AcceptVisitor(typeParameterSubstitution));
			}
			
			public override IType VisitTypeParameter(ITypeParameter type)
			{
				return NullableType.Create(compilation, type.AcceptVisitor(typeParameterSubstitution));
			}
			
			public override IType VisitParameterizedType(ParameterizedType type)
			{
				return NullableType.Create(compilation, type.AcceptVisitor(typeParameterSubstitution));
			}
			
			public override IType VisitOtherType(IType type)
			{
				return NullableType.Create(compilation, type.AcceptVisitor(typeParameterSubstitution));
			}
		}
		
		ResolveResult CreateResolveResultForUserDefinedOperator(OverloadResolution r, System.Linq.Expressions.ExpressionType operatorType)
		{
			if (r.BestCandidateErrors != OverloadResolutionErrors.None)
				return r.CreateResolveResult(null);
			IMethod method = (IMethod)r.BestCandidate;
			return new OperatorResolveResult(method.ReturnType, operatorType, method,
			                                 isLiftedOperator: method is OverloadResolution.ILiftedOperator,
			                                 operands: r.GetArgumentsWithConversions());
		}
		#endregion
		
		#region ResolveCast
		bool TryConvert(ref ResolveResult rr, IType targetType)
		{
			Conversion c = conversions.ImplicitConversion(rr, targetType);
			if (c.IsValid) {
				rr = Convert(rr, targetType, c);
				return true;
			} else {
				return false;
			}
		}

		/// <summary>
		/// 
		/// </summary>
		/// <param name="rr">The input resolve result that should be converted.
		/// If a conversion exists, it is applied to the resolve result</param>
		/// <param name="targetType">The target type that we should convert to</param>
		/// <param name="isNullable">Whether we are dealing with a lifted operator</param>
		/// <param name="enumRR">The resolve result that is enum-typed.
		/// If necessary, a nullable conversion is applied.</param>
		/// <param name="allowConversionFromConstantZero">
		/// Whether the conversion from the constant zero is allowed.
		/// </param>
		/// <returns>True if the conversion is successful; false otherwise.
		/// If the conversion is not successful, the ref parameters will not be modified.</returns>
		bool TryConvertEnum(ref ResolveResult rr, IType targetType, ref bool isNullable, ref ResolveResult enumRR, bool allowConversionFromConstantZero = true)
		{
			Conversion c;
			if (!isNullable) {
				// Try non-nullable
				c = conversions.ImplicitConversion(rr, targetType);
				if (c.IsValid && (allowConversionFromConstantZero || !c.IsEnumerationConversion)) {
					rr = Convert(rr, targetType, c);
					return true;
				}
			}
			// make targetType nullable if it isn't already:
			if (!targetType.IsKnownType(KnownTypeCode.NullableOfT))
				targetType = NullableType.Create(compilation, targetType);
			
			c = conversions.ImplicitConversion(rr, targetType);
			if (c.IsValid && (allowConversionFromConstantZero || !c.IsEnumerationConversion)) {
				rr = Convert(rr, targetType, c);
				isNullable = true;
				// Also convert the enum-typed RR to nullable, if it isn't already
				if (!enumRR.Type.IsKnownType(KnownTypeCode.NullableOfT)) {
					var nullableType = NullableType.Create(compilation, enumRR.Type);
					enumRR = new ConversionResolveResult(nullableType, enumRR, Conversion.ImplicitNullableConversion);
				}
				return true;
			}
			return false;
		}
		
		ResolveResult Convert(ResolveResult rr, IType targetType)
		{
			return Convert(rr, targetType, conversions.ImplicitConversion(rr, targetType));
		}
		
		ResolveResult Convert(ResolveResult rr, IType targetType, Conversion c)
		{
			if (c == Conversion.IdentityConversion)
				return rr;
			else if (rr.IsCompileTimeConstant && c != Conversion.None && !c.IsUserDefined)
				return ResolveCast(targetType, rr);
			else
				return new ConversionResolveResult(targetType, rr, c, checkForOverflow);
		}
		
		public ResolveResult ResolveCast(IType targetType, ResolveResult expression)
		{
			// C# 4.0 spec: §7.7.6 Cast expressions
			Conversion c = conversions.ExplicitConversion(expression, targetType);
			if (expression.IsCompileTimeConstant && !c.IsUserDefined) {
				TypeCode code = ReflectionHelper.GetTypeCode(targetType);
				if (code >= TypeCode.Boolean && code <= TypeCode.Decimal && expression.ConstantValue != null) {
					try {
						return new ConstantResolveResult(targetType, CSharpPrimitiveCast(code, expression.ConstantValue));
					} catch (OverflowException) {
						return new ErrorResolveResult(targetType);
					} catch (InvalidCastException) {
						return new ErrorResolveResult(targetType);
					}
				} else if (code == TypeCode.String) {
					if (expression.ConstantValue == null || expression.ConstantValue is string)
						return new ConstantResolveResult(targetType, expression.ConstantValue);
					else
						return new ErrorResolveResult(targetType);
				} else if (targetType.Kind == TypeKind.Enum) {
					code = ReflectionHelper.GetTypeCode(GetEnumUnderlyingType(targetType));
					if (code >= TypeCode.SByte && code <= TypeCode.UInt64 && expression.ConstantValue != null) {
						try {
							return new ConstantResolveResult(targetType, CSharpPrimitiveCast(code, expression.ConstantValue));
						} catch (OverflowException) {
							return new ErrorResolveResult(targetType);
						} catch (InvalidCastException) {
							return new ErrorResolveResult(targetType);
						}
					}
				}
			}
			return new ConversionResolveResult(targetType, expression, c, checkForOverflow);
		}
		
		internal object CSharpPrimitiveCast(TypeCode targetType, object input)
		{
			return Utils.CSharpPrimitiveCast.Cast(targetType, input, this.CheckForOverflow);
		}
		#endregion
		
		#region ResolveSimpleName
		public ResolveResult ResolveSimpleName(string identifier, IList<IType> typeArguments, bool isInvocationTarget = false)
		{
			// C# 4.0 spec: §7.6.2 Simple Names
			
			return LookupSimpleNameOrTypeName(
				identifier, typeArguments,
				isInvocationTarget ? NameLookupMode.InvocationTarget : NameLookupMode.Expression);
		}
		
		public ResolveResult LookupSimpleNameOrTypeName(string identifier, IList<IType> typeArguments, NameLookupMode lookupMode)
		{
			// C# 4.0 spec: §3.8 Namespace and type names; §7.6.2 Simple Names
			
			if (identifier == null)
				throw new ArgumentNullException("identifier");
			if (typeArguments == null)
				throw new ArgumentNullException("typeArguments");
			
			int k = typeArguments.Count;
			
			if (k == 0) {
				if (lookupMode == NameLookupMode.Expression || lookupMode == NameLookupMode.InvocationTarget) {
					// Look in local variables
					foreach (IVariable v in this.LocalVariables) {
						if (v.Name == identifier) {
							return new LocalResolveResult(v);
						}
					}
					// Look in parameters of current method
					IParameterizedMember parameterizedMember = this.CurrentMember as IParameterizedMember;
					if (parameterizedMember != null) {
						foreach (IParameter p in parameterizedMember.Parameters) {
							if (p.Name == identifier) {
								return new LocalResolveResult(p);
							}
						}
					}
				}
				
