Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gitlab.com/quite/humla-spongycastle.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java')
-rw-r--r--core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java363
1 files changed, 363 insertions, 0 deletions
diff --git a/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java b/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java
new file mode 100644
index 00000000..e91e654e
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java
@@ -0,0 +1,363 @@
+package org.spongycastle.crypto.engines;
+
+import org.spongycastle.crypto.BlockCipher;
+import org.spongycastle.crypto.CipherParameters;
+import org.spongycastle.crypto.DataLengthException;
+import org.spongycastle.crypto.OutputLengthException;
+import org.spongycastle.crypto.params.KeyParameter;
+
+/**
+ * An RC6 engine.
+ */
+public class RC6Engine
+ implements BlockCipher
+{
+ private static final int wordSize = 32;
+ private static final int bytesPerWord = wordSize / 8;
+
+ /*
+ * the number of rounds to perform
+ */
+ private static final int _noRounds = 20;
+
+ /*
+ * the expanded key array of size 2*(rounds + 1)
+ */
+ private int _S[];
+
+ /*
+ * our "magic constants" for wordSize 32
+ *
+ * Pw = Odd((e-2) * 2^wordsize)
+ * Qw = Odd((o-2) * 2^wordsize)
+ *
+ * where e is the base of natural logarithms (2.718281828...)
+ * and o is the golden ratio (1.61803398...)
+ */
+ private static final int P32 = 0xb7e15163;
+ private static final int Q32 = 0x9e3779b9;
+
+ private static final int LGW = 5; // log2(32)
+
+ private boolean forEncryption;
+
+ /**
+ * Create an instance of the RC6 encryption algorithm
+ * and set some defaults
+ */
+ public RC6Engine()
+ {
+ _S = null;
+ }
+
+ public String getAlgorithmName()
+ {
+ return "RC6";
+ }
+
+ public int getBlockSize()
+ {
+ return 4 * bytesPerWord;
+ }
+
+ /**
+ * initialise a RC5-32 cipher.
+ *
+ * @param forEncryption whether or not we are for encryption.
+ * @param params the parameters required to set up the cipher.
+ * @exception IllegalArgumentException if the params argument is
+ * inappropriate.
+ */
+ public void init(
+ boolean forEncryption,
+ CipherParameters params)
+ {
+ if (!(params instanceof KeyParameter))
+ {
+ throw new IllegalArgumentException("invalid parameter passed to RC6 init - " + params.getClass().getName());
+ }
+
+ KeyParameter p = (KeyParameter)params;
+ this.forEncryption = forEncryption;
+ setKey(p.getKey());
+ }
+
+ public int processBlock(
+ byte[] in,
+ int inOff,
+ byte[] out,
+ int outOff)
+ {
+ int blockSize = getBlockSize();
+ if (_S == null)
+ {
+ throw new IllegalStateException("RC6 engine not initialised");
+ }
+ if ((inOff + blockSize) > in.length)
+ {
+ throw new DataLengthException("input buffer too short");
+ }
+ if ((outOff + blockSize) > out.length)
+ {
+ throw new OutputLengthException("output buffer too short");
+ }
+
+ return (forEncryption)
+ ? encryptBlock(in, inOff, out, outOff)
+ : decryptBlock(in, inOff, out, outOff);
+ }
+
+ public void reset()
+ {
+ }
+
+ /**
+ * Re-key the cipher.
+ * <p>
+ * @param key the key to be used
+ */
+ private void setKey(
+ byte[] key)
+ {
+
+ //
+ // KEY EXPANSION:
+ //
+ // There are 3 phases to the key expansion.
+ //
+ // Phase 1:
+ // Copy the secret key K[0...b-1] into an array L[0..c-1] of
+ // c = ceil(b/u), where u = wordSize/8 in little-endian order.
+ // In other words, we fill up L using u consecutive key bytes
+ // of K. Any unfilled byte positions in L are zeroed. In the
+ // case that b = c = 0, set c = 1 and L[0] = 0.
+ //
+ // compute number of dwords
+ int c = (key.length + (bytesPerWord - 1)) / bytesPerWord;
+ if (c == 0)
+ {
+ c = 1;
+ }
+ int[] L = new int[(key.length + bytesPerWord - 1) / bytesPerWord];
+
+ // load all key bytes into array of key dwords
+ for (int i = key.length - 1; i >= 0; i--)
+ {
+ L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);
+ }
+
+ //
+ // Phase 2:
+ // Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.
+ // Initialize S to a particular fixed pseudo-random bit pattern
+ // using an arithmetic progression modulo 2^wordsize determined
+ // by the magic numbers, Pw & Qw.
+ //
+ _S = new int[2+2*_noRounds+2];
+
+ _S[0] = P32;
+ for (int i=1; i < _S.length; i++)
+ {
+ _S[i] = (_S[i-1] + Q32);
+ }
+
+ //
+ // Phase 3:
+ // Mix in the user's secret key in 3 passes over the arrays S & L.
+ // The max of the arrays sizes is used as the loop control
+ //
+ int iter;
+
+ if (L.length > _S.length)
+ {
+ iter = 3 * L.length;
+ }
+ else
+ {
+ iter = 3 * _S.length;
+ }
+
+ int A = 0;
+ int B = 0;
+ int i = 0, j = 0;
+
+ for (int k = 0; k < iter; k++)
+ {
+ A = _S[i] = rotateLeft(_S[i] + A + B, 3);
+ B = L[j] = rotateLeft(L[j] + A + B, A+B);
+ i = (i+1) % _S.length;
+ j = (j+1) % L.length;
+ }
+ }
+
+ private int encryptBlock(
+ byte[] in,
+ int inOff,
+ byte[] out,
+ int outOff)
+ {
+ // load A,B,C and D registers from in.
+ int A = bytesToWord(in, inOff);
+ int B = bytesToWord(in, inOff + bytesPerWord);
+ int C = bytesToWord(in, inOff + bytesPerWord*2);
+ int D = bytesToWord(in, inOff + bytesPerWord*3);
+
+ // Do pseudo-round #0: pre-whitening of B and D
+ B += _S[0];
+ D += _S[1];
+
+ // perform round #1,#2 ... #ROUNDS of encryption
+ for (int i = 1; i <= _noRounds; i++)
+ {
+ int t = 0,u = 0;
+
+ t = B*(2*B+1);
+ t = rotateLeft(t,5);
+
+ u = D*(2*D+1);
+ u = rotateLeft(u,5);
+
+ A ^= t;
+ A = rotateLeft(A,u);
+ A += _S[2*i];
+
+ C ^= u;
+ C = rotateLeft(C,t);
+ C += _S[2*i+1];
+
+ int temp = A;
+ A = B;
+ B = C;
+ C = D;
+ D = temp;
+ }
+ // do pseudo-round #(ROUNDS+1) : post-whitening of A and C
+ A += _S[2*_noRounds+2];
+ C += _S[2*_noRounds+3];
+
+ // store A, B, C and D registers to out
+ wordToBytes(A, out, outOff);
+ wordToBytes(B, out, outOff + bytesPerWord);
+ wordToBytes(C, out, outOff + bytesPerWord*2);
+ wordToBytes(D, out, outOff + bytesPerWord*3);
+
+ return 4 * bytesPerWord;
+ }
+
+ private int decryptBlock(
+ byte[] in,
+ int inOff,
+ byte[] out,
+ int outOff)
+ {
+ // load A,B,C and D registers from out.
+ int A = bytesToWord(in, inOff);
+ int B = bytesToWord(in, inOff + bytesPerWord);
+ int C = bytesToWord(in, inOff + bytesPerWord*2);
+ int D = bytesToWord(in, inOff + bytesPerWord*3);
+
+ // Undo pseudo-round #(ROUNDS+1) : post whitening of A and C
+ C -= _S[2*_noRounds+3];
+ A -= _S[2*_noRounds+2];
+
+ // Undo round #ROUNDS, .., #2,#1 of encryption
+ for (int i = _noRounds; i >= 1; i--)
+ {
+ int t=0,u = 0;
+
+ int temp = D;
+ D = C;
+ C = B;
+ B = A;
+ A = temp;
+
+ t = B*(2*B+1);
+ t = rotateLeft(t, LGW);
+
+ u = D*(2*D+1);
+ u = rotateLeft(u, LGW);
+
+ C -= _S[2*i+1];
+ C = rotateRight(C,t);
+ C ^= u;
+
+ A -= _S[2*i];
+ A = rotateRight(A,u);
+ A ^= t;
+
+ }
+ // Undo pseudo-round #0: pre-whitening of B and D
+ D -= _S[1];
+ B -= _S[0];
+
+ wordToBytes(A, out, outOff);
+ wordToBytes(B, out, outOff + bytesPerWord);
+ wordToBytes(C, out, outOff + bytesPerWord*2);
+ wordToBytes(D, out, outOff + bytesPerWord*3);
+
+ return 4 * bytesPerWord;
+ }
+
+
+ //////////////////////////////////////////////////////////////
+ //
+ // PRIVATE Helper Methods
+ //
+ //////////////////////////////////////////////////////////////
+
+ /**
+ * Perform a left "spin" of the word. The rotation of the given
+ * word <em>x</em> is rotated left by <em>y</em> bits.
+ * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
+ * are used to determine the rotation amount. Here it is
+ * assumed that the wordsize used is 32.
+ * <p>
+ * @param x word to rotate
+ * @param y number of bits to rotate % wordSize
+ */
+ private int rotateLeft(int x, int y)
+ {
+ return (x << y) | (x >>> -y);
+ }
+
+ /**
+ * Perform a right "spin" of the word. The rotation of the given
+ * word <em>x</em> is rotated left by <em>y</em> bits.
+ * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
+ * are used to determine the rotation amount. Here it is
+ * assumed that the wordsize used is a power of 2.
+ * <p>
+ * @param x word to rotate
+ * @param y number of bits to rotate % wordSize
+ */
+ private int rotateRight(int x, int y)
+ {
+ return (x >>> y) | (x << -y);
+ }
+
+ private int bytesToWord(
+ byte[] src,
+ int srcOff)
+ {
+ int word = 0;
+
+ for (int i = bytesPerWord - 1; i >= 0; i--)
+ {
+ word = (word << 8) + (src[i + srcOff] & 0xff);
+ }
+
+ return word;
+ }
+
+ private void wordToBytes(
+ int word,
+ byte[] dst,
+ int dstOff)
+ {
+ for (int i = 0; i < bytesPerWord; i++)
+ {
+ dst[i + dstOff] = (byte)word;
+ word >>>= 8;
+ }
+ }
+}