Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gitlab.com/quite/humla-spongycastle.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/main/java/org/spongycastle/pqc/math/linearalgebra/PolynomialGF2mSmallM.java')
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/linearalgebra/PolynomialGF2mSmallM.java1124
1 files changed, 1124 insertions, 0 deletions
diff --git a/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/PolynomialGF2mSmallM.java b/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/PolynomialGF2mSmallM.java
new file mode 100644
index 00000000..6426a4ce
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/PolynomialGF2mSmallM.java
@@ -0,0 +1,1124 @@
+package org.spongycastle.pqc.math.linearalgebra;
+
+import java.security.SecureRandom;
+
+/**
+ * This class describes operations with polynomials from the ring R =
+ * GF(2^m)[X], where 2 <= m <=31.
+ *
+ * @see GF2mField
+ * @see PolynomialRingGF2m
+ */
+public class PolynomialGF2mSmallM
+{
+
+ /**
+ * the finite field GF(2^m)
+ */
+ private GF2mField field;
+
+ /**
+ * the degree of this polynomial
+ */
+ private int degree;
+
+ /**
+ * For the polynomial representation the map f: R->Z*,
+ * <tt>poly(X) -> [coef_0, coef_1, ...]</tt> is used, where
+ * <tt>coef_i</tt> is the <tt>i</tt>th coefficient of the polynomial
+ * represented as int (see {@link GF2mField}). The polynomials are stored
+ * as int arrays.
+ */
+ private int[] coefficients;
+
+ /*
+ * some types of polynomials
+ */
+
+ /**
+ * Constant used for polynomial construction (see constructor
+ * {@link #PolynomialGF2mSmallM(GF2mField, int, char, SecureRandom)}).
+ */
+ public static final char RANDOM_IRREDUCIBLE_POLYNOMIAL = 'I';
+
+ /**
+ * Construct the zero polynomial over the finite field GF(2^m).
+ *
+ * @param field the finite field GF(2^m)
+ */
+ public PolynomialGF2mSmallM(GF2mField field)
+ {
+ this.field = field;
+ degree = -1;
+ coefficients = new int[1];
+ }
+
+ /**
+ * Construct a polynomial over the finite field GF(2^m).
+ *
+ * @param field the finite field GF(2^m)
+ * @param deg degree of polynomial
+ * @param typeOfPolynomial type of polynomial
+ * @param sr PRNG
+ */
+ public PolynomialGF2mSmallM(GF2mField field, int deg,
+ char typeOfPolynomial, SecureRandom sr)
+ {
+ this.field = field;
+
+ switch (typeOfPolynomial)
+ {
+ case PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL:
+ coefficients = createRandomIrreduciblePolynomial(deg, sr);
+ break;
+ default:
+ throw new IllegalArgumentException(" Error: type "
+ + typeOfPolynomial
+ + " is not defined for GF2smallmPolynomial");
+ }
+ computeDegree();
+ }
+
+ /**
+ * Create an irreducible polynomial with the given degree over the field
+ * <tt>GF(2^m)</tt>.
+ *
+ * @param deg polynomial degree
+ * @param sr source of randomness
+ * @return the generated irreducible polynomial
+ */
+ private int[] createRandomIrreduciblePolynomial(int deg, SecureRandom sr)
+ {
+ int[] resCoeff = new int[deg + 1];
+ resCoeff[deg] = 1;
+ resCoeff[0] = field.getRandomNonZeroElement(sr);
+ for (int i = 1; i < deg; i++)
+ {
+ resCoeff[i] = field.getRandomElement(sr);
+ }
+ while (!isIrreducible(resCoeff))
+ {
+ int n = RandUtils.nextInt(sr, deg);
+ if (n == 0)
+ {
+ resCoeff[0] = field.getRandomNonZeroElement(sr);
+ }
+ else
+ {
+ resCoeff[n] = field.getRandomElement(sr);
+ }
+ }
+ return resCoeff;
+ }
+
+ /**
+ * Construct a monomial of the given degree over the finite field GF(2^m).