				// look in type parameters of current method
				IMethod m = this.CurrentMember as IMethod;
				if (m != null) {
					foreach (ITypeParameter tp in m.TypeParameters) {
						if (tp.Name == identifier)
							return new TypeResolveResult(tp);
					}
				}
			}
			
			bool parameterizeResultType = !(typeArguments.Count != 0 && typeArguments.All(t => t.Kind == TypeKind.UnboundTypeArgument));
			
			ResolveResult r = null;
			if (currentTypeDefinitionCache != null) {
				Dictionary<string, ResolveResult> cache = null;
				bool foundInCache = false;
				if (k == 0) {
					switch (lookupMode) {
						case NameLookupMode.Expression:
							cache = currentTypeDefinitionCache.SimpleNameLookupCacheExpression;
							break;
						case NameLookupMode.InvocationTarget:
							cache = currentTypeDefinitionCache.SimpleNameLookupCacheInvocationTarget;
							break;
						case NameLookupMode.Type:
							cache = currentTypeDefinitionCache.SimpleTypeLookupCache;
							break;
					}
					if (cache != null) {
						lock (cache)
							foundInCache = cache.TryGetValue(identifier, out r);
					}
				}
				if (foundInCache) {
					r = (r != null ? r.ShallowClone() : null);
				} else {
					r = LookInCurrentType(identifier, typeArguments, lookupMode, parameterizeResultType);
					if (cache != null) {
						// also cache missing members (r==null)
						lock (cache)
							cache[identifier] = r;
					}
				}
				if (r != null)
					return r;
			}
			
			if (context.CurrentUsingScope == null) {
				// If no using scope was specified, we still need to look in the global namespace:
				r = LookInUsingScopeNamespace(null, compilation.RootNamespace, identifier, typeArguments, parameterizeResultType);
			} else {
				if (k == 0 && lookupMode != NameLookupMode.TypeInUsingDeclaration) {
					if (context.CurrentUsingScope.ResolveCache.TryGetValue(identifier, out r)) {
						r = (r != null ? r.ShallowClone() : null);
					} else {
						r = LookInCurrentUsingScope(identifier, typeArguments, false, false);
						context.CurrentUsingScope.ResolveCache.TryAdd(identifier, r);
					}
				} else {
					r = LookInCurrentUsingScope(identifier, typeArguments, lookupMode == NameLookupMode.TypeInUsingDeclaration, parameterizeResultType);
				}
			}
			if (r != null)
				return r;
			
			if (typeArguments.Count == 0 && identifier == "dynamic") {
				return new TypeResolveResult(SpecialType.Dynamic);
			} else {
				return new UnknownIdentifierResolveResult(identifier, typeArguments.Count);
			}
		}
		
		public bool IsVariableReferenceWithSameType (ResolveResult rr, string identifier, out TypeResolveResult trr)
		{
			if (!(rr is MemberResolveResult || rr is LocalResolveResult)) {
				trr = null;
				return false;
			}
			trr = LookupSimpleNameOrTypeName (identifier, EmptyList<IType>.Instance, NameLookupMode.Type) as TypeResolveResult;
			return trr != null && trr.Type.Equals (rr.Type);
		}
		
		ResolveResult LookInCurrentType(string identifier, IList<IType> typeArguments, NameLookupMode lookupMode, bool parameterizeResultType)
		{
			int k = typeArguments.Count;
			MemberLookup lookup = CreateMemberLookup(lookupMode);
			// look in current type definitions
			for (ITypeDefinition t = this.CurrentTypeDefinition; t != null; t = t.DeclaringTypeDefinition) {
				if (k == 0) {
					// Look for type parameter with that name
					var typeParameters = t.TypeParameters;
					// Look at all type parameters, including those copied from outer classes,
					// so that we can fetch the version with the correct owner.
					for (int i = 0; i < typeParameters.Count; i++) {
						if (typeParameters[i].Name == identifier)
							return new TypeResolveResult(typeParameters[i]);
					}
				}
				
				if (lookupMode == NameLookupMode.BaseTypeReference && t == this.CurrentTypeDefinition) {
					// don't look in current type when resolving a base type reference
					continue;
				}
				
				ResolveResult r;
				if (lookupMode == NameLookupMode.Expression || lookupMode == NameLookupMode.InvocationTarget) {
					var targetResolveResult = (t == this.CurrentTypeDefinition ? ResolveThisReference() : new TypeResolveResult(t));
					r = lookup.Lookup(targetResolveResult, identifier, typeArguments, lookupMode == NameLookupMode.InvocationTarget);
				} else {
					r = lookup.LookupType(t, identifier, typeArguments, parameterizeResultType);
				}
				if (!(r is UnknownMemberResolveResult)) // but do return AmbiguousMemberResolveResult
					return r;
			}
			return null;
		}
		
		ResolveResult LookInCurrentUsingScope(string identifier, IList<IType> typeArguments, bool isInUsingDeclaration, bool parameterizeResultType)
		{
			// look in current namespace definitions
			ResolvedUsingScope currentUsingScope = this.CurrentUsingScope;
			for (ResolvedUsingScope u = currentUsingScope; u != null; u = u.Parent) {
				var resultInNamespace = LookInUsingScopeNamespace(u, u.Namespace, identifier, typeArguments, parameterizeResultType);
				if (resultInNamespace != null)
					return resultInNamespace;
				// then look for aliases:
				if (typeArguments.Count == 0) {
					if (u.ExternAliases.Contains(identifier)) {
						return ResolveExternAlias(identifier);
					}
					if (!(isInUsingDeclaration && u == currentUsingScope)) {
						foreach (var pair in u.UsingAliases) {
							if (pair.Key == identifier) {
								return pair.Value.ShallowClone();
							}
						}
					}
				}
				// finally, look in the imported namespaces:
				if (!(isInUsingDeclaration && u == currentUsingScope)) {
					IType firstResult = null;
					foreach (var importedNamespace in u.Usings) {
						ITypeDefinition def = importedNamespace.GetTypeDefinition(identifier, typeArguments.Count);
						if (def != null) {
							IType resultType;
							if (parameterizeResultType && typeArguments.Count > 0)
								resultType = new ParameterizedType(def, typeArguments);
							else
								resultType = def;
							
							if (firstResult == null || !TopLevelTypeDefinitionIsAccessible(firstResult.GetDefinition())) {
								if (TopLevelTypeDefinitionIsAccessible(resultType.GetDefinition()))
									firstResult = resultType;
							} else if (TopLevelTypeDefinitionIsAccessible(def)) {
								return new AmbiguousTypeResolveResult(firstResult);
							}
						}
					}
					if (firstResult != null)
						return new TypeResolveResult(firstResult);
				}
				// if we didn't find anything: repeat lookup with parent namespace
			}
			return null;
		}

