Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gitlab.com/quite/humla-spongycastle.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/main/java/org/spongycastle/pqc/math/ntru')
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/BigIntEuclidean.java54
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/IntEuclidean.java51
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigDecimalPolynomial.java258
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigIntPolynomial.java394
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Constants.java12
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/DenseTernaryPolynomial.java142
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/IntegerPolynomial.java1358
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial2.java255
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial5.java149
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ModularResultant.java46
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Polynomial.java42
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ProductFormPolynomial.java153
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Resultant.java28
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/SparseTernaryPolynomial.java320
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/TernaryPolynomial.java25
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/util/ArrayEncoder.java292
-rw-r--r--core/src/main/java/org/spongycastle/pqc/math/ntru/util/Util.java158
17 files changed, 3737 insertions, 0 deletions
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/BigIntEuclidean.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/BigIntEuclidean.java
new file mode 100644
index 00000000..e48d2a0c
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/BigIntEuclidean.java
@@ -0,0 +1,54 @@
+package org.spongycastle.pqc.math.ntru.euclid;
+
+import java.math.BigInteger;
+
+/**
+ * Extended Euclidean Algorithm in <code>BigInteger</code>s
+ */
+public class BigIntEuclidean
+{
+ public BigInteger x, y, gcd;
+
+ private BigIntEuclidean()
+ {
+ }
+
+ /**
+ * Runs the EEA on two <code>BigInteger</code>s<br>
+ * Implemented from pseudocode on <a href="http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm">Wikipedia</a>.
+ *
+ * @param a
+ * @param b
+ * @return a <code>BigIntEuclidean</code> object that contains the result in the variables <code>x</code>, <code>y</code>, and <code>gcd</code>
+ */
+ public static BigIntEuclidean calculate(BigInteger a, BigInteger b)
+ {
+ BigInteger x = BigInteger.ZERO;
+ BigInteger lastx = BigInteger.ONE;
+ BigInteger y = BigInteger.ONE;
+ BigInteger lasty = BigInteger.ZERO;
+ while (!b.equals(BigInteger.ZERO))
+ {
+ BigInteger[] quotientAndRemainder = a.divideAndRemainder(b);
+ BigInteger quotient = quotientAndRemainder[0];
+
+ BigInteger temp = a;
+ a = b;
+ b = quotientAndRemainder[1];
+
+ temp = x;
+ x = lastx.subtract(quotient.multiply(x));
+ lastx = temp;
+
+ temp = y;
+ y = lasty.subtract(quotient.multiply(y));
+ lasty = temp;
+ }
+
+ BigIntEuclidean result = new BigIntEuclidean();
+ result.x = lastx;
+ result.y = lasty;
+ result.gcd = a;
+ return result;
+ }
+} \ No newline at end of file
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/IntEuclidean.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/IntEuclidean.java
new file mode 100644
index 00000000..0791b01e
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/euclid/IntEuclidean.java
@@ -0,0 +1,51 @@
+package org.spongycastle.pqc.math.ntru.euclid;
+
+/**
+ * Extended Euclidean Algorithm in <code>int</code>s
+ */
+public class IntEuclidean
+{
+ public int x, y, gcd;
+
+ private IntEuclidean()
+ {
+ }
+
+ /**
+ * Runs the EEA on two <code>int</code>s<br>
+ * Implemented from pseudocode on <a href="http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm">Wikipedia</a>.
+ *
+ * @param a
+ * @param b
+ * @return a <code>IntEuclidean</code> object that contains the result in the variables <code>x</code>, <code>y</code>, and <code>gcd</code>
+ */
+ public static IntEuclidean calculate(int a, int b)
+ {
+ int x = 0;
+ int lastx = 1;
+ int y = 1;
+ int lasty = 0;
+ while (b != 0)
+ {
+ int quotient = a / b;
+
+ int temp = a;
+ a = b;
+ b = temp % b;
+
+ temp = x;
+ x = lastx - quotient * x;
+ lastx = temp;
+
+ temp = y;
+ y = lasty - quotient * y;
+ lasty = temp;
+ }
+
+ IntEuclidean result = new IntEuclidean();
+ result.x = lastx;
+ result.y = lasty;
+ result.gcd = a;
+ return result;
+ }
+} \ No newline at end of file
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigDecimalPolynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigDecimalPolynomial.java
new file mode 100644
index 00000000..a496060c
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigDecimalPolynomial.java
@@ -0,0 +1,258 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.math.BigDecimal;
+
+/**
+ * A polynomial with {@link BigDecimal} coefficients.
+ * Some methods (like <code>add</code>) change the polynomial, others (like <code>mult</code>) do
+ * not but return the result as a new polynomial.
+ */
+public class BigDecimalPolynomial
+{
+ private static final BigDecimal ZERO = new BigDecimal("0");
+ private static final BigDecimal ONE_HALF = new BigDecimal("0.5");
+
+ BigDecimal[] coeffs;
+
+ /**
+ * Constructs a new polynomial with <code>N</code> coefficients initialized to 0.
+ *
+ * @param N the number of coefficients
+ */
+ BigDecimalPolynomial(int N)
+ {
+ coeffs = new BigDecimal[N];
+ for (int i = 0; i < N; i++)
+ {
+ coeffs[i] = ZERO;
+ }
+ }
+
+ /**
+ * Constructs a new polynomial with a given set of coefficients.
+ *
+ * @param coeffs the coefficients
+ */
+ BigDecimalPolynomial(BigDecimal[] coeffs)
+ {
+ this.coeffs = coeffs;
+ }
+
+ /**
+ * Constructs a <code>BigDecimalPolynomial</code> from a <code>BigIntPolynomial</code>. The two polynomials are independent of each other.
+ *
+ * @param p the original polynomial
+ */
+ public BigDecimalPolynomial(BigIntPolynomial p)
+ {
+ int N = p.coeffs.length;
+ coeffs = new BigDecimal[N];
+ for (int i = 0; i < N; i++)
+ {
+ coeffs[i] = new BigDecimal(p.coeffs[i]);
+ }
+ }
+
+ /**
+ * Divides all coefficients by 2.
+ */
+ public void halve()
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].multiply(ONE_HALF);
+ }
+ }
+
+ /**
+ * Multiplies the polynomial by another. Does not change this polynomial
+ * but returns the result as a new polynomial.