+ *
+ * @param field the finite field GF(2^m)
+ * @param degree the degree of the monomial
+ */
+ public PolynomialGF2mSmallM(GF2mField field, int degree)
+ {
+ this.field = field;
+ this.degree = degree;
+ coefficients = new int[degree + 1];
+ coefficients[degree] = 1;
+ }
+
+ /**
+ * Construct the polynomial over the given finite field GF(2^m) from the
+ * given coefficient vector.
+ *
+ * @param field finite field GF2m
+ * @param coeffs the coefficient vector
+ */
+ public PolynomialGF2mSmallM(GF2mField field, int[] coeffs)
+ {
+ this.field = field;
+ coefficients = normalForm(coeffs);
+ computeDegree();
+ }
+
+ /**
+ * Create a polynomial over the finite field GF(2^m).
+ *
+ * @param field the finite field GF(2^m)
+ * @param enc byte[] polynomial in byte array form
+ */
+ public PolynomialGF2mSmallM(GF2mField field, byte[] enc)
+ {
+ this.field = field;
+
+ // decodes polynomial
+ int d = 8;
+ int count = 1;
+ while (field.getDegree() > d)
+ {
+ count++;
+ d += 8;
+ }
+
+ if ((enc.length % count) != 0)
+ {
+ throw new IllegalArgumentException(
+ " Error: byte array is not encoded polynomial over given finite field GF2m");
+ }
+
+ coefficients = new int[enc.length / count];
+ count = 0;
+ for (int i = 0; i < coefficients.length; i++)
+ {
+ for (int j = 0; j < d; j += 8)
+ {
+ coefficients[i] ^= (enc[count++] & 0x000000ff) << j;
+ }
+ if (!this.field.isElementOfThisField(coefficients[i]))
+ {
+ throw new IllegalArgumentException(
+ " Error: byte array is not encoded polynomial over given finite field GF2m");
+ }
+ }
+ // if HC = 0 for non-zero polynomial, returns error
+ if ((coefficients.length != 1)
+ && (coefficients[coefficients.length - 1] == 0))
+ {
+ throw new IllegalArgumentException(
+ " Error: byte array is not encoded polynomial over given finite field GF2m");
+ }
+ computeDegree();
+ }
+
+ /**
+ * Copy constructor.
+ *
+ * @param other another {@link PolynomialGF2mSmallM}
+ */
+ public PolynomialGF2mSmallM(PolynomialGF2mSmallM other)
+ {
+ // field needs not to be cloned since it is immutable
+ field = other.field;
+ degree = other.degree;
+ coefficients = IntUtils.clone(other.coefficients);
+ }
+
+ /**
+ * Create a polynomial over the finite field GF(2^m) out of the given
+ * coefficient vector. The finite field is also obtained from the
+ * {@link GF2mVector}.
+ *
+ * @param vect the coefficient vector
+ */
+ public PolynomialGF2mSmallM(GF2mVector vect)
+ {
+ this(vect.getField(), vect.getIntArrayForm());
+ }
+
+ /*
+ * ------------------------
+ */
+
+ /**
+ * Return the degree of this polynomial
+ *
+ * @return int degree of this polynomial if this is zero polynomial return
+ * -1
+ */
+ public int getDegree()
+ {
+ int d = coefficients.length - 1;
+ if (coefficients[d] == 0)
+ {
+ return -1;
+ }
+ return d;
+ }
+
+ /**
+ * @return the head coefficient of this polynomial
+ */
+ public int getHeadCoefficient()
+ {
+ if (degree == -1)
+ {
+ return 0;
+ }
+ return coefficients[degree];
+ }
+
+ /**
+ * Return the head coefficient of a polynomial.
+ *
+ * @param a the polynomial
+ * @return the head coefficient of <tt>a</tt>
+ */
+ private static int headCoefficient(int[] a)
+ {
+ int degree = computeDegree(a);
+ if (degree == -1)
+ {
+ return 0;
+ }
+ return a[degree];
+ }
+
+ /**
+ * Return the coefficient with the given index.