		ResolveResult LookInUsingScopeNamespace(ResolvedUsingScope usingScope, INamespace n, string identifier, IList<IType> typeArguments, bool parameterizeResultType)
		{
			if (n == null)
				return null;
			// first look for a namespace
			int k = typeArguments.Count;
			if (k == 0) {
				INamespace childNamespace = n.GetChildNamespace(identifier);
				if (childNamespace != null) {
					if (usingScope != null && usingScope.HasAlias(identifier))
						return new AmbiguousTypeResolveResult(new UnknownType(null, identifier));
					return new NamespaceResolveResult(childNamespace);
				}
			}
			// then look for a type
			ITypeDefinition def = n.GetTypeDefinition(identifier, k);
			if (def != null) {
				IType result = def;
				if (parameterizeResultType && k > 0) {
					result = new ParameterizedType(def, typeArguments);
				}
				if (usingScope != null && usingScope.HasAlias(identifier))
					return new AmbiguousTypeResolveResult(result);
				else
					return new TypeResolveResult(result);
			}
			return null;
		}
		
		bool TopLevelTypeDefinitionIsAccessible(ITypeDefinition typeDef)
		{
			if (typeDef.IsInternal) {
				return typeDef.ParentAssembly.InternalsVisibleTo(compilation.MainAssembly);
			}
			return true;
		}
		
		/// <summary>
		/// Looks up an alias (identifier in front of :: operator)
		/// </summary>
		public ResolveResult ResolveAlias(string identifier)
		{
			if (identifier == "global")
				return new NamespaceResolveResult(compilation.RootNamespace);
			
			for (ResolvedUsingScope n = this.CurrentUsingScope; n != null; n = n.Parent) {
				if (n.ExternAliases.Contains(identifier)) {
					return ResolveExternAlias(identifier);
				}
				foreach (var pair in n.UsingAliases) {
					if (pair.Key == identifier) {
						return (pair.Value as NamespaceResolveResult) ?? ErrorResult;
					}
				}
			}
			return ErrorResult;
		}
		
		ResolveResult ResolveExternAlias(string alias)
		{
			INamespace ns = compilation.GetNamespaceForExternAlias(alias);
			if (ns != null)
				return new NamespaceResolveResult(ns);
			else
				return ErrorResult;
		}
		#endregion
		
		#region ResolveMemberAccess
		public ResolveResult ResolveMemberAccess(ResolveResult target, string identifier, IList<IType> typeArguments, NameLookupMode lookupMode = NameLookupMode.Expression)
		{
			// C# 4.0 spec: §7.6.4
			
			bool parameterizeResultType = !(typeArguments.Count != 0 && typeArguments.All(t => t.Kind == TypeKind.UnboundTypeArgument));
			NamespaceResolveResult nrr = target as NamespaceResolveResult;
			if (nrr != null) {
				return ResolveMemberAccessOnNamespace(nrr, identifier, typeArguments, parameterizeResultType);
			}
			
			if (target.Type.Kind == TypeKind.Dynamic)
				return new DynamicMemberResolveResult(target, identifier);
			
			MemberLookup lookup = CreateMemberLookup(lookupMode);
			ResolveResult result;
			switch (lookupMode) {
				case NameLookupMode.Expression:
					result = lookup.Lookup(target, identifier, typeArguments, isInvocation: false);
					break;
				case NameLookupMode.InvocationTarget:
					result = lookup.Lookup(target, identifier, typeArguments, isInvocation: true);
					break;
				case NameLookupMode.Type:
				case NameLookupMode.TypeInUsingDeclaration:
				case NameLookupMode.BaseTypeReference:
					// Don't do the UnknownMemberResolveResult/MethodGroupResolveResult processing,
					// it's only relevant for expressions.
					return lookup.LookupType(target.Type, identifier, typeArguments, parameterizeResultType);
				default:
					throw new NotSupportedException("Invalid value for NameLookupMode");
			}
			if (result is UnknownMemberResolveResult) {
				// We intentionally use all extension methods here, not just the eligible ones.
				// Proper eligibility checking is only possible for the full invocation
				// (after we know the remaining arguments).
				// The eligibility check in GetExtensionMethods is only intended for code completion.
				var extensionMethods = GetExtensionMethods(identifier, typeArguments);
				if (extensionMethods.Count > 0) {
					return new MethodGroupResolveResult(target, identifier, EmptyList<MethodListWithDeclaringType>.Instance, typeArguments) {
						extensionMethods = extensionMethods
					};
				}
			} else {
				MethodGroupResolveResult mgrr = result as MethodGroupResolveResult;
				if (mgrr != null) {
					Debug.Assert(mgrr.extensionMethods == null);
					// set the values that are necessary to make MethodGroupResolveResult.GetExtensionMethods() work
					mgrr.resolver = this;
				}
			}
			return result;
		}
		
		[Obsolete("Use ResolveMemberAccess() with NameLookupMode.Type instead")]
		public ResolveResult ResolveMemberType(ResolveResult target, string identifier, IList<IType> typeArguments)
		{
			return ResolveMemberAccess(target, identifier, typeArguments, NameLookupMode.Type);
		}
		
		ResolveResult ResolveMemberAccessOnNamespace(NamespaceResolveResult nrr, string identifier, IList<IType> typeArguments, bool parameterizeResultType)
		{
			if (typeArguments.Count == 0) {
				INamespace childNamespace = nrr.Namespace.GetChildNamespace(identifier);
				if (childNamespace != null)
					return new NamespaceResolveResult(childNamespace);
			}
			ITypeDefinition def = nrr.Namespace.GetTypeDefinition(identifier, typeArguments.Count);
			if (def != null) {
				if (parameterizeResultType && typeArguments.Count > 0)
					return new TypeResolveResult(new ParameterizedType(def, typeArguments));
				else
					return new TypeResolveResult(def);
			}
			return ErrorResult;
		}
		
		/// <summary>
		/// Creates a MemberLookup instance using this resolver's settings.
		/// </summary>
		public MemberLookup CreateMemberLookup()
		{
			ITypeDefinition currentTypeDefinition = this.CurrentTypeDefinition;
			bool isInEnumMemberInitializer = this.CurrentMember != null && this.CurrentMember.SymbolKind == SymbolKind.Field
				&& currentTypeDefinition != null && currentTypeDefinition.Kind == TypeKind.Enum;
			return new MemberLookup(currentTypeDefinition, this.Compilation.MainAssembly, isInEnumMemberInitializer);
		}
		
		/// <summary>
		/// Creates a MemberLookup instance using this resolver's settings.
		/// </summary>
		public MemberLookup CreateMemberLookup(NameLookupMode lookupMode)
		{
			if (lookupMode == NameLookupMode.BaseTypeReference && this.CurrentTypeDefinition != null) {
				// When looking up a base type reference, treat us as being outside the current type definition
				// for accessibility purposes.
				// This avoids a stack overflow when referencing a protected class nested inside the base class
				// of a parent class. (NameLookupTests.InnerClassInheritingFromProtectedBaseInnerClassShouldNotCauseStackOverflow)
				return new MemberLookup(this.CurrentTypeDefinition.DeclaringTypeDefinition, this.Compilation.MainAssembly, false);
			} else {
				return CreateMemberLookup();
			}
		}
		#endregion
		
		#region ResolveIdentifierInObjectInitializer
		public ResolveResult ResolveIdentifierInObjectInitializer(string identifier)
		{
			MemberLookup memberLookup = CreateMemberLookup();
			return memberLookup.Lookup(this.CurrentObjectInitializer, identifier, EmptyList<IType>.Instance, false);
		}
		#endregion
		