+ *
+ * @param poly2 the polynomial to multiply by
+ * @return a new polynomial
+ */
+ public BigDecimalPolynomial mult(BigIntPolynomial poly2)
+ {
+ return mult(new BigDecimalPolynomial(poly2));
+ }
+
+ /**
+ * Multiplies the polynomial by another, taking the indices mod N. Does not
+ * change this polynomial but returns the result as a new polynomial.
+ *
+ * @param poly2 the polynomial to multiply by
+ * @return a new polynomial
+ */
+ public BigDecimalPolynomial mult(BigDecimalPolynomial poly2)
+ {
+ int N = coeffs.length;
+ if (poly2.coeffs.length != N)
+ {
+ throw new IllegalArgumentException("Number of coefficients must be the same");
+ }
+
+ BigDecimalPolynomial c = multRecursive(poly2);
+
+ if (c.coeffs.length > N)
+ {
+ for (int k = N; k < c.coeffs.length; k++)
+ {
+ c.coeffs[k - N] = c.coeffs[k - N].add(c.coeffs[k]);
+ }
+ c.coeffs = copyOf(c.coeffs, N);
+ }
+ return c;
+ }
+
+ /**
+ * Karazuba multiplication
+ */
+ private BigDecimalPolynomial multRecursive(BigDecimalPolynomial poly2)
+ {
+ BigDecimal[] a = coeffs;
+ BigDecimal[] b = poly2.coeffs;
+
+ int n = poly2.coeffs.length;
+ if (n <= 1)
+ {
+ BigDecimal[] c = coeffs.clone();
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ c[i] = c[i].multiply(poly2.coeffs[0]);
+ }
+ return new BigDecimalPolynomial(c);
+ }
+ else
+ {
+ int n1 = n / 2;
+
+ BigDecimalPolynomial a1 = new BigDecimalPolynomial(copyOf(a, n1));
+ BigDecimalPolynomial a2 = new BigDecimalPolynomial(copyOfRange(a, n1, n));
+ BigDecimalPolynomial b1 = new BigDecimalPolynomial(copyOf(b, n1));
+ BigDecimalPolynomial b2 = new BigDecimalPolynomial(copyOfRange(b, n1, n));
+
+ BigDecimalPolynomial A = (BigDecimalPolynomial)a1.clone();
+ A.add(a2);
+ BigDecimalPolynomial B = (BigDecimalPolynomial)b1.clone();
+ B.add(b2);
+
+ BigDecimalPolynomial c1 = a1.multRecursive(b1);
+ BigDecimalPolynomial c2 = a2.multRecursive(b2);
+ BigDecimalPolynomial c3 = A.multRecursive(B);
+ c3.sub(c1);
+ c3.sub(c2);
+
+ BigDecimalPolynomial c = new BigDecimalPolynomial(2 * n - 1);
+ for (int i = 0; i < c1.coeffs.length; i++)
+ {
+ c.coeffs[i] = c1.coeffs[i];
+ }
+ for (int i = 0; i < c3.coeffs.length; i++)
+ {
+ c.coeffs[n1 + i] = c.coeffs[n1 + i].add(c3.coeffs[i]);
+ }
+ for (int i = 0; i < c2.coeffs.length; i++)
+ {
+ c.coeffs[2 * n1 + i] = c.coeffs[2 * n1 + i].add(c2.coeffs[i]);
+ }
+ return c;
+ }
+ }
+
+ /**
+ * Adds another polynomial which can have a different number of coefficients.
+ *
+ * @param b another polynomial
+ */
+ public void add(BigDecimalPolynomial b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ int N = coeffs.length;
+ coeffs = copyOf(coeffs, b.coeffs.length);
+ for (int i = N; i < coeffs.length; i++)
+ {
+ coeffs[i] = ZERO;
+ }
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].add(b.coeffs[i]);
+ }
+ }
+
+ /**
+ * Subtracts another polynomial which can have a different number of coefficients.
+ *
+ * @param b
+ */
+ void sub(BigDecimalPolynomial b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ int N = coeffs.length;
+ coeffs = copyOf(coeffs, b.coeffs.length);
+ for (int i = N; i < coeffs.length; i++)
+ {
+ coeffs[i] = ZERO;
+ }
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].subtract(b.coeffs[i]);
+ }
+ }
+
+ /**
+ * Rounds all coefficients to the nearest integer.
+ *
+ * @return a new polynomial with <code>BigInteger</code> coefficients
+ */
+ public BigIntPolynomial round()
+ {
+ int N = coeffs.length;
+ BigIntPolynomial p = new BigIntPolynomial(N);
+ for (int i = 0; i < N; i++)
+ {
+ p.coeffs[i] = coeffs[i].setScale(0, BigDecimal.ROUND_HALF_EVEN).toBigInteger();
+ }
+ return p;
+ }
+
+ /**
+ * Makes a copy of the polynomial that is independent of the original.
+ */
+ public Object clone()
+ {
+ return new BigDecimalPolynomial(coeffs.clone());
+ }
+
+ private BigDecimal[] copyOf(BigDecimal[] a, int length)
+ {
+ BigDecimal[] tmp = new BigDecimal[length];
+
+ System.arraycopy(a, 0, tmp, 0, a.length < length ? a.length : length);
+
+ return tmp;
+ }
+
+ private BigDecimal[] copyOfRange(BigDecimal[] a, int from, int to)
+ {
+ int newLength = to - from;
+ BigDecimal[] tmp = new BigDecimal[to - from];
+
+ System.arraycopy(a, from, tmp, 0, (a.length - from) < newLength ? (a.length - from) : newLength);
+
+ return tmp;
+ }
+
+ public BigDecimal[] getCoeffs()
+ {
+ BigDecimal[] tmp = new BigDecimal[coeffs.length];
+
+ System.arraycopy(coeffs, 0, tmp, 0, coeffs.length);
+
+ return tmp;
+ }
+
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigIntPolynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigIntPolynomial.java
new file mode 100644
index 00000000..2869fec8
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/BigIntPolynomial.java
@@ -0,0 +1,394 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.math.BigDecimal;
+import java.math.BigInteger;
+import java.security.SecureRandom;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.List;
+
+import org.spongycastle.util.Arrays;
+
+/**
+ * A polynomial with {@link BigInteger} coefficients.<br>
+ * Some methods (like <code>add</code>) change the polynomial, others (like <code>mult</code>) do
+ * not but return the result as a new polynomial.
+ */
+public class BigIntPolynomial
+{
+ private final static double LOG_10_2 = Math.log10(2);
+
+ BigInteger[] coeffs;
+
+ /**
+ * Constructs a new polynomial with <code>N</code> coefficients initialized to 0.