+ *
+ * @param index the index
+ * @return the coefficient with the given index
+ */
+ public int getCoefficient(int index)
+ {
+ if ((index < 0) || (index > degree))
+ {
+ return 0;
+ }
+ return coefficients[index];
+ }
+
+ /**
+ * Returns encoded polynomial, i.e., this polynomial in byte array form
+ *
+ * @return the encoded polynomial
+ */
+ public byte[] getEncoded()
+ {
+ int d = 8;
+ int count = 1;
+ while (field.getDegree() > d)
+ {
+ count++;
+ d += 8;
+ }
+
+ byte[] res = new byte[coefficients.length * count];
+ count = 0;
+ for (int i = 0; i < coefficients.length; i++)
+ {
+ for (int j = 0; j < d; j += 8)
+ {
+ res[count++] = (byte)(coefficients[i] >>> j);
+ }
+ }
+
+ return res;
+ }
+
+ /**
+ * Evaluate this polynomial <tt>p</tt> at a value <tt>e</tt> (in
+ * <tt>GF(2^m)</tt>) with the Horner scheme.
+ *
+ * @param e the element of the finite field GF(2^m)
+ * @return <tt>this(e)</tt>
+ */
+ public int evaluateAt(int e)
+ {
+ int result = coefficients[degree];
+ for (int i = degree - 1; i >= 0; i--)
+ {
+ result = field.mult(result, e) ^ coefficients[i];
+ }
+ return result;
+ }
+
+ /**
+ * Compute the sum of this polynomial and the given polynomial.
+ *
+ * @param addend the addend
+ * @return <tt>this + a</tt> (newly created)
+ */
+ public PolynomialGF2mSmallM add(PolynomialGF2mSmallM addend)
+ {
+ int[] resultCoeff = add(coefficients, addend.coefficients);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Add the given polynomial to this polynomial (overwrite this).
+ *
+ * @param addend the addend
+ */
+ public void addToThis(PolynomialGF2mSmallM addend)
+ {
+ coefficients = add(coefficients, addend.coefficients);
+ computeDegree();
+ }
+
+ /**
+ * Compute the sum of two polynomials a and b over the finite field
+ * <tt>GF(2^m)</tt>.
+ *
+ * @param a the first polynomial
+ * @param b the second polynomial
+ * @return a + b
+ */
+ private int[] add(int[] a, int[] b)
+ {
+ int[] result, addend;
+ if (a.length < b.length)
+ {
+ result = new int[b.length];
+ System.arraycopy(b, 0, result, 0, b.length);
+ addend = a;
+ }
+ else
+ {
+ result = new int[a.length];
+ System.arraycopy(a, 0, result, 0, a.length);
+ addend = b;
+ }
+
+ for (int i = addend.length - 1; i >= 0; i--)
+ {
+ result[i] = field.add(result[i], addend[i]);
+ }
+
+ return result;
+ }
+
+ /**
+ * Compute the sum of this polynomial and the monomial of the given degree.
+ *
+ * @param degree the degree of the monomial
+ * @return <tt>this + X^k</tt>
+ */
+ public PolynomialGF2mSmallM addMonomial(int degree)
+ {
+ int[] monomial = new int[degree + 1];
+ monomial[degree] = 1;
+ int[] resultCoeff = add(coefficients, monomial);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute the product of this polynomial with an element from GF(2^m).
+ *
+ * @param element an element of the finite field GF(2^m)
+ * @return <tt>this * element</tt> (newly created)
+ * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
+ * field this polynomial is defined over.
+ */
+ public PolynomialGF2mSmallM multWithElement(int element)
+ {
+ if (!field.isElementOfThisField(element))
+ {
+ throw new ArithmeticException(
+ "Not an element of the finite field this polynomial is defined over.");
+ }
+ int[] resultCoeff = multWithElement(coefficients, element);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Multiply this polynomial with an element from GF(2^m).
+ *
+ * @param element an element of the finite field GF(2^m)
+ * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
+ * field this polynomial is defined over.
+ */
+ public void multThisWithElement(int element)
+ {
+ if (!field.isElementOfThisField(element))
+ {
+ throw new ArithmeticException(
+ "Not an element of the finite field this polynomial is defined over.");
+ }
+ coefficients = multWithElement(coefficients, element);
+ computeDegree();
+ }
+
+ /**
+ * Compute the product of a polynomial a with an element from the finite
+ * field <tt>GF(2^m)</tt>.