		#region GetExtensionMethods
		/// <summary>
		/// Gets all extension methods that are available in the current context.
		/// </summary>
		/// <param name="name">Name of the extension method. Pass null to retrieve all extension methods.</param>
		/// <param name="typeArguments">Explicitly provided type arguments.
		/// An empty list will return all matching extension method definitions;
		/// a non-empty list will return <see cref="SpecializedMethod"/>s for all extension methods
		/// with the matching number of type parameters.</param>
		/// <remarks>
		/// The results are stored in nested lists because they are grouped by using scope.
		/// That is, for "using SomeExtensions; namespace X { using MoreExtensions; ... }",
		/// the return value will be
		/// new List {
		///    new List { all extensions from MoreExtensions },
		///    new List { all extensions from SomeExtensions }
		/// }
		/// </remarks>
		public List<List<IMethod>> GetExtensionMethods(string name = null, IList<IType> typeArguments = null)
		{
			return GetExtensionMethods(null, name, typeArguments);
		}
		
		/// <summary>
		/// Gets the extension methods that are called 'name'
		/// and are applicable with a first argument type of 'targetType'.
		/// </summary>
		/// <param name="targetType">Type of the 'this' argument</param>
		/// <param name="name">Name of the extension method. Pass null to retrieve all extension methods.</param>
		/// <param name="typeArguments">Explicitly provided type arguments.
		/// An empty list will return all matching extension method definitions;
		/// a non-empty list will return <see cref="SpecializedMethod"/>s for all extension methods
		/// with the matching number of type parameters.</param>
		/// <param name="substituteInferredTypes">
		/// Specifies whether to produce a <see cref="SpecializedMethod"/>
		/// when type arguments could be inferred from <paramref name="targetType"/>. This parameter
		/// is only used for inferred types and has no effect if <paramref name="typeArguments"/> is non-empty.
		/// </param>
		/// <remarks>
		/// The results are stored in nested lists because they are grouped by using scope.
		/// That is, for "using SomeExtensions; namespace X { using MoreExtensions; ... }",
		/// the return value will be
		/// new List {
		///    new List { all extensions from MoreExtensions },
		///    new List { all extensions from SomeExtensions }
		/// }
		/// </remarks>
		public List<List<IMethod>> GetExtensionMethods(IType targetType, string name = null, IList<IType> typeArguments = null, bool substituteInferredTypes = false)
		{
			var lookup = CreateMemberLookup();
			List<List<IMethod>> extensionMethodGroups = new List<List<IMethod>>();
			foreach (var inputGroup in GetAllExtensionMethods(lookup)) {
				List<IMethod> outputGroup = new List<IMethod>();
				foreach (var method in inputGroup) {
					if (name != null && method.Name != name)
						continue;
					if (!lookup.IsAccessible(method, false))
						continue;
					IType[] inferredTypes;
					if (typeArguments != null && typeArguments.Count > 0) {
						if (method.TypeParameters.Count != typeArguments.Count)
							continue;
						var sm = method.Specialize(new TypeParameterSubstitution(null, typeArguments));
						if (IsEligibleExtensionMethod(compilation, conversions, targetType, sm, false, out inferredTypes))
							outputGroup.Add(sm);
					} else {
						if (IsEligibleExtensionMethod(compilation, conversions, targetType, method, true, out inferredTypes)) {
							if (substituteInferredTypes && inferredTypes != null) {
								outputGroup.Add(method.Specialize(new TypeParameterSubstitution(null, inferredTypes)));
							} else {
								outputGroup.Add(method);
							}
						}
					}
				}
				if (outputGroup.Count > 0)
					extensionMethodGroups.Add(outputGroup);
			}
			return extensionMethodGroups;
		}
		
		/// <summary>
		/// Checks whether the specified extension method is eligible on the target type.
		/// </summary>
		/// <param name="targetType">Target type that is passed as first argument to the extension method.</param>
		/// <param name="method">The extension method.</param>
		/// <param name="useTypeInference">Whether to perform type inference for the method.
		/// Use <c>false</c> if <paramref name="method"/> is already parameterized (e.g. when type arguments were given explicitly).
		/// Otherwise, use <c>true</c>.
		/// </param>
		/// <param name="outInferredTypes">If the method is generic and <paramref name="useTypeInference"/> is <c>true</c>,
		/// and at least some of the type arguments could be inferred, this parameter receives the inferred type arguments.
		/// Since only the type for the first parameter is considered, not all type arguments may be inferred.
		/// If an array is returned, any slot with an uninferred type argument will be set to the method's
		/// corresponding type parameter.
		/// </param>
		public static bool IsEligibleExtensionMethod(IType targetType, IMethod method, bool useTypeInference, out IType[] outInferredTypes)
		{
			if (targetType == null)
				throw new ArgumentNullException("targetType");
			if (method == null)
				throw new ArgumentNullException("method");
			var compilation = method.Compilation;
			return IsEligibleExtensionMethod(compilation, CSharpConversions.Get(compilation), targetType, method, useTypeInference, out outInferredTypes);
		}
		
		static bool IsEligibleExtensionMethod(ICompilation compilation, CSharpConversions conversions, IType targetType, IMethod method, bool useTypeInference, out IType[] outInferredTypes)
		{
			outInferredTypes = null;
			if (targetType == null)
				return true;
			if (method.Parameters.Count == 0)
				return false;
			IType thisParameterType = method.Parameters[0].Type;
			if (useTypeInference && method.TypeParameters.Count > 0) {
				// We need to infer type arguments from targetType:
				TypeInference ti = new TypeInference(compilation, conversions);
				ResolveResult[] arguments = { new ResolveResult(targetType) };
				IType[] parameterTypes = { method.Parameters[0].Type };
				bool success;
				var inferredTypes = ti.InferTypeArguments(method.TypeParameters, arguments, parameterTypes, out success);
				var substitution = new TypeParameterSubstitution(null, inferredTypes);
				// Validate that the types that could be inferred (aren't unknown) satisfy the constraints:
				bool hasInferredTypes = false;
				for (int i = 0; i < inferredTypes.Length; i++) {
					if (inferredTypes[i].Kind != TypeKind.Unknown && inferredTypes[i].Kind != TypeKind.UnboundTypeArgument) {
						hasInferredTypes = true;
						if (!OverloadResolution.ValidateConstraints(method.TypeParameters[i], inferredTypes[i], substitution, conversions))
							return false;
					} else {
						inferredTypes[i] = method.TypeParameters[i]; // do not substitute types that could not be inferred
					}
				}
				if (hasInferredTypes)
					outInferredTypes = inferredTypes;
				thisParameterType = thisParameterType.AcceptVisitor(substitution);
			}
			Conversion c = conversions.ImplicitConversion(targetType, thisParameterType);
			return c.IsValid && (c.IsIdentityConversion || c.IsReferenceConversion || c.IsBoxingConversion);
		}
		