+ *
+ * @param N the number of coefficients
+ */
+ BigIntPolynomial(int N)
+ {
+ coeffs = new BigInteger[N];
+ for (int i = 0; i < N; i++)
+ {
+ coeffs[i] = Constants.BIGINT_ZERO;
+ }
+ }
+
+ /**
+ * Constructs a new polynomial with a given set of coefficients.
+ *
+ * @param coeffs the coefficients
+ */
+ BigIntPolynomial(BigInteger[] coeffs)
+ {
+ this.coeffs = coeffs;
+ }
+
+ /**
+ * Constructs a <code>BigIntPolynomial</code> from a <code>IntegerPolynomial</code>. The two polynomials are
+ * independent of each other.
+ *
+ * @param p the original polynomial
+ */
+ public BigIntPolynomial(IntegerPolynomial p)
+ {
+ coeffs = new BigInteger[p.coeffs.length];
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] = BigInteger.valueOf(p.coeffs[i]);
+ }
+ }
+
+ /**
+ * Generates a random polynomial with <code>numOnes</code> coefficients equal to 1,
+ * <code>numNegOnes</code> coefficients equal to -1, and the rest equal to 0.
+ *
+ * @param N number of coefficients
+ * @param numOnes number of 1's
+ * @param numNegOnes number of -1's
+ * @return
+ */
+ static BigIntPolynomial generateRandomSmall(int N, int numOnes, int numNegOnes)
+ {
+ List coeffs = new ArrayList();
+ for (int i = 0; i < numOnes; i++)
+ {
+ coeffs.add(Constants.BIGINT_ONE);
+ }
+ for (int i = 0; i < numNegOnes; i++)
+ {
+ coeffs.add(BigInteger.valueOf(-1));
+ }
+ while (coeffs.size() < N)
+ {
+ coeffs.add(Constants.BIGINT_ZERO);
+ }
+ Collections.shuffle(coeffs, new SecureRandom());
+
+ BigIntPolynomial poly = new BigIntPolynomial(N);
+ for (int i = 0; i < coeffs.size(); i++)
+ {
+ poly.coeffs[i] = (BigInteger)coeffs.get(i);
+ }
+ return poly;
+ }
+
+ /**
+ * Multiplies the polynomial by another, taking the indices mod N. Does not
+ * change this polynomial but returns the result as a new polynomial.<br>
+ * Both polynomials must have the same number of coefficients.
+ *
+ * @param poly2 the polynomial to multiply by
+ * @return a new polynomial
+ */
+ public BigIntPolynomial mult(BigIntPolynomial poly2)
+ {
+ int N = coeffs.length;
+ if (poly2.coeffs.length != N)
+ {
+ throw new IllegalArgumentException("Number of coefficients must be the same");
+ }
+
+ BigIntPolynomial c = multRecursive(poly2);
+
+ if (c.coeffs.length > N)
+ {
+ for (int k = N; k < c.coeffs.length; k++)
+ {
+ c.coeffs[k - N] = c.coeffs[k - N].add(c.coeffs[k]);
+ }
+ c.coeffs = Arrays.copyOf(c.coeffs, N);
+ }
+ return c;
+ }
+
+ /**
+ * Karazuba multiplication
+ */
+ private BigIntPolynomial multRecursive(BigIntPolynomial poly2)
+ {
+ BigInteger[] a = coeffs;
+ BigInteger[] b = poly2.coeffs;
+
+ int n = poly2.coeffs.length;
+ if (n <= 1)
+ {
+ BigInteger[] c = Arrays.clone(coeffs);
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ c[i] = c[i].multiply(poly2.coeffs[0]);
+ }
+ return new BigIntPolynomial(c);
+ }
+ else
+ {
+ int n1 = n / 2;
+
+ BigIntPolynomial a1 = new BigIntPolynomial(Arrays.copyOf(a, n1));
+ BigIntPolynomial a2 = new BigIntPolynomial(Arrays.copyOfRange(a, n1, n));
+ BigIntPolynomial b1 = new BigIntPolynomial(Arrays.copyOf(b, n1));
+ BigIntPolynomial b2 = new BigIntPolynomial(Arrays.copyOfRange(b, n1, n));
+
+ BigIntPolynomial A = (BigIntPolynomial)a1.clone();
+ A.add(a2);
+ BigIntPolynomial B = (BigIntPolynomial)b1.clone();
+ B.add(b2);
+
+ BigIntPolynomial c1 = a1.multRecursive(b1);
+ BigIntPolynomial c2 = a2.multRecursive(b2);
+ BigIntPolynomial c3 = A.multRecursive(B);
+ c3.sub(c1);
+ c3.sub(c2);
+
+ BigIntPolynomial c = new BigIntPolynomial(2 * n - 1);
+ for (int i = 0; i < c1.coeffs.length; i++)
+ {
+ c.coeffs[i] = c1.coeffs[i];
+ }
+ for (int i = 0; i < c3.coeffs.length; i++)
+ {
+ c.coeffs[n1 + i] = c.coeffs[n1 + i].add(c3.coeffs[i]);
+ }
+ for (int i = 0; i < c2.coeffs.length; i++)
+ {
+ c.coeffs[2 * n1 + i] = c.coeffs[2 * n1 + i].add(c2.coeffs[i]);
+ }
+ return c;
+ }
+ }
+
+ /**
+ * Adds another polynomial which can have a different number of coefficients,
+ * and takes the coefficient values mod <code>modulus</code>.
+ *
+ * @param b another polynomial
+ */
+ void add(BigIntPolynomial b, BigInteger modulus)
+ {
+ add(b);
+ mod(modulus);
+ }
+
+ /**
+ * Adds another polynomial which can have a different number of coefficients.
+ *
+ * @param b another polynomial
+ */
+ public void add(BigIntPolynomial b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ int N = coeffs.length;
+ coeffs = Arrays.copyOf(coeffs, b.coeffs.length);
+ for (int i = N; i < coeffs.length; i++)
+ {
+ coeffs[i] = Constants.BIGINT_ZERO;
+ }
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].add(b.coeffs[i]);
+ }
+ }
+
+ /**
+ * Subtracts another polynomial which can have a different number of coefficients.
+ *
+ * @param b another polynomial
+ */
+ public void sub(BigIntPolynomial b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ int N = coeffs.length;
+ coeffs = Arrays.copyOf(coeffs, b.coeffs.length);
+ for (int i = N; i < coeffs.length; i++)
+ {
+ coeffs[i] = Constants.BIGINT_ZERO;
+ }
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].subtract(b.coeffs[i]);
+ }
+ }
+
+ /**
+ * Multiplies each coefficient by a <code>BigInteger</code>. Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param factor
+ */
+ public void mult(BigInteger factor)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].multiply(factor);
+ }
+ }
+
+ /**
+ * Multiplies each coefficient by a <code>int</code>. Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param factor
+ */
+ void mult(int factor)
+ {
+ mult(BigInteger.valueOf(factor));
+ }
+
+ /**
+ * Divides each coefficient by a <code>BigInteger</code> and rounds the result to the nearest whole number.<br>
+ * Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param divisor the number to divide by
+ */
+ public void div(BigInteger divisor)
+ {
+ BigInteger d = divisor.add(Constants.BIGINT_ONE).divide(BigInteger.valueOf(2));
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].compareTo(Constants.BIGINT_ZERO) > 0 ? coeffs[i].add(d) : coeffs[i].add(d.negate());
+ coeffs[i] = coeffs[i].divide(divisor);
+ }
+ }
+
+ /**
+ * Divides each coefficient by a <code>BigDecimal</code> and rounds the result to <code>decimalPlaces</code> places.
+ *
+ * @param divisor the number to divide by
+ * @param decimalPlaces the number of fractional digits to round the result to
+ * @return a new <code>BigDecimalPolynomial</code>
+ */
+ public BigDecimalPolynomial div(BigDecimal divisor, int decimalPlaces)
+ {
+ BigInteger max = maxCoeffAbs();
+ int coeffLength = (int)(max.bitLength() * LOG_10_2) + 1;
+ // factor = 1/divisor
+ BigDecimal factor = Constants.BIGDEC_ONE.divide(divisor, coeffLength + decimalPlaces + 1, BigDecimal.ROUND_HALF_EVEN);
+
+ // multiply each coefficient by factor
+ BigDecimalPolynomial p = new BigDecimalPolynomial(coeffs.length);
+ for (int i = 0; i < coeffs.length; i++)
+ // multiply, then truncate after decimalPlaces so subsequent operations aren't slowed down
+ {
+ p.coeffs[i] = new BigDecimal(coeffs[i]).multiply(factor).setScale(decimalPlaces, BigDecimal.ROUND_HALF_EVEN);
+ }
+
+ return p;
+ }
+
+ /**
+ * Returns the base10 length of the largest coefficient.
+ *
+ * @return length of the longest coefficient
+ */
+ public int getMaxCoeffLength()
+ {
+ return (int)(maxCoeffAbs().bitLength() * LOG_10_2) + 1;
+ }
+
+ private BigInteger maxCoeffAbs()
+ {
+ BigInteger max = coeffs[0].abs();
+ for (int i = 1; i < coeffs.length; i++)
+ {
+ BigInteger coeff = coeffs[i].abs();
+ if (coeff.compareTo(max) > 0)
+ {
+ max = coeff;
+ }
+ }
+ return max;
+ }
+
+ /**
+ * Takes each coefficient modulo a number.
+ *
+ * @param modulus
+ */
+ public void mod(BigInteger modulus)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] = coeffs[i].mod(modulus);
+ }
+ }
+
+ /**
+ * Returns the sum of all coefficients, i.e. evaluates the polynomial at 0.
+ *
+ * @return the sum of all coefficients
+ */
+ BigInteger sumCoeffs()
+ {
+ BigInteger sum = Constants.BIGINT_ZERO;
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ sum = sum.add(coeffs[i]);
+ }
+ return sum;
+ }
+
+ /**
+ * Makes a copy of the polynomial that is independent of the original.
+ */
+ public Object clone()
+ {
+ return new BigIntPolynomial(coeffs.clone());
+ }
+
+ public int hashCode()
+ {
+ final int prime = 31;
+ int result = 1;
+ result = prime * result + Arrays.hashCode(coeffs);
+ return result;
+ }
+
+ public boolean equals(Object obj)
+ {
+ if (this == obj)
+ {
+ return true;
+ }
+ if (obj == null)
+ {
+ return false;
+ }
+ if (getClass() != obj.getClass())
+ {
+ return false;
+ }
+ BigIntPolynomial other = (BigIntPolynomial)obj;
+ if (!Arrays.areEqual(coeffs, other.coeffs))
+ {
+ return false;
+ }
+ return true;
+ }
+
+ public BigInteger[] getCoeffs()
+ {
+ return Arrays.clone(coeffs);
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Constants.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Constants.java
new file mode 100644
index 00000000..f29ce066
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Constants.java
@@ -0,0 +1,12 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.math.BigDecimal;
+import java.math.BigInteger;
+
+public class Constants
+{
+ static final BigInteger BIGINT_ZERO = BigInteger.valueOf(0);
+ static final BigInteger BIGINT_ONE = BigInteger.valueOf(1);
+
+ static final BigDecimal BIGDEC_ONE = BigDecimal.valueOf(1);
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/DenseTernaryPolynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/DenseTernaryPolynomial.java
new file mode 100644
index 00000000..007e7249
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/DenseTernaryPolynomial.java
@@ -0,0 +1,142 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.security.SecureRandom;
+
+import org.spongycastle.pqc.math.ntru.util.Util;
+import org.spongycastle.util.Arrays;
+
+/**
+ * A <code>TernaryPolynomial</code> with a "high" number of nonzero coefficients.
+ */
+public class DenseTernaryPolynomial
+ extends IntegerPolynomial
+ implements TernaryPolynomial
+{
+
+ /**
+ * Constructs a new <code>DenseTernaryPolynomial</code> with <code>N</code> coefficients.
+ *
+ * @param N the number of coefficients
+ */
+ DenseTernaryPolynomial(int N)
+ {
+ super(N);
+ checkTernarity();
+ }
+
+ /**
+ * Constructs a <code>DenseTernaryPolynomial</code> from a <code>IntegerPolynomial</code>. The two polynomials are
+ * independent of each other.
+ *
+ * @param intPoly the original polynomial
+ */
+ public DenseTernaryPolynomial(IntegerPolynomial intPoly)
+ {
+ this(intPoly.coeffs);
+ }
+
+ /**
+ * Constructs a new <code>DenseTernaryPolynomial</code> with a given set of coefficients.