+ *
+ * @param a the polynomial
+ * @param element an element of the finite field GF(2^m)
+ * @return <tt>a * element</tt>
+ */
+ private int[] multWithElement(int[] a, int element)
+ {
+ int degree = computeDegree(a);
+ if (degree == -1 || element == 0)
+ {
+ return new int[1];
+ }
+
+ if (element == 1)
+ {
+ return IntUtils.clone(a);
+ }
+
+ int[] result = new int[degree + 1];
+ for (int i = degree; i >= 0; i--)
+ {
+ result[i] = field.mult(a[i], element);
+ }
+
+ return result;
+ }
+
+ /**
+ * Compute the product of this polynomial with a monomial X^k.
+ *
+ * @param k the degree of the monomial
+ * @return <tt>this * X^k</tt>
+ */
+ public PolynomialGF2mSmallM multWithMonomial(int k)
+ {
+ int[] resultCoeff = multWithMonomial(coefficients, k);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute the product of a polynomial with a monomial X^k.
+ *
+ * @param a the polynomial
+ * @param k the degree of the monomial
+ * @return <tt>a * X^k</tt>
+ */
+ private static int[] multWithMonomial(int[] a, int k)
+ {
+ int d = computeDegree(a);
+ if (d == -1)
+ {
+ return new int[1];
+ }
+ int[] result = new int[d + k + 1];
+ System.arraycopy(a, 0, result, k, d + 1);
+ return result;
+ }
+
+ /**
+ * Divide this polynomial by the given polynomial.
+ *
+ * @param f a polynomial
+ * @return polynomial pair = {q,r} where this = q*f+r and deg(r) &lt;
+ * deg(f);
+ */
+ public PolynomialGF2mSmallM[] div(PolynomialGF2mSmallM f)
+ {
+ int[][] resultCoeffs = div(coefficients, f.coefficients);
+ return new PolynomialGF2mSmallM[]{
+ new PolynomialGF2mSmallM(field, resultCoeffs[0]),
+ new PolynomialGF2mSmallM(field, resultCoeffs[1])};
+ }
+
+ /**
+ * Compute the result of the division of two polynomials over the field
+ * <tt>GF(2^m)</tt>.
+ *
+ * @param a the first polynomial
+ * @param f the second polynomial
+ * @return int[][] {q,r}, where a = q*f+r and deg(r) &lt; deg(f);
+ */
+ private int[][] div(int[] a, int[] f)
+ {
+ int df = computeDegree(f);
+ int da = computeDegree(a) + 1;
+ if (df == -1)
+ {
+ throw new ArithmeticException("Division by zero.");
+ }
+ int[][] result = new int[2][];
+ result[0] = new int[1];
+ result[1] = new int[da];
+ int hc = headCoefficient(f);
+ hc = field.inverse(hc);
+ result[0][0] = 0;
+ System.arraycopy(a, 0, result[1], 0, result[1].length);
+ while (df <= computeDegree(result[1]))
+ {
+ int[] q;
+ int[] coeff = new int[1];
+ coeff[0] = field.mult(headCoefficient(result[1]), hc);
+ q = multWithElement(f, coeff[0]);
+ int n = computeDegree(result[1]) - df;
+ q = multWithMonomial(q, n);
+ coeff = multWithMonomial(coeff, n);
+ result[0] = add(coeff, result[0]);
+ result[1] = add(q, result[1]);
+ }
+ return result;
+ }
+
+ /**
+ * Return the greatest common divisor of this and a polynomial <i>f</i>
+ *
+ * @param f polynomial
+ * @return GCD(this, f)
+ */
+ public PolynomialGF2mSmallM gcd(PolynomialGF2mSmallM f)
+ {
+ int[] resultCoeff = gcd(coefficients, f.coefficients);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Return the greatest common divisor of two polynomials over the field
+ * <tt>GF(2^m)</tt>.
+ *
+ * @param f the first polynomial
+ * @param g the second polynomial
+ * @return <tt>gcd(f, g)</tt>
+ */
+ private int[] gcd(int[] f, int[] g)
+ {
+ int[] a = f;
+ int[] b = g;
+ if (computeDegree(a) == -1)
+ {
+ return b;
+ }
+ while (computeDegree(b) != -1)
+ {
+ int[] c = mod(a, b);
+ a = new int[b.length];
+ System.arraycopy(b, 0, a, 0, a.length);
+ b = new int[c.length];
+ System.arraycopy(c, 0, b, 0, b.length);
+ }
+ int coeff = field.inverse(headCoefficient(a));
+ return multWithElement(a, coeff);
+ }
+
+ /**
+ * Compute the product of this polynomial and the given factor using a
+ * Karatzuba like scheme.
+ *
+ * @param factor the polynomial
+ * @return <tt>this * factor</tt>
+ */
+ public PolynomialGF2mSmallM multiply(PolynomialGF2mSmallM factor)
+ {
+ int[] resultCoeff = multiply(coefficients, factor.coefficients);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute the product of two polynomials over the field <tt>GF(2^m)</tt>
+ * using a Karatzuba like multiplication.
+ *
+ * @param a the first polynomial
+ * @param b the second polynomial
+ * @return a * b
+ */
+ private int[] multiply(int[] a, int[] b)
+ {
+ int[] mult1, mult2;
+ if (computeDegree(a) < computeDegree(b))
+ {
+ mult1 = b;
+ mult2 = a;
+ }
+ else
+ {
+ mult1 = a;
+ mult2 = b;
+ }
+
+ mult1 = normalForm(mult1);
+ mult2 = normalForm(mult2);
+
+ if (mult2.length == 1)
+ {
+ return multWithElement(mult1, mult2[0]);
+ }
+
+ int d1 = mult1.length;
+ int d2 = mult2.length;
+ int[] result = new int[d1 + d2 - 1];
+
+ if (d2 != d1)
+ {
+ int[] res1 = new int[d2];
+ int[] res2 = new int[d1 - d2];
+ System.arraycopy(mult1, 0, res1, 0, res1.length);
+ System.arraycopy(mult1, d2, res2, 0, res2.length);
+ res1 = multiply(res1, mult2);
+ res2 = multiply(res2, mult2);
+ res2 = multWithMonomial(res2, d2);
+ result = add(res1, res2);
+ }
+ else
+ {
+ d2 = (d1 + 1) >>> 1;
+ int d = d1 - d2;
+ int[] firstPartMult1 = new int[d2];
+ int[] firstPartMult2 = new int[d2];
+ int[] secondPartMult1 = new int[d];
+ int[] secondPartMult2 = new int[d];
+ System
+ .arraycopy(mult1, 0, firstPartMult1, 0,
+ firstPartMult1.length);
+ System.arraycopy(mult1, d2, secondPartMult1, 0,
+ secondPartMult1.length);
+ System
+ .arraycopy(mult2, 0, firstPartMult2, 0,
+ firstPartMult2.length);
+ System.arraycopy(mult2, d2, secondPartMult2, 0,
+ secondPartMult2.length);
+ int[] helpPoly1 = add(firstPartMult1, secondPartMult1);
+ int[] helpPoly2 = add(firstPartMult2, secondPartMult2);
+ int[] res1 = multiply(firstPartMult1, firstPartMult2);
+ int[] res2 = multiply(helpPoly1, helpPoly2);
+ int[] res3 = multiply(secondPartMult1, secondPartMult2);
+ res2 = add(res2, res1);
+ res2 = add(res2, res3);
+ res3 = multWithMonomial(res3, d2);
+ result = add(res2, res3);
+ result = multWithMonomial(result, d2);
+ result = add(result, res1);
+ }
+
+ return result;
+ }
+
+ /*
+ * ---------------- PART II ----------------
+ *
+ */
+
+ /**
+ * Check a polynomial for irreducibility over the field <tt>GF(2^m)</tt>.