		/// <summary>
		/// Gets all extension methods available in the current using scope.
		/// This list includes inaccessible methods.
		/// </summary>
		IList<List<IMethod>> GetAllExtensionMethods(MemberLookup lookup)
		{
			var currentUsingScope = context.CurrentUsingScope;
			if (currentUsingScope == null)
				return EmptyList<List<IMethod>>.Instance;
			List<List<IMethod>> extensionMethodGroups = LazyInit.VolatileRead(ref currentUsingScope.AllExtensionMethods);
			if (extensionMethodGroups != null) {
				return extensionMethodGroups;
			}
			extensionMethodGroups = new List<List<IMethod>>();
			List<IMethod> m;
			for (ResolvedUsingScope scope = currentUsingScope; scope != null; scope = scope.Parent) {
				INamespace ns = scope.Namespace;
				if (ns != null) {
					m = GetExtensionMethods(lookup, ns).ToList();
					if (m.Count > 0)
						extensionMethodGroups.Add(m);
				}
				
				m = scope.Usings
					.Distinct()
					.SelectMany(importedNamespace =>  GetExtensionMethods(lookup, importedNamespace))
					.ToList();
				if (m.Count > 0)
					extensionMethodGroups.Add(m);
			}
			return LazyInit.GetOrSet(ref currentUsingScope.AllExtensionMethods, extensionMethodGroups);
		}
		
		IEnumerable<IMethod> GetExtensionMethods(MemberLookup lookup, INamespace ns)
		{
			// TODO: maybe make this a property on INamespace?
			return
				from c in ns.Types
				where c.IsStatic && c.HasExtensionMethods && c.TypeParameters.Count == 0 && lookup.IsAccessible(c, false)
				from m in c.Methods
				where m.IsExtensionMethod
				select m;
		}
		#endregion
		
		#region ResolveInvocation

		IList<ResolveResult> AddArgumentNamesIfNecessary(ResolveResult[] arguments, string[] argumentNames) {
			if (argumentNames == null) {
				return arguments;
			}
			else {
				var result = new ResolveResult[arguments.Length];
				for (int i = 0; i < arguments.Length; i++) {
					result[i] = (argumentNames[i] != null ? new NamedArgumentResolveResult(argumentNames[i], arguments[i]) : arguments[i]);
				}
				return result;
			}
		}

		private ResolveResult ResolveInvocation(ResolveResult target, ResolveResult[] arguments, string[] argumentNames, bool allowOptionalParameters)
		{
			// C# 4.0 spec: §7.6.5
			
			if (target.Type.Kind == TypeKind.Dynamic) {
				return new DynamicInvocationResolveResult(target, DynamicInvocationType.Invocation, AddArgumentNamesIfNecessary(arguments, argumentNames));
			}
			
			bool isDynamic = arguments.Any(a => a.Type.Kind == TypeKind.Dynamic);
			MethodGroupResolveResult mgrr = target as MethodGroupResolveResult;
			if (mgrr != null) {
				if (isDynamic) {
					// If we have dynamic arguments, we need to represent the invocation as a dynamic invocation if there is more than one applicable method.
					var or2 = CreateOverloadResolution(arguments, argumentNames, mgrr.TypeArguments.ToArray());
					var applicableMethods = mgrr.MethodsGroupedByDeclaringType.SelectMany(m => m, (x, m) => new { x.DeclaringType, Method = m }).Where(x => OverloadResolution.IsApplicable(or2.AddCandidate(x.Method))).ToList();

					if (applicableMethods.Count > 1) {
						ResolveResult actualTarget;
						if (applicableMethods.All(x => x.Method.IsStatic) && !(mgrr.TargetResult is TypeResolveResult))
							actualTarget = new TypeResolveResult(mgrr.TargetType);
						else
							actualTarget = mgrr.TargetResult;

						var l = new List<MethodListWithDeclaringType>();
						foreach (var m in applicableMethods) {
							if (l.Count == 0 || l[l.Count - 1].DeclaringType != m.DeclaringType)
								l.Add(new MethodListWithDeclaringType(m.DeclaringType));
							l[l.Count - 1].Add(m.Method);
						}
						return new DynamicInvocationResolveResult(new MethodGroupResolveResult(actualTarget, mgrr.MethodName, l, mgrr.TypeArguments), DynamicInvocationType.Invocation, AddArgumentNamesIfNecessary(arguments, argumentNames));
					}
				}

				OverloadResolution or = mgrr.PerformOverloadResolution(compilation, arguments, argumentNames, checkForOverflow: checkForOverflow, conversions: conversions, allowOptionalParameters: allowOptionalParameters);
				if (or.BestCandidate != null) {
					if (or.BestCandidate.IsStatic && !or.IsExtensionMethodInvocation && !(mgrr.TargetResult is TypeResolveResult))
						return or.CreateResolveResult(new TypeResolveResult(mgrr.TargetType), returnTypeOverride: isDynamic ? SpecialType.Dynamic : null);
					else
						return or.CreateResolveResult(mgrr.TargetResult, returnTypeOverride: isDynamic ? SpecialType.Dynamic : null);
				} else {
					// No candidate found at all (not even an inapplicable one).
					// This can happen with empty method groups (as sometimes used with extension methods)
					return new UnknownMethodResolveResult(
						mgrr.TargetType, mgrr.MethodName, mgrr.TypeArguments, CreateParameters(arguments, argumentNames));
				}
			}
			UnknownMemberResolveResult umrr = target as UnknownMemberResolveResult;
			if (umrr != null) {
				return new UnknownMethodResolveResult(umrr.TargetType, umrr.MemberName, umrr.TypeArguments, CreateParameters(arguments, argumentNames));
			}
			UnknownIdentifierResolveResult uirr = target as UnknownIdentifierResolveResult;
			if (uirr != null && CurrentTypeDefinition != null) {
				return new UnknownMethodResolveResult(CurrentTypeDefinition, uirr.Identifier, EmptyList<IType>.Instance, CreateParameters(arguments, argumentNames));
			}
			IMethod invokeMethod = target.Type.GetDelegateInvokeMethod();
			if (invokeMethod != null) {
				OverloadResolution or = CreateOverloadResolution(arguments, argumentNames);
				or.AddCandidate(invokeMethod);
				return new CSharpInvocationResolveResult(
					target, invokeMethod, //invokeMethod.ReturnType.Resolve(context),
					or.GetArgumentsWithConversionsAndNames(), or.BestCandidateErrors,
					isExpandedForm: or.BestCandidateIsExpandedForm,
					isDelegateInvocation: true,
					argumentToParameterMap: or.GetArgumentToParameterMap(),
					returnTypeOverride: isDynamic ? SpecialType.Dynamic : null);
			}
			return ErrorResult;
		}

		/// <summary>
		/// Resolves an invocation.
		/// </summary>
		/// <param name="target">The target of the invocation. Usually a MethodGroupResolveResult.</param>
		/// <param name="arguments">
		/// Arguments passed to the method.
		/// The resolver may mutate this array to wrap elements in <see cref="ConversionResolveResult"/>s!
		/// </param>
		/// <param name="argumentNames">
		/// The argument names. Pass the null string for positional arguments.
		/// </param>
		/// <returns>InvocationResolveResult or UnknownMethodResolveResult</returns>
		public ResolveResult ResolveInvocation(ResolveResult target, ResolveResult[] arguments, string[] argumentNames = null)
		{
			return ResolveInvocation(target, arguments, argumentNames, allowOptionalParameters: true);
		}
		
