Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gitlab.com/quite/humla-spongycastle.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/main/java/org/spongycastle/pqc/crypto/rainbow/RainbowSigner.java')
-rw-r--r--core/src/main/java/org/spongycastle/pqc/crypto/rainbow/RainbowSigner.java301
1 files changed, 301 insertions, 0 deletions
diff --git a/core/src/main/java/org/spongycastle/pqc/crypto/rainbow/RainbowSigner.java b/core/src/main/java/org/spongycastle/pqc/crypto/rainbow/RainbowSigner.java
new file mode 100644
index 00000000..9033b37e
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/crypto/rainbow/RainbowSigner.java
@@ -0,0 +1,301 @@
+package org.spongycastle.pqc.crypto.rainbow;
+
+import java.security.SecureRandom;
+
+import org.spongycastle.crypto.CipherParameters;
+import org.spongycastle.crypto.params.ParametersWithRandom;
+import org.spongycastle.pqc.crypto.MessageSigner;
+import org.spongycastle.pqc.crypto.rainbow.util.ComputeInField;
+import org.spongycastle.pqc.crypto.rainbow.util.GF2Field;
+
+/**
+ * It implements the sign and verify functions for the Rainbow Signature Scheme.
+ * Here the message, which has to be signed, is updated. The use of
+ * different hash functions is possible.
+ * <p>
+ * Detailed information about the signature and the verify-method is to be found
+ * in the paper of Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable
+ * Polynomial Signature Scheme. ACNS 2005: 164-175
+ * (http://dx.doi.org/10.1007/11496137_12)
+ */
+public class RainbowSigner
+ implements MessageSigner
+{
+ // Source of randomness
+ private SecureRandom random;
+
+ // The length of a document that can be signed with the privKey
+ int signableDocumentLength;
+
+ // Container for the oil and vinegar variables of all the layers
+ private short[] x;
+
+ private ComputeInField cf = new ComputeInField();
+
+ RainbowKeyParameters key;
+
+ public void init(boolean forSigning,
+ CipherParameters param)
+ {
+ if (forSigning)
+ {
+ if (param instanceof ParametersWithRandom)
+ {
+ ParametersWithRandom rParam = (ParametersWithRandom)param;
+
+ this.random = rParam.getRandom();
+ this.key = (RainbowPrivateKeyParameters)rParam.getParameters();
+
+ }
+ else
+ {
+
+ this.random = new SecureRandom();
+ this.key = (RainbowPrivateKeyParameters)param;
+ }
+ }
+ else
+ {
+ this.key = (RainbowPublicKeyParameters)param;
+ }
+
+ this.signableDocumentLength = this.key.getDocLength();
+ }
+
+
+ /**
+ * initial operations before solving the Linear equation system.
+ *
+ * @param layer the current layer for which a LES is to be solved.
+ * @param msg the message that should be signed.
+ * @return Y_ the modified document needed for solving LES, (Y_ =
+ * A1^{-1}*(Y-b1)) linear map L1 = A1 x + b1.
+ */
+ private short[] initSign(Layer[] layer, short[] msg)
+ {
+
+ /* preparation: Modifies the document with the inverse of L1 */
+ // tmp = Y - b1:
+ short[] tmpVec = new short[msg.length];
+
+ tmpVec = cf.addVect(((RainbowPrivateKeyParameters)this.key).getB1(), msg);
+
+ // Y_ = A1^{-1} * (Y - b1) :
+ short[] Y_ = cf.multiplyMatrix(((RainbowPrivateKeyParameters)this.key).getInvA1(), tmpVec);
+
+ /* generates the vinegar vars of the first layer at random */
+ for (int i = 0; i < layer[0].getVi(); i++)
+ {
+ x[i] = (short)random.nextInt();
+ x[i] = (short)(x[i] & GF2Field.MASK);
+ }
+
+ return Y_;
+ }
+
+ /**
+ * This function signs the message that has been updated, making use of the
+ * private key.
+ * <p>
+ * For computing the signature, L1 and L2 are needed, as well as LES should
+ * be solved for each layer in order to find the Oil-variables in the layer.
+ * <p>
+ * The Vinegar-variables of the first layer are random generated.
+ *
+ * @param message the message
+ * @return the signature of the message.
+ */
+ public byte[] generateSignature(byte[] message)
+ {
+ Layer[] layer = ((RainbowPrivateKeyParameters)this.key).getLayers();
+ int numberOfLayers = layer.length;
+
+ x = new short[((RainbowPrivateKeyParameters)this.key).getInvA2().length]; // all variables
+
+ short[] Y_; // modified document
+ short[] y_i; // part of Y_ each polynomial
+ int counter; // index of the current part of the doc
+
+ short[] solVec; // the solution of LES pro layer
+ short[] tmpVec;
+
+ // the signature as an array of shorts:
+ short[] signature;
+ // the signature as a byte-array:
+ byte[] S = new byte[layer[numberOfLayers - 1].getViNext()];
+
+ short[] msgHashVals = makeMessageRepresentative(message);
+
+ // shows if an exception is caught
+ boolean ok;
+ do
+ {
+ ok = true;
+ counter = 0;
+ try
+ {
+ Y_ = initSign(layer, msgHashVals);
+
+ for (int i = 0; i < numberOfLayers; i++)
+ {
+
+ y_i = new short[layer[i].getOi()];
+ solVec = new short[layer[i].getOi()]; // solution of LES
+
+ /* copy oi elements of Y_ into y_i */
+ for (int k = 0; k < layer[i].getOi(); k++)
+ {
+ y_i[k] = Y_[counter];
+ counter++; // current index of Y_
+ }
+
+ /*
+ * plug in the vars of the previous layer in order to get
+ * the vars of the current layer
+ */
+ solVec = cf.solveEquation(layer[i].plugInVinegars(x), y_i);
+
+ if (solVec == null)
+ { // LES is not solveable
+ throw new Exception("LES is not solveable!");
+ }
+
+ /* copy the new vars into the x-array */
+ for (int j = 0; j < solVec.length; j++)
+ {
+ x[layer[i].getVi() + j] = solVec[j];
+ }
+ }
+
+ /* apply the inverse of L2: (signature = A2^{-1}*(b2+x)) */
+ tmpVec = cf.addVect(((RainbowPrivateKeyParameters)this.key).getB2(), x);
+ signature = cf.multiplyMatrix(((RainbowPrivateKeyParameters)this.key).getInvA2(), tmpVec);
+
+ /* cast signature from short[] to byte[] */
+ for (int i = 0; i < S.length; i++)
+ {
+ S[i] = ((byte)signature[i]);
+ }
+ }
+ catch (Exception se)
+ {
+ // if one of the LESs was not solveable - sign again
+ ok = false;
+ }
+ }
+ while (!ok);
+ /* return the signature in bytes */
+ return S;
+ }
+
+ /**
+ * This function verifies the signature of the message that has been
+ * updated, with the aid of the public key.
+ *
+ * @param message the message
+ * @param signature the signature of the message
+ * @return true if the signature has been verified, false otherwise.
+ */
+ public boolean verifySignature(byte[] message, byte[] signature)
+ {
+ short[] sigInt = new short[signature.length];
+ short tmp;
+
+ for (int i = 0; i < signature.length; i++)
+ {
+ tmp = (short)signature[i];
+ tmp &= (short)0xff;
+ sigInt[i] = tmp;
+ }
+
+ short[] msgHashVal = makeMessageRepresentative(message);
+
+ // verify
+ short[] verificationResult = verifySignatureIntern(sigInt);
+
+ // compare
+ boolean verified = true;
+ if (msgHashVal.length != verificationResult.length)
+ {
+ return false;
+ }
+ for (int i = 0; i < msgHashVal.length; i++)
+ {
+ verified = verified && msgHashVal[i] == verificationResult[i];
+ }
+
+ return verified;
+ }
+
+ /**
+ * Signature verification using public key
+ *
+ * @param signature vector of dimension n
+ * @return document hash of length n - v1
+ */
+ private short[] verifySignatureIntern(short[] signature)
+ {
+
+ short[][] coeff_quadratic = ((RainbowPublicKeyParameters)this.key).getCoeffQuadratic();
+ short[][] coeff_singular = ((RainbowPublicKeyParameters)this.key).getCoeffSingular();
+ short[] coeff_scalar = ((RainbowPublicKeyParameters)this.key).getCoeffScalar();
+
+ short[] rslt = new short[coeff_quadratic.length];// n - v1
+ int n = coeff_singular[0].length;
+ int offset = 0; // array position
+ short tmp = 0; // for scalar
+
+ for (int p = 0; p < coeff_quadratic.length; p++)
+ { // no of polynomials
+ offset = 0;
+ for (int x = 0; x < n; x++)
+ {
+ // calculate quadratic terms
+ for (int y = x; y < n; y++)
+ {
+ tmp = GF2Field.multElem(coeff_quadratic[p][offset],
+ GF2Field.multElem(signature[x], signature[y]));
+ rslt[p] = GF2Field.addElem(rslt[p], tmp);
+ offset++;
+ }
+ // calculate singular terms
+ tmp = GF2Field.multElem(coeff_singular[p][x], signature[x]);
+ rslt[p] = GF2Field.addElem(rslt[p], tmp);
+ }
+ // add scalar
+ rslt[p] = GF2Field.addElem(rslt[p], coeff_scalar[p]);
+ }
+
+ return rslt;
+ }
+
+ /**
+ * This function creates the representative of the message which gets signed
+ * or verified.
+ *
+ * @param message the message
+ * @return message representative
+ */
+ private short[] makeMessageRepresentative(byte[] message)
+ {
+ // the message representative
+ short[] output = new short[this.signableDocumentLength];
+
+ int h = 0;
+ int i = 0;
+ do
+ {
+ if (i >= message.length)
+ {
+ break;
+ }
+ output[i] = (short)message[h];
+ output[i] &= (short)0xff;
+ h++;
+ i++;
+ }
+ while (i < output.length);
+
+ return output;
+ }
+}