+ *
+ * @param coeffs the coefficients
+ */
+ public DenseTernaryPolynomial(int[] coeffs)
+ {
+ super(coeffs);
+ checkTernarity();
+ }
+
+ private void checkTernarity()
+ {
+ for (int i = 0; i != coeffs.length; i++)
+ {
+ int c = coeffs[i];
+ if (c < -1 || c > 1)
+ {
+ throw new IllegalStateException("Illegal value: " + c + ", must be one of {-1, 0, 1}");
+ }
+ }
+ }
+
+ /**
+ * Generates a random polynomial with <code>numOnes</code> coefficients equal to 1,
+ * <code>numNegOnes</code> coefficients equal to -1, and the rest equal to 0.
+ *
+ * @param N number of coefficients
+ * @param numOnes number of 1's
+ * @param numNegOnes number of -1's
+ */
+ public static DenseTernaryPolynomial generateRandom(int N, int numOnes, int numNegOnes, SecureRandom random)
+ {
+ int[] coeffs = Util.generateRandomTernary(N, numOnes, numNegOnes, random);
+ return new DenseTernaryPolynomial(coeffs);
+ }
+
+ /**
+ * Generates a polynomial with coefficients randomly selected from <code>{-1, 0, 1}</code>.
+ *
+ * @param N number of coefficients
+ */
+ public static DenseTernaryPolynomial generateRandom(int N, SecureRandom random)
+ {
+ DenseTernaryPolynomial poly = new DenseTernaryPolynomial(N);
+ for (int i = 0; i < N; i++)
+ {
+ poly.coeffs[i] = random.nextInt(3) - 1;
+ }
+ return poly;
+ }
+
+ public IntegerPolynomial mult(IntegerPolynomial poly2, int modulus)
+ {
+ // even on 32-bit systems, LongPolynomial5 multiplies faster than IntegerPolynomial
+ if (modulus == 2048)
+ {
+ IntegerPolynomial poly2Pos = (IntegerPolynomial)poly2.clone();
+ poly2Pos.modPositive(2048);
+ LongPolynomial5 poly5 = new LongPolynomial5(poly2Pos);
+ return poly5.mult(this).toIntegerPolynomial();
+ }
+ else
+ {
+ return super.mult(poly2, modulus);
+ }
+ }
+
+ public int[] getOnes()
+ {
+ int N = coeffs.length;
+ int[] ones = new int[N];
+ int onesIdx = 0;
+ for (int i = 0; i < N; i++)
+ {
+ int c = coeffs[i];
+ if (c == 1)
+ {
+ ones[onesIdx++] = i;
+ }
+ }
+ return Arrays.copyOf(ones, onesIdx);
+ }
+
+ public int[] getNegOnes()
+ {
+ int N = coeffs.length;
+ int[] negOnes = new int[N];
+ int negOnesIdx = 0;
+ for (int i = 0; i < N; i++)
+ {
+ int c = coeffs[i];
+ if (c == -1)
+ {
+ negOnes[negOnesIdx++] = i;
+ }
+ }
+ return Arrays.copyOf(negOnes, negOnesIdx);
+ }
+
+ public int size()
+ {
+ return coeffs.length;
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/IntegerPolynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/IntegerPolynomial.java
new file mode 100644
index 00000000..41e921bf
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/IntegerPolynomial.java
@@ -0,0 +1,1358 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.io.IOException;
+import java.io.InputStream;
+import java.math.BigInteger;
+import java.util.ArrayList;
+import java.util.Iterator;
+import java.util.LinkedList;
+import java.util.List;
+import java.util.concurrent.Callable;
+import java.util.concurrent.ExecutorService;
+import java.util.concurrent.Executors;
+import java.util.concurrent.Future;
+import java.util.concurrent.LinkedBlockingQueue;
+
+import org.spongycastle.pqc.math.ntru.euclid.BigIntEuclidean;
+import org.spongycastle.pqc.math.ntru.util.ArrayEncoder;
+import org.spongycastle.pqc.math.ntru.util.Util;
+import org.spongycastle.util.Arrays;
+
+/**
+ * A polynomial with <code>int</code> coefficients.<br>
+ * Some methods (like <code>add</code>) change the polynomial, others (like <code>mult</code>) do
+ * not but return the result as a new polynomial.
+ */
+public class IntegerPolynomial
+ implements Polynomial
+{
+ private static final int NUM_EQUAL_RESULTANTS = 3;
+ /**
+ * Prime numbers &gt; 4500 for resultant computation. Starting them below ~4400 causes incorrect results occasionally.
+ * Fortunately, 4500 is about the optimum number for performance.<br/>
+ * This array contains enough prime numbers so primes never have to be computed on-line for any standard {@link org.spongycastle.pqc.crypto.ntru.NTRUSigningParameters}.
+ */
+ private static final int[] PRIMES = new int[]{
+ 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583,
+ 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
+ 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751,
+ 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831,
+ 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937,
+ 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003,
+ 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087,
+ 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179,
+ 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279,
+ 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387,
+ 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443,
+ 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521,
+ 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639,
+ 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693,
+ 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791,
+ 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,
+ 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939,
+ 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053,
+ 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133,
+ 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221,
+ 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301,
+ 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367,
+ 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473,
+ 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571,
+ 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673,
+ 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761,
+ 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833,
+ 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917,
+ 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997,
+ 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103,
+ 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207,
+ 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297,
+ 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411,
+ 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499,
+ 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561,
+ 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643,
+ 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723,
+ 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829,
+ 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919,
+ 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017,
+ 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111,
+ 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219,
+ 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291,
+ 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387,
+ 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501,
+ 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597,
+ 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677,
+ 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741,
+ 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831,
+ 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929,
+ 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011,
+ 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109,
+ 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199,
+ 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283,
+ 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377,
+ 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439,
+ 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533,
+ 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631,
+ 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733,
+ 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811,
+ 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887,
+ 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973};
+ private static final List BIGINT_PRIMES;
+
+ static
+ {
+ BIGINT_PRIMES = new ArrayList();
+ for (int i = 0; i != PRIMES.length; i++)
+ {
+ BIGINT_PRIMES.add(BigInteger.valueOf(PRIMES[i]));
+ }
+ }
+
+ public int[] coeffs;
+
+ /**
+ * Constructs a new polynomial with <code>N</code> coefficients initialized to 0.
+ *
+ * @param N the number of coefficients
+ */
+ public IntegerPolynomial(int N)
+ {
+ coeffs = new int[N];
+ }
+
+ /**
+ * Constructs a new polynomial with a given set of coefficients.