		List<IParameter> CreateParameters(ResolveResult[] arguments, string[] argumentNames)
		{
			List<IParameter> list = new List<IParameter>();
			if (argumentNames == null) {
				argumentNames = new string[arguments.Length];
			} else {
				if (argumentNames.Length != arguments.Length)
					throw new ArgumentException();
				argumentNames = (string[])argumentNames.Clone();
			}
			for (int i = 0; i < arguments.Length; i++) {
				// invent argument names where necessary:
				if (argumentNames[i] == null) {
					string newArgumentName = GuessParameterName(arguments[i]);
					if (argumentNames.Contains(newArgumentName)) {
						// disambiguate argument name (e.g. add a number)
						int num = 1;
						string newName;
						do {
							newName = newArgumentName + num.ToString();
							num++;
						} while(argumentNames.Contains(newName));
						newArgumentName = newName;
					}
					argumentNames[i] = newArgumentName;
				}
				
				// create the parameter:
				ByReferenceResolveResult brrr = arguments[i] as ByReferenceResolveResult;
				if (brrr != null) {
					list.Add(new DefaultParameter(arguments[i].Type, argumentNames[i], isRef: brrr.IsRef, isOut: brrr.IsOut));
				} else {
					// argument might be a lambda or delegate type, so we have to try to guess the delegate type
					IType type = arguments[i].Type;
					if (type.Kind == TypeKind.Null || type.Kind == TypeKind.Unknown) {
						list.Add(new DefaultParameter(compilation.FindType(KnownTypeCode.Object), argumentNames[i]));
					} else {
						list.Add(new DefaultParameter(type, argumentNames[i]));
					}
				}
			}
			return list;
		}
		
		static string GuessParameterName(ResolveResult rr)
		{
			MemberResolveResult mrr = rr as MemberResolveResult;
			if (mrr != null)
				return mrr.Member.Name;
			
			UnknownMemberResolveResult umrr = rr as UnknownMemberResolveResult;
			if (umrr != null)
				return umrr.MemberName;
			
			MethodGroupResolveResult mgrr = rr as MethodGroupResolveResult;
			if (mgrr != null)
				return mgrr.MethodName;
			
			LocalResolveResult vrr = rr as LocalResolveResult;
			if (vrr != null)
				return MakeParameterName(vrr.Variable.Name);
			
			if (rr.Type.Kind != TypeKind.Unknown && !string.IsNullOrEmpty(rr.Type.Name)) {
				return MakeParameterName(rr.Type.Name);
			} else {
				return "parameter";
			}
		}
		
		static string MakeParameterName(string variableName)
		{
			if (string.IsNullOrEmpty(variableName))
				return "parameter";
			if (variableName.Length > 1 && variableName[0] == '_')
				variableName = variableName.Substring(1);
			return char.ToLower(variableName[0]) + variableName.Substring(1);
		}
		
		OverloadResolution CreateOverloadResolution(ResolveResult[] arguments, string[] argumentNames = null, IType[] typeArguments = null)
		{
			var or = new OverloadResolution(compilation, arguments, argumentNames, typeArguments, conversions);
			or.CheckForOverflow = checkForOverflow;
			return or;
		}
		#endregion
		
		#region ResolveIndexer
		/// <summary>
		/// Resolves an indexer access.
		/// </summary>
		/// <param name="target">Target expression.</param>
		/// <param name="arguments">
		/// Arguments passed to the indexer.
		/// The resolver may mutate this array to wrap elements in <see cref="ConversionResolveResult"/>s!
		/// </param>
		/// <param name="argumentNames">
		/// The argument names. Pass the null string for positional arguments.
		/// </param>
		/// <returns>ArrayAccessResolveResult, InvocationResolveResult, or ErrorResolveResult</returns>
		public ResolveResult ResolveIndexer(ResolveResult target, ResolveResult[] arguments, string[] argumentNames = null)
		{
			switch (target.Type.Kind) {
				case TypeKind.Dynamic:
					return new DynamicInvocationResolveResult(target, DynamicInvocationType.Indexing, AddArgumentNamesIfNecessary(arguments, argumentNames));
					
				case TypeKind.Array:
				case TypeKind.Pointer:
					// §7.6.6.1 Array access / §18.5.3 Pointer element access
					AdjustArrayAccessArguments(arguments);
					return new ArrayAccessResolveResult(((TypeWithElementType)target.Type).ElementType, target, arguments);
			}
			
			// §7.6.6.2 Indexer access

			MemberLookup lookup = CreateMemberLookup();
			var indexers = lookup.LookupIndexers(target);

			if (arguments.Any(a => a.Type.Kind == TypeKind.Dynamic)) {
				// If we have dynamic arguments, we need to represent the invocation as a dynamic invocation if there is more than one applicable indexer.
				var or2 = CreateOverloadResolution(arguments, argumentNames, null);
				var applicableIndexers = indexers.SelectMany(x => x).Where(m => OverloadResolution.IsApplicable(or2.AddCandidate(m))).ToList();

				if (applicableIndexers.Count > 1) {
					return new DynamicInvocationResolveResult(target, DynamicInvocationType.Indexing, AddArgumentNamesIfNecessary(arguments, argumentNames));
				}
			}

			OverloadResolution or = CreateOverloadResolution(arguments, argumentNames);
			or.AddMethodLists(indexers);
			if (or.BestCandidate != null) {
				return or.CreateResolveResult(target);
			} else {
				return ErrorResult;
			}
		}
		
		/// <summary>
		/// Converts all arguments to int,uint,long or ulong.
		/// </summary>
		void AdjustArrayAccessArguments(ResolveResult[] arguments)
		{
			for (int i = 0; i < arguments.Length; i++) {
				if (!(TryConvert(ref arguments[i], compilation.FindType(KnownTypeCode.Int32)) ||
				      TryConvert(ref arguments[i], compilation.FindType(KnownTypeCode.UInt32)) ||
				      TryConvert(ref arguments[i], compilation.FindType(KnownTypeCode.Int64)) ||
				      TryConvert(ref arguments[i], compilation.FindType(KnownTypeCode.UInt64))))
				{
					// conversion failed
					arguments[i] = Convert(arguments[i], compilation.FindType(KnownTypeCode.Int32), Conversion.None);
				}
			}
		}
		#endregion
		
		#region ResolveObjectCreation
		/// <summary>
		/// Resolves an object creation.
		/// </summary>
		/// <param name="type">Type of the object to create.</param>
		/// <param name="arguments">
		/// Arguments passed to the constructor.
		/// The resolver may mutate this array to wrap elements in <see cref="ConversionResolveResult"/>s!
		/// </param>
		/// <param name="argumentNames">
		/// The argument names. Pass the null string for positional arguments.
		/// </param>
		/// <param name="allowProtectedAccess">
		/// Whether to allow calling protected constructors.
		/// This should be false except when resolving constructor initializers.
		/// </param>
		/// <param name="initializerStatements">
		/// Statements for Objects/Collections initializer.
		/// <see cref="InvocationResolveResult.InitializerStatements"/>
		/// </param>
		/// <returns>InvocationResolveResult or ErrorResolveResult</returns>
		public ResolveResult ResolveObjectCreation(IType type, ResolveResult[] arguments, string[] argumentNames = null, bool allowProtectedAccess = false, IList<ResolveResult> initializerStatements = null)
		{
			if (type.Kind == TypeKind.Delegate && arguments.Length == 1) {
				ResolveResult input = arguments[0];
				IMethod invoke = input.Type.GetDelegateInvokeMethod();
				if (invoke != null) {
					input = new MethodGroupResolveResult(
						input, invoke.Name,
						methods: new[] { new MethodListWithDeclaringType(input.Type) { invoke } },
						typeArguments: EmptyList<IType>.Instance
					);
				}
				return Convert(input, type);
			}
			OverloadResolution or = CreateOverloadResolution(arguments, argumentNames);
			MemberLookup lookup = CreateMemberLookup();
			var allApplicable = (arguments.Any(a => a.Type.Kind == TypeKind.Dynamic) ? new List<IMethod>() : null);
			foreach (IMethod ctor in type.GetConstructors()) {
				if (lookup.IsAccessible(ctor, allowProtectedAccess)) {
					var orErrors = or.AddCandidate(ctor);
					if (allApplicable != null && OverloadResolution.IsApplicable(orErrors))
						allApplicable.Add(ctor);
				}
				else
					or.AddCandidate(ctor, OverloadResolutionErrors.Inaccessible);
			}

			if (allApplicable != null && allApplicable.Count > 1) {
				// If we have dynamic arguments, we need to represent the invocation as a dynamic invocation if there is more than one applicable constructor.
				return new DynamicInvocationResolveResult(new MethodGroupResolveResult(null, allApplicable[0].Name, new[] { new MethodListWithDeclaringType(type, allApplicable) }, null), DynamicInvocationType.ObjectCreation, AddArgumentNamesIfNecessary(arguments, argumentNames), initializerStatements);
			}

			if (or.BestCandidate != null) {
				return or.CreateResolveResult(null, initializerStatements);
			} else {
				return new ErrorResolveResult(type);
			}
		}
		#endregion
		
		#region ResolveSizeOf
		/// <summary>
		/// Resolves 'sizeof(type)'.
		/// </summary>
		public ResolveResult ResolveSizeOf(IType type)
		{
			IType int32 = compilation.FindType(KnownTypeCode.Int32);
			int? size = null;
			var typeForConstant = (type.Kind == TypeKind.Enum) ? type.GetDefinition().EnumUnderlyingType : type;

			switch (ReflectionHelper.GetTypeCode(typeForConstant)) {
				case TypeCode.Boolean:
				case TypeCode.SByte:
				case TypeCode.Byte:
					size = 1;
					break;
				case TypeCode.Char:
				case TypeCode.Int16:
				case TypeCode.UInt16:
					size = 2;
					break;
				case TypeCode.Int32:
				case TypeCode.UInt32:
				case TypeCode.Single:
					size = 4;
					break;
				case TypeCode.Int64:
				case TypeCode.UInt64:
				case TypeCode.Double:
					size = 8;
					break;
			}
			return new SizeOfResolveResult(int32, type, size);
		}
		#endregion
		
		#region Resolve This/Base Reference
		/// <summary>
		/// Resolves 'this'.
		/// </summary>
		public ResolveResult ResolveThisReference()
		{
			ITypeDefinition t = CurrentTypeDefinition;
			if (t != null) {
				if (t.TypeParameterCount != 0) {
					// Self-parameterize the type
					return new ThisResolveResult(new ParameterizedType(t, t.TypeParameters));
				} else {
					return new ThisResolveResult(t);
				}
			}
			return ErrorResult;
		}
		
		/// <summary>
		/// Resolves 'base'.
		/// </summary>
		public ResolveResult ResolveBaseReference()
		{
			ITypeDefinition t = CurrentTypeDefinition;
			if (t != null) {
				foreach (IType baseType in t.DirectBaseTypes) {
					if (baseType.Kind != TypeKind.Unknown && baseType.Kind != TypeKind.Interface) {
						return new ThisResolveResult(baseType, causesNonVirtualInvocation: true);
					}
				}
			}
			return ErrorResult;
		}
		#endregion
		
		#region ResolveConditional
		/// <summary>
		/// Converts the input to <c>bool</c> using the rules for boolean expressions.
		/// That is, <c>operator true</c> is used if a regular conversion to <c>bool</c> is not possible.
		/// </summary>
		public ResolveResult ResolveCondition(ResolveResult input)
		{
			if (input == null)
				throw new ArgumentNullException("input");
			IType boolean = compilation.FindType(KnownTypeCode.Boolean);
			Conversion c = conversions.ImplicitConversion(input, boolean);
			if (!c.IsValid) {
				var opTrue = input.Type.GetMethods(m => m.IsOperator && m.Name == "op_True").FirstOrDefault();
				if (opTrue != null) {
					c = Conversion.UserDefinedConversion(opTrue, isImplicit: true, conversionBeforeUserDefinedOperator: Conversion.None, conversionAfterUserDefinedOperator: Conversion.None);
				}
			}
			return Convert(input, boolean, c);
		}
		
		/// <summary>
		/// Converts the negated input to <c>bool</c> using the rules for boolean expressions.
		/// Computes <c>!(bool)input</c> if the implicit cast to bool is valid; otherwise
		/// computes <c>input.operator false()</c>.
		/// </summary>
		public ResolveResult ResolveConditionFalse(ResolveResult input)
		{
			if (input == null)
				throw new ArgumentNullException("input");
			IType boolean = compilation.FindType(KnownTypeCode.Boolean);
			Conversion c = conversions.ImplicitConversion(input, boolean);
			if (!c.IsValid) {
				var opFalse = input.Type.GetMethods(m => m.IsOperator && m.Name == "op_False").FirstOrDefault();
				if (opFalse != null) {
					c = Conversion.UserDefinedConversion(opFalse, isImplicit: true, conversionBeforeUserDefinedOperator: Conversion.None, conversionAfterUserDefinedOperator: Conversion.None);
					return Convert(input, boolean, c);
				}
			}
			return ResolveUnaryOperator(UnaryOperatorType.Not, Convert(input, boolean, c));
		}
		
		public ResolveResult ResolveConditional(ResolveResult condition, ResolveResult trueExpression, ResolveResult falseExpression)
		{
			// C# 4.0 spec §7.14: Conditional operator
			
			bool isValid;
			IType resultType;
			if (trueExpression.Type.Kind == TypeKind.Dynamic || falseExpression.Type.Kind == TypeKind.Dynamic) {
				resultType = SpecialType.Dynamic;
				isValid = TryConvert(ref trueExpression, resultType) & TryConvert(ref falseExpression, resultType);
			} else if (HasType(trueExpression) && HasType(falseExpression)) {
				Conversion t2f = conversions.ImplicitConversion(trueExpression, falseExpression.Type);
				Conversion f2t = conversions.ImplicitConversion(falseExpression, trueExpression.Type);
				// The operator is valid:
				// a) if there's a conversion in one direction but not the other
				// b) if there are conversions in both directions, and the types are equivalent
				if (IsBetterConditionalConversion(t2f, f2t)) {
					resultType = falseExpression.Type;
					isValid = true;
					trueExpression = Convert(trueExpression, resultType, t2f);
				} else if (IsBetterConditionalConversion(f2t, t2f)) {
					resultType = trueExpression.Type;
					isValid = true;
					falseExpression = Convert(falseExpression, resultType, f2t);
				} else {
					resultType = trueExpression.Type;
					isValid = trueExpression.Type.Equals(falseExpression.Type);
				}
			} else if (HasType(trueExpression)) {
				resultType = trueExpression.Type;
				isValid = TryConvert(ref falseExpression, resultType);
			} else if (HasType(falseExpression)) {
				resultType = falseExpression.Type;
				isValid = TryConvert(ref trueExpression, resultType);
			} else {
				return ErrorResult;
			}
			condition = ResolveCondition(condition);
			if (isValid) {
				if (condition.IsCompileTimeConstant && trueExpression.IsCompileTimeConstant && falseExpression.IsCompileTimeConstant) {
					bool? val = condition.ConstantValue as bool?;
					if (val == true)
						return trueExpression;
					else if (val == false)
						return falseExpression;
				}
				return new OperatorResolveResult(resultType, System.Linq.Expressions.ExpressionType.Conditional,
				                                 condition, trueExpression, falseExpression);
			} else {
				return new ErrorResolveResult(resultType);
			}
		}
		
		bool IsBetterConditionalConversion(Conversion c1, Conversion c2)
		{
			// Valid is better than ImplicitConstantExpressionConversion is better than invalid
			if (!c1.IsValid)
				return false;
			if (c1 != Conversion.ImplicitConstantExpressionConversion && c2 == Conversion.ImplicitConstantExpressionConversion)
				return true;
			return !c2.IsValid;
		}
		
		bool HasType(ResolveResult r)
		{
			return r.Type.Kind != TypeKind.Unknown && r.Type.Kind != TypeKind.Null;
		}
		#endregion
		
		#region ResolvePrimitive
		public ResolveResult ResolvePrimitive(object value)
		{
			if (value == null) {
				return new ResolveResult(SpecialType.NullType);
			} else {
				TypeCode typeCode = Type.GetTypeCode(value.GetType());
				IType type = compilation.FindType(typeCode);
				return new ConstantResolveResult(type, value);
			}
		}
		#endregion
		
		#region ResolveDefaultValue
		public ResolveResult ResolveDefaultValue(IType type)
		{
			return new ConstantResolveResult(type, GetDefaultValue(type));
		}
		
		public static object GetDefaultValue(IType type)
		{
			ITypeDefinition typeDef = type.GetDefinition();
			if (typeDef == null)
				return null;
			if (typeDef.Kind == TypeKind.Enum) {
				typeDef = typeDef.EnumUnderlyingType.GetDefinition();
				if (typeDef == null)
					return null;
			}
			switch (typeDef.KnownTypeCode) {
				case KnownTypeCode.Boolean:
					return false;
				case KnownTypeCode.Char:
					return '\0';
				case KnownTypeCode.SByte:
					return (sbyte)0;
				case KnownTypeCode.Byte:
					return (byte)0;
				case KnownTypeCode.Int16:
					return (short)0;
				case KnownTypeCode.UInt16:
					return (ushort)0;
				case KnownTypeCode.Int32:
					return 0;
				case KnownTypeCode.UInt32:
					return 0U;
				case KnownTypeCode.Int64:
					return 0L;
				case KnownTypeCode.UInt64:
					return 0UL;
				case KnownTypeCode.Single:
					return 0f;
				case KnownTypeCode.Double:
					return 0.0;
				case KnownTypeCode.Decimal:
					return 0m;
				default:
					return null;
			}
		}
		#endregion
		
		#region ResolveArrayCreation
		/// <summary>
		/// Resolves an array creation.
		/// </summary>
		/// <param name="elementType">
		/// The array element type.
		/// Pass null to resolve an implicitly-typed array creation.
		/// </param>
		/// <param name="sizeArguments">
		/// The size arguments.
		/// The length of this array will be used as the number of dimensions of the array type.
		/// Negative values will be treated as errors.
		/// </param>
		/// <param name="initializerElements">
		/// The initializer elements. May be null if no array initializer was specified.
		/// The resolver may mutate this array to wrap elements in <see cref="ConversionResolveResult"/>s!
		/// </param>
		public ArrayCreateResolveResult ResolveArrayCreation(IType elementType, int[] sizeArguments, ResolveResult[] initializerElements = null)
		{
			ResolveResult[] sizeArgResults = new ResolveResult[sizeArguments.Length];
			for (int i = 0; i < sizeArguments.Length; i++) {
				if (sizeArguments[i] < 0)
					sizeArgResults[i] = ErrorResolveResult.UnknownError;
				else
					sizeArgResults[i] = new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int32), sizeArguments[i]);
			}
			return ResolveArrayCreation(elementType, sizeArgResults, initializerElements);
		}
		
		/// <summary>
		/// Resolves an array creation.
		/// </summary>
		/// <param name="elementType">
		/// The array element type.
		/// Pass null to resolve an implicitly-typed array creation.
		/// </param>
		/// <param name="sizeArguments">
		/// The size arguments.
		/// The length of this array will be used as the number of dimensions of the array type.
		/// The resolver may mutate this array to wrap elements in <see cref="ConversionResolveResult"/>s!
		/// </param>
		/// <param name="initializerElements">
		/// The initializer elements. May be null if no array initializer was specified.
		/// The resolver may mutate this array to wrap elements in <see cref="ConversionResolveResult"/>s!
		/// </param>
		public ArrayCreateResolveResult ResolveArrayCreation(IType elementType, ResolveResult[] sizeArguments, ResolveResult[] initializerElements = null)
		{
			int dimensions = sizeArguments.Length;
			if (dimensions == 0)
				throw new ArgumentException("sizeArguments.Length must not be 0");
			if (elementType == null) {
				TypeInference typeInference = new TypeInference(compilation, conversions);
				bool success;
				elementType = typeInference.GetBestCommonType(initializerElements, out success);
			}
			IType arrayType = new ArrayType(compilation, elementType, dimensions);
			
			AdjustArrayAccessArguments(sizeArguments);
			
			if (initializerElements != null) {
				for (int i = 0; i < initializerElements.Length; i++) {
					initializerElements[i] = Convert(initializerElements[i], elementType);
				}
			}
			return new ArrayCreateResolveResult(arrayType, sizeArguments, initializerElements);
		}
		#endregion
		
		public ResolveResult ResolveTypeOf(IType referencedType)
		{
			return new TypeOfResolveResult(compilation.FindType(KnownTypeCode.Type), referencedType);
		}
		
		#region ResolveAssignment
		public ResolveResult ResolveAssignment(AssignmentOperatorType op, ResolveResult lhs, ResolveResult rhs)
		{
			var linqOp = AssignmentExpression.GetLinqNodeType(op, this.CheckForOverflow);
			var bop = AssignmentExpression.GetCorrespondingBinaryOperator(op);
			if (bop == null) {
				return new OperatorResolveResult(lhs.Type, linqOp, lhs, this.Convert(rhs, lhs.Type));
			}
			ResolveResult bopResult = ResolveBinaryOperator(bop.Value, lhs, rhs);
			OperatorResolveResult opResult = bopResult as OperatorResolveResult;
			if (opResult == null || opResult.Operands.Count != 2)
				return bopResult;
			return new OperatorResolveResult(lhs.Type, linqOp, opResult.UserDefinedOperatorMethod, opResult.IsLiftedOperator,
			                                 new [] { lhs, opResult.Operands[1] });
		}
		#endregion
	}
}