+ *
+ * @param a the polynomial to check
+ * @return true if a is irreducible, false otherwise
+ */
+ private boolean isIrreducible(int[] a)
+ {
+ if (a[0] == 0)
+ {
+ return false;
+ }
+ int d = computeDegree(a) >> 1;
+ int[] u = {0, 1};
+ final int[] Y = {0, 1};
+ int fieldDegree = field.getDegree();
+ for (int i = 0; i < d; i++)
+ {
+ for (int j = fieldDegree - 1; j >= 0; j--)
+ {
+ u = modMultiply(u, u, a);
+ }
+ u = normalForm(u);
+ int[] g = gcd(add(u, Y), a);
+ if (computeDegree(g) != 0)
+ {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Reduce this polynomial modulo another polynomial.
+ *
+ * @param f the reduction polynomial
+ * @return <tt>this mod f</tt>
+ */
+ public PolynomialGF2mSmallM mod(PolynomialGF2mSmallM f)
+ {
+ int[] resultCoeff = mod(coefficients, f.coefficients);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Reduce a polynomial modulo another polynomial.
+ *
+ * @param a the polynomial
+ * @param f the reduction polynomial
+ * @return <tt>a mod f</tt>
+ */
+ private int[] mod(int[] a, int[] f)
+ {
+ int df = computeDegree(f);
+ if (df == -1)
+ {
+ throw new ArithmeticException("Division by zero");
+ }
+ int[] result = new int[a.length];
+ int hc = headCoefficient(f);
+ hc = field.inverse(hc);
+ System.arraycopy(a, 0, result, 0, result.length);
+ while (df <= computeDegree(result))
+ {
+ int[] q;
+ int coeff = field.mult(headCoefficient(result), hc);
+ q = multWithMonomial(f, computeDegree(result) - df);
+ q = multWithElement(q, coeff);
+ result = add(q, result);
+ }
+ return result;
+ }
+
+ /**
+ * Compute the product of this polynomial and another polynomial modulo a
+ * third polynomial.
+ *
+ * @param a another polynomial
+ * @param b the reduction polynomial
+ * @return <tt>this * a mod b</tt>
+ */
+ public PolynomialGF2mSmallM modMultiply(PolynomialGF2mSmallM a,
+ PolynomialGF2mSmallM b)
+ {
+ int[] resultCoeff = modMultiply(coefficients, a.coefficients,
+ b.coefficients);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Square this polynomial using a squaring matrix.
+ *
+ * @param matrix the squaring matrix
+ * @return <tt>this^2</tt> modulo the reduction polynomial implicitly
+ * given via the squaring matrix
+ */
+ public PolynomialGF2mSmallM modSquareMatrix(PolynomialGF2mSmallM[] matrix)
+ {
+
+ int length = matrix.length;
+
+ int[] resultCoeff = new int[length];
+ int[] thisSquare = new int[length];
+
+ // square each entry of this polynomial
+ for (int i = 0; i < coefficients.length; i++)
+ {
+ thisSquare[i] = field.mult(coefficients[i], coefficients[i]);
+ }
+
+ // do matrix-vector multiplication
+ for (int i = 0; i < length; i++)
+ {
+ // compute scalar product of i-th row and coefficient vector
+ for (int j = 0; j < length; j++)
+ {
+ if (i >= matrix[j].coefficients.length)
+ {
+ continue;
+ }
+ int scalarTerm = field.mult(matrix[j].coefficients[i],
+ thisSquare[j]);
+ resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
+ }
+ }
+
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute the product of two polynomials modulo a third polynomial over the
+ * finite field <tt>GF(2^m)</tt>.
+ *
+ * @param a the first polynomial
+ * @param b the second polynomial
+ * @param g the reduction polynomial
+ * @return <tt>a * b mod g</tt>
+ */
+ private int[] modMultiply(int[] a, int[] b, int[] g)
+ {
+ return mod(multiply(a, b), g);
+ }
+
+ /**
+ * Compute the square root of this polynomial modulo the given polynomial.
+ *
+ * @param a the reduction polynomial
+ * @return <tt>this^(1/2) mod a</tt>
+ */
+ public PolynomialGF2mSmallM modSquareRoot(PolynomialGF2mSmallM a)
+ {
+ int[] resultCoeff = IntUtils.clone(coefficients);
+ int[] help = modMultiply(resultCoeff, resultCoeff, a.coefficients);
+ while (!isEqual(help, coefficients))
+ {
+ resultCoeff = normalForm(help);
+ help = modMultiply(resultCoeff, resultCoeff, a.coefficients);
+ }
+
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute the square root of this polynomial using a square root matrix.
+ *
+ * @param matrix the matrix for computing square roots in
+ * <tt>(GF(2^m))^t</tt> the polynomial ring defining the
+ * square root matrix
+ * @return <tt>this^(1/2)</tt> modulo the reduction polynomial implicitly
+ * given via the square root matrix
+ */
+ public PolynomialGF2mSmallM modSquareRootMatrix(
+ PolynomialGF2mSmallM[] matrix)
+ {
+
+ int length = matrix.length;
+
+ int[] resultCoeff = new int[length];
+
+ // do matrix multiplication
+ for (int i = 0; i < length; i++)
+ {
+ // compute scalar product of i-th row and j-th column
+ for (int j = 0; j < length; j++)
+ {
+ if (i >= matrix[j].coefficients.length)
+ {
+ continue;
+ }
+ if (j < coefficients.length)
+ {
+ int scalarTerm = field.mult(matrix[j].coefficients[i],
+ coefficients[j]);
+ resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
+ }
+ }
+ }
+
+ // compute the square root of each entry of the result coefficients
+ for (int i = 0; i < length; i++)
+ {
+ resultCoeff[i] = field.sqRoot(resultCoeff[i]);
+ }
+
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute the result of the division of this polynomial by another
+ * polynomial modulo a third polynomial.
+ *
+ * @param divisor the divisor
+ * @param modulus the reduction polynomial
+ * @return <tt>this * divisor^(-1) mod modulus</tt>
+ */
+ public PolynomialGF2mSmallM modDiv(PolynomialGF2mSmallM divisor,
+ PolynomialGF2mSmallM modulus)
+ {
+ int[] resultCoeff = modDiv(coefficients, divisor.coefficients,
+ modulus.coefficients);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute the result of the division of two polynomials modulo a third
+ * polynomial over the field <tt>GF(2^m)</tt>.
+ *
+ * @param a the first polynomial
+ * @param b the second polynomial
+ * @param g the reduction polynomial
+ * @return <tt>a * b^(-1) mod g</tt>
+ */
+ private int[] modDiv(int[] a, int[] b, int[] g)
+ {
+ int[] r0 = normalForm(g);
+ int[] r1 = mod(b, g);
+ int[] s0 = {0};
+ int[] s1 = mod(a, g);
+ int[] s2;
+ int[][] q;
+ while (computeDegree(r1) != -1)
+ {
+ q = div(r0, r1);
+ r0 = normalForm(r1);
+ r1 = normalForm(q[1]);
+ s2 = add(s0, modMultiply(q[0], s1, g));
+ s0 = normalForm(s1);
+ s1 = normalForm(s2);
+
+ }
+ int hc = headCoefficient(r0);
+ s0 = multWithElement(s0, field.inverse(hc));
+ return s0;
+ }
+
+ /**
+ * Compute the inverse of this polynomial modulo the given polynomial.
+ *
+ * @param a the reduction polynomial
+ * @return <tt>this^(-1) mod a</tt>
+ */
+ public PolynomialGF2mSmallM modInverse(PolynomialGF2mSmallM a)
+ {
+ int[] unit = {1};
+ int[] resultCoeff = modDiv(unit, coefficients, a.coefficients);
+ return new PolynomialGF2mSmallM(field, resultCoeff);
+ }
+
+ /**
+ * Compute a polynomial pair (a,b) from this polynomial and the given
+ * polynomial g with the property b*this = a mod g and deg(a)&lt;=deg(g)/2.
+ *
+ * @param g the reduction polynomial
+ * @return PolynomialGF2mSmallM[] {a,b} with b*this = a mod g and deg(a)&lt;=
+ * deg(g)/2
+ */
+ public PolynomialGF2mSmallM[] modPolynomialToFracton(PolynomialGF2mSmallM g)
+ {
+ int dg = g.degree >> 1;
+ int[] a0 = normalForm(g.coefficients);
+ int[] a1 = mod(coefficients, g.coefficients);
+ int[] b0 = {0};
+ int[] b1 = {1};
+ while (computeDegree(a1) > dg)
+ {
+ int[][] q = div(a0, a1);
+ a0 = a1;
+ a1 = q[1];
+ int[] b2 = add(b0, modMultiply(q[0], b1, g.coefficients));
+ b0 = b1;
+ b1 = b2;
+ }
+
+ return new PolynomialGF2mSmallM[]{
+ new PolynomialGF2mSmallM(field, a1),
+ new PolynomialGF2mSmallM(field, b1)};
+ }
+
+ /**
+ * checks if given object is equal to this polynomial.
+ * <p>
+ * The method returns false whenever the given object is not polynomial over
+ * GF(2^m).
+ *
+ * @param other object
+ * @return true or false
+ */
+ public boolean equals(Object other)
+ {
+
+ if (other == null || !(other instanceof PolynomialGF2mSmallM))
+ {
+ return false;
+ }
+
+ PolynomialGF2mSmallM p = (PolynomialGF2mSmallM)other;
+
+ if ((field.equals(p.field)) && (degree == p.degree)
+ && (isEqual(coefficients, p.coefficients)))
+ {
+ return true;
+ }
+
+ return false;
+ }
+
+ /**
+ * Compare two polynomials given as int arrays.
+ *
+ * @param a the first polynomial
+ * @param b the second polynomial
+ * @return <tt>true</tt> if <tt>a</tt> and <tt>b</tt> represent the
+ * same polynomials, <tt>false</tt> otherwise
+ */
+ private static boolean isEqual(int[] a, int[] b)
+ {
+ int da = computeDegree(a);
+ int db = computeDegree(b);
+ if (da != db)
+ {
+ return false;
+ }
+ for (int i = 0; i <= da; i++)
+ {
+ if (a[i] != b[i])
+ {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * @return the hash code of this polynomial
+ */
+ public int hashCode()
+ {
+ int hash = field.hashCode();
+ for (int j = 0; j < coefficients.length; j++)
+ {
+ hash = hash * 31 + coefficients[j];
+ }
+ return hash;
+ }
+
+ /**
+ * Returns a human readable form of the polynomial.
+ *
+ * @return a human readable form of the polynomial.
+ */
+ public String toString()
+ {
+ String str = " Polynomial over " + field.toString() + ": \n";
+
+ for (int i = 0; i < coefficients.length; i++)
+ {
+ str = str + field.elementToStr(coefficients[i]) + "Y^" + i + "+";
+ }
+ str = str + ";";
+
+ return str;
+ }
+
+ /**
+ * Compute the degree of this polynomial. If this is the zero polynomial,
+ * the degree is -1.
+ */
+ private void computeDegree()
+ {
+ for (degree = coefficients.length - 1; degree >= 0
+ && coefficients[degree] == 0; degree--)
+ {
+ ;
+ }
+ }
+
+ /**
+ * Compute the degree of a polynomial.
+ *
+ * @param a the polynomial
+ * @return the degree of the polynomial <tt>a</tt>. If <tt>a</tt> is
+ * the zero polynomial, return -1.
+ */
+ private static int computeDegree(int[] a)
+ {
+ int degree;
+ for (degree = a.length - 1; degree >= 0 && a[degree] == 0; degree--)
+ {
+ ;
+ }
+ return degree;
+ }
+
+ /**
+ * Strip leading zero coefficients from the given polynomial.
+ *
+ * @param a the polynomial
+ * @return the reduced polynomial
+ */
+ private static int[] normalForm(int[] a)
+ {
+ int d = computeDegree(a);
+
+ // if a is the zero polynomial
+ if (d == -1)
+ {
+ // return new zero polynomial
+ return new int[1];
+ }
+
+ // if a already is in normal form
+ if (a.length == d + 1)
+ {
+ // return a clone of a
+ return IntUtils.clone(a);
+ }
+
+ // else, reduce a
+ int[] result = new int[d + 1];
+ System.arraycopy(a, 0, result, 0, d + 1);
+ return result;
+ }
+
+}