+ *
+ * @param coeffs the coefficients
+ */
+ public IntegerPolynomial(int[] coeffs)
+ {
+ this.coeffs = coeffs;
+ }
+
+ /**
+ * Constructs a <code>IntegerPolynomial</code> from a <code>BigIntPolynomial</code>. The two polynomials are independent of each other.
+ *
+ * @param p the original polynomial
+ */
+ public IntegerPolynomial(BigIntPolynomial p)
+ {
+ coeffs = new int[p.coeffs.length];
+ for (int i = 0; i < p.coeffs.length; i++)
+ {
+ coeffs[i] = p.coeffs[i].intValue();
+ }
+ }
+
+ /**
+ * Decodes a byte array to a polynomial with <code>N</code> ternary coefficients<br>
+ * Ignores any excess bytes.
+ *
+ * @param data an encoded ternary polynomial
+ * @param N number of coefficients
+ * @return the decoded polynomial
+ */
+ public static IntegerPolynomial fromBinary3Sves(byte[] data, int N)
+ {
+ return new IntegerPolynomial(ArrayEncoder.decodeMod3Sves(data, N));
+ }
+
+ /**
+ * Converts a byte array produced by {@link #toBinary3Tight()} to a polynomial.
+ *
+ * @param b a byte array
+ * @param N number of coefficients
+ * @return the decoded polynomial
+ */
+ public static IntegerPolynomial fromBinary3Tight(byte[] b, int N)
+ {
+ return new IntegerPolynomial(ArrayEncoder.decodeMod3Tight(b, N));
+ }
+
+ /**
+ * Reads data produced by {@link #toBinary3Tight()} from an input stream and converts it to a polynomial.
+ *
+ * @param is an input stream
+ * @param N number of coefficients
+ * @return the decoded polynomial
+ */
+ public static IntegerPolynomial fromBinary3Tight(InputStream is, int N)
+ throws IOException
+ {
+ return new IntegerPolynomial(ArrayEncoder.decodeMod3Tight(is, N));
+ }
+
+ /**
+ * Returns a polynomial with N coefficients between <code>0</code> and <code>q-1</code>.<br>
+ * <code>q</code> must be a power of 2.<br>
+ * Ignores any excess bytes.
+ *
+ * @param data an encoded ternary polynomial
+ * @param N number of coefficients
+ * @param q
+ * @return the decoded polynomial
+ */
+ public static IntegerPolynomial fromBinary(byte[] data, int N, int q)
+ {
+ return new IntegerPolynomial(ArrayEncoder.decodeModQ(data, N, q));
+ }
+
+ /**
+ * Returns a polynomial with N coefficients between <code>0</code> and <code>q-1</code>.<br>
+ * <code>q</code> must be a power of 2.<br>
+ * Ignores any excess bytes.
+ *
+ * @param is an encoded ternary polynomial
+ * @param N number of coefficients
+ * @param q
+ * @return the decoded polynomial
+ */
+ public static IntegerPolynomial fromBinary(InputStream is, int N, int q)
+ throws IOException
+ {
+ return new IntegerPolynomial(ArrayEncoder.decodeModQ(is, N, q));
+ }
+
+ /**
+ * Encodes a polynomial with ternary coefficients to binary.
+ * <code>coeffs[2*i]</code> and <code>coeffs[2*i+1]</code> must not both equal -1 for any integer <code>i</code>,
+ * so this method is only safe to use with polynomials produced by <code>fromBinary3Sves()</code>.
+ *
+ * @return the encoded polynomial
+ */
+ public byte[] toBinary3Sves()
+ {
+ return ArrayEncoder.encodeMod3Sves(coeffs);
+ }
+
+ /**
+ * Converts a polynomial with ternary coefficients to binary.
+ *
+ * @return the encoded polynomial
+ */
+ public byte[] toBinary3Tight()
+ {
+ BigInteger sum = Constants.BIGINT_ZERO;
+ for (int i = coeffs.length - 1; i >= 0; i--)
+ {
+ sum = sum.multiply(BigInteger.valueOf(3));
+ sum = sum.add(BigInteger.valueOf(coeffs[i] + 1));
+ }
+
+ int size = (BigInteger.valueOf(3).pow(coeffs.length).bitLength() + 7) / 8;
+ byte[] arr = sum.toByteArray();
+
+ if (arr.length < size)
+ {
+ // pad with leading zeros so arr.length==size
+ byte[] arr2 = new byte[size];
+ System.arraycopy(arr, 0, arr2, size - arr.length, arr.length);
+ return arr2;
+ }
+
+ if (arr.length > size)
+ // drop sign bit
+ {
+ arr = Arrays.copyOfRange(arr, 1, arr.length);
+ }
+ return arr;
+ }
+
+ /**
+ * Encodes a polynomial whose coefficients are between 0 and q, to binary. q must be a power of 2.
+ *
+ * @param q
+ * @return the encoded polynomial
+ */
+ public byte[] toBinary(int q)
+ {
+ return ArrayEncoder.encodeModQ(coeffs, q);
+ }
+
+ /**
+ * Multiplies the polynomial with another, taking the values mod modulus and the indices mod N
+ */
+ public IntegerPolynomial mult(IntegerPolynomial poly2, int modulus)
+ {
+ IntegerPolynomial c = mult(poly2);
+ c.mod(modulus);
+ return c;
+ }
+
+ /**
+ * Multiplies the polynomial with another, taking the indices mod N
+ */
+ public IntegerPolynomial mult(IntegerPolynomial poly2)
+ {
+ int N = coeffs.length;
+ if (poly2.coeffs.length != N)
+ {
+ throw new IllegalArgumentException("Number of coefficients must be the same");
+ }
+
+ IntegerPolynomial c = multRecursive(poly2);
+
+ if (c.coeffs.length > N)
+ {
+ for (int k = N; k < c.coeffs.length; k++)
+ {
+ c.coeffs[k - N] += c.coeffs[k];
+ }
+ c.coeffs = Arrays.copyOf(c.coeffs, N);
+ }
+ return c;
+ }
+
+ public BigIntPolynomial mult(BigIntPolynomial poly2)
+ {
+ return new BigIntPolynomial(this).mult(poly2);
+ }
+
+ /**
+ * Karazuba multiplication
+ */
+ private IntegerPolynomial multRecursive(IntegerPolynomial poly2)
+ {
+ int[] a = coeffs;
+ int[] b = poly2.coeffs;
+
+ int n = poly2.coeffs.length;
+ if (n <= 32)
+ {
+ int cn = 2 * n - 1;
+ IntegerPolynomial c = new IntegerPolynomial(new int[cn]);
+ for (int k = 0; k < cn; k++)
+ {
+ for (int i = Math.max(0, k - n + 1); i <= Math.min(k, n - 1); i++)
+ {
+ c.coeffs[k] += b[i] * a[k - i];
+ }
+ }
+ return c;
+ }
+ else
+ {
+ int n1 = n / 2;
+
+ IntegerPolynomial a1 = new IntegerPolynomial(Arrays.copyOf(a, n1));
+ IntegerPolynomial a2 = new IntegerPolynomial(Arrays.copyOfRange(a, n1, n));
+ IntegerPolynomial b1 = new IntegerPolynomial(Arrays.copyOf(b, n1));
+ IntegerPolynomial b2 = new IntegerPolynomial(Arrays.copyOfRange(b, n1, n));
+
+ IntegerPolynomial A = (IntegerPolynomial)a1.clone();
+ A.add(a2);
+ IntegerPolynomial B = (IntegerPolynomial)b1.clone();
+ B.add(b2);
+
+ IntegerPolynomial c1 = a1.multRecursive(b1);
+ IntegerPolynomial c2 = a2.multRecursive(b2);
+ IntegerPolynomial c3 = A.multRecursive(B);
+ c3.sub(c1);
+ c3.sub(c2);
+
+ IntegerPolynomial c = new IntegerPolynomial(2 * n - 1);
+ for (int i = 0; i < c1.coeffs.length; i++)
+ {
+ c.coeffs[i] = c1.coeffs[i];
+ }
+ for (int i = 0; i < c3.coeffs.length; i++)
+ {
+ c.coeffs[n1 + i] += c3.coeffs[i];
+ }
+ for (int i = 0; i < c2.coeffs.length; i++)
+ {
+ c.coeffs[2 * n1 + i] += c2.coeffs[i];
+ }
+ return c;
+ }
+ }
+
+ /**
+ * Computes the inverse mod <code>q; q</code> must be a power of 2.<br>
+ * Returns <code>null</code> if the polynomial is not invertible.
+ *
+ * @param q the modulus
+ * @return a new polynomial
+ */
+ public IntegerPolynomial invertFq(int q)
+ {
+ int N = coeffs.length;
+ int k = 0;
+ IntegerPolynomial b = new IntegerPolynomial(N + 1);
+ b.coeffs[0] = 1;
+ IntegerPolynomial c = new IntegerPolynomial(N + 1);
+ IntegerPolynomial f = new IntegerPolynomial(N + 1);
+ f.coeffs = Arrays.copyOf(coeffs, N + 1);
+ f.modPositive(2);
+ // set g(x) = x^N − 1
+ IntegerPolynomial g = new IntegerPolynomial(N + 1);
+ g.coeffs[0] = 1;
+ g.coeffs[N] = 1;
+ while (true)
+ {
+ while (f.coeffs[0] == 0)
+ {
+ for (int i = 1; i <= N; i++)
+ {
+ f.coeffs[i - 1] = f.coeffs[i]; // f(x) = f(x) / x
+ c.coeffs[N + 1 - i] = c.coeffs[N - i]; // c(x) = c(x) * x
+ }
+ f.coeffs[N] = 0;
+ c.coeffs[0] = 0;
+ k++;
+ if (f.equalsZero())
+ {
+ return null; // not invertible
+ }
+ }
+ if (f.equalsOne())
+ {
+ break;
+ }
+ if (f.degree() < g.degree())
+ {
+ // exchange f and g
+ IntegerPolynomial temp = f;
+ f = g;
+ g = temp;
+ // exchange b and c
+ temp = b;
+ b = c;
+ c = temp;
+ }
+ f.add(g, 2);
+ b.add(c, 2);
+ }
+
+ if (b.coeffs[N] != 0)
+ {
+ return null;
+ }
+ // Fq(x) = x^(N-k) * b(x)
+ IntegerPolynomial Fq = new IntegerPolynomial(N);
+ int j = 0;
+ k %= N;
+ for (int i = N - 1; i >= 0; i--)
+ {
+ j = i - k;
+ if (j < 0)
+ {
+ j += N;
+ }
+ Fq.coeffs[j] = b.coeffs[i];
+ }
+
+ return mod2ToModq(Fq, q);
+ }
+
+ /**
+ * Computes the inverse mod q from the inverse mod 2
+ *
+ * @param Fq
+ * @param q
+ * @return The inverse of this polynomial mod q
+ */
+ private IntegerPolynomial mod2ToModq(IntegerPolynomial Fq, int q)
+ {
+ if (Util.is64BitJVM() && q == 2048)
+ {
+ LongPolynomial2 thisLong = new LongPolynomial2(this);
+ LongPolynomial2 FqLong = new LongPolynomial2(Fq);
+ int v = 2;
+ while (v < q)
+ {
+ v *= 2;
+ LongPolynomial2 temp = (LongPolynomial2)FqLong.clone();
+ temp.mult2And(v - 1);
+ FqLong = thisLong.mult(FqLong).mult(FqLong);
+ temp.subAnd(FqLong, v - 1);
+ FqLong = temp;
+ }
+ return FqLong.toIntegerPolynomial();
+ }
+ else
+ {
+ int v = 2;
+ while (v < q)
+ {
+ v *= 2;
+ IntegerPolynomial temp = new IntegerPolynomial(Arrays.copyOf(Fq.coeffs, Fq.coeffs.length));
+ temp.mult2(v);
+ Fq = mult(Fq, v).mult(Fq, v);
+ temp.sub(Fq, v);
+ Fq = temp;
+ }
+ return Fq;
+ }
+ }
+
+ /**
+ * Computes the inverse mod 3.
+ * Returns <code>null</code> if the polynomial is not invertible.
+ *
+ * @return a new polynomial
+ */
+ public IntegerPolynomial invertF3()
+ {
+ int N = coeffs.length;
+ int k = 0;
+ IntegerPolynomial b = new IntegerPolynomial(N + 1);
+ b.coeffs[0] = 1;
+ IntegerPolynomial c = new IntegerPolynomial(N + 1);
+ IntegerPolynomial f = new IntegerPolynomial(N + 1);
+ f.coeffs = Arrays.copyOf(coeffs, N + 1);
+ f.modPositive(3);
+ // set g(x) = x^N − 1
+ IntegerPolynomial g = new IntegerPolynomial(N + 1);
+ g.coeffs[0] = -1;
+ g.coeffs[N] = 1;
+ while (true)
+ {
+ while (f.coeffs[0] == 0)
+ {
+ for (int i = 1; i <= N; i++)
+ {
+ f.coeffs[i - 1] = f.coeffs[i]; // f(x) = f(x) / x
+ c.coeffs[N + 1 - i] = c.coeffs[N - i]; // c(x) = c(x) * x
+ }
+ f.coeffs[N] = 0;
+ c.coeffs[0] = 0;
+ k++;
+ if (f.equalsZero())
+ {
+ return null; // not invertible
+ }
+ }
+ if (f.equalsAbsOne())
+ {
+ break;
+ }
+ if (f.degree() < g.degree())
+ {
+ // exchange f and g
+ IntegerPolynomial temp = f;
+ f = g;
+ g = temp;
+ // exchange b and c
+ temp = b;
+ b = c;
+ c = temp;
+ }
+ if (f.coeffs[0] == g.coeffs[0])
+ {
+ f.sub(g, 3);
+ b.sub(c, 3);
+ }
+ else
+ {
+ f.add(g, 3);
+ b.add(c, 3);
+ }
+ }
+
+ if (b.coeffs[N] != 0)
+ {
+ return null;
+ }
+ // Fp(x) = [+-] x^(N-k) * b(x)
+ IntegerPolynomial Fp = new IntegerPolynomial(N);
+ int j = 0;
+ k %= N;
+ for (int i = N - 1; i >= 0; i--)
+ {
+ j = i - k;
+ if (j < 0)
+ {
+ j += N;
+ }
+ Fp.coeffs[j] = f.coeffs[0] * b.coeffs[i];
+ }
+
+ Fp.ensurePositive(3);
+ return Fp;
+ }
+
+ /**
+ * Resultant of this polynomial with <code>x^n-1</code> using a probabilistic algorithm.
+ * <p>
+ * Unlike EESS, this implementation does not compute all resultants modulo primes
+ * such that their product exceeds the maximum possible resultant, but rather stops
+ * when <code>NUM_EQUAL_RESULTANTS</code> consecutive modular resultants are equal.<br>
+ * This means the return value may be incorrect. Experiments show this happens in
+ * about 1 out of 100 cases when <code>N=439</code> and <code>NUM_EQUAL_RESULTANTS=2</code>,
+ * so the likelyhood of leaving the loop too early is <code>(1/100)^(NUM_EQUAL_RESULTANTS-1)</code>.
+ * <p>
+ * Because of the above, callers must verify the output and try a different polynomial if necessary.
+ *
+ * @return <code>(rho, res)</code> satisfying <code>res = rho*this + t*(x^n-1)</code> for some integer <code>t</code>.
+ */
+ public Resultant resultant()
+ {
+ int N = coeffs.length;
+
+ // Compute resultants modulo prime numbers. Continue until NUM_EQUAL_RESULTANTS consecutive modular resultants are equal.
+ LinkedList<ModularResultant> modResultants = new LinkedList<ModularResultant>();
+ BigInteger prime = null;
+ BigInteger pProd = Constants.BIGINT_ONE;
+ BigInteger res = Constants.BIGINT_ONE;
+ int numEqual = 1; // number of consecutive modular resultants equal to each other
+ Iterator<BigInteger> primes = BIGINT_PRIMES.iterator();
+ while (true)
+ {
+ prime = primes.hasNext() ? primes.next() : prime.nextProbablePrime();
+ ModularResultant crr = resultant(prime.intValue());
+ modResultants.add(crr);
+
+ BigInteger temp = pProd.multiply(prime);
+ BigIntEuclidean er = BigIntEuclidean.calculate(prime, pProd);
+ BigInteger resPrev = res;
+ res = res.multiply(er.x.multiply(prime));
+ BigInteger res2 = crr.res.multiply(er.y.multiply(pProd));
+ res = res.add(res2).mod(temp);
+ pProd = temp;
+
+ BigInteger pProd2 = pProd.divide(BigInteger.valueOf(2));
+ BigInteger pProd2n = pProd2.negate();
+ if (res.compareTo(pProd2) > 0)
+ {
+ res = res.subtract(pProd);
+ }
+ else if (res.compareTo(pProd2n) < 0)
+ {
+ res = res.add(pProd);
+ }
+
+ if (res.equals(resPrev))
+ {
+ numEqual++;
+ if (numEqual >= NUM_EQUAL_RESULTANTS)
+ {
+ break;
+ }
+ }
+ else
+ {
+ numEqual = 1;
+ }
+ }
+
+ // Combine modular rho's to obtain the final rho.
+ // For efficiency, first combine all pairs of small resultants to bigger resultants,
+ // then combine pairs of those, etc. until only one is left.
+ while (modResultants.size() > 1)
+ {
+ ModularResultant modRes1 = modResultants.removeFirst();
+ ModularResultant modRes2 = modResultants.removeFirst();
+ ModularResultant modRes3 = ModularResultant.combineRho(modRes1, modRes2);
+ modResultants.addLast(modRes3);
+ }
+ BigIntPolynomial rhoP = modResultants.getFirst().rho;
+
+ BigInteger pProd2 = pProd.divide(BigInteger.valueOf(2));
+ BigInteger pProd2n = pProd2.negate();
+ if (res.compareTo(pProd2) > 0)
+ {
+ res = res.subtract(pProd);
+ }
+ if (res.compareTo(pProd2n) < 0)
+ {
+ res = res.add(pProd);
+ }
+
+ for (int i = 0; i < N; i++)
+ {
+ BigInteger c = rhoP.coeffs[i];
+ if (c.compareTo(pProd2) > 0)
+ {
+ rhoP.coeffs[i] = c.subtract(pProd);
+ }
+ if (c.compareTo(pProd2n) < 0)
+ {
+ rhoP.coeffs[i] = c.add(pProd);
+ }
+ }
+
+ return new Resultant(rhoP, res);
+ }
+
+ /**
+ * Multithreaded version of {@link #resultant()}.
+ *
+ * @return <code>(rho, res)</code> satisfying <code>res = rho*this + t*(x^n-1)</code> for some integer <code>t</code>.
+ */
+ public Resultant resultantMultiThread()
+ {
+ int N = coeffs.length;
+
+ // upper bound for resultant(f, g) = ||f, 2||^deg(g) * ||g, 2||^deg(f) = squaresum(f)^(N/2) * 2^(deg(f)/2) because g(x)=x^N-1
+ // see http://jondalon.mathematik.uni-osnabrueck.de/staff/phpages/brunsw/CompAlg.pdf chapter 3
+ BigInteger max = squareSum().pow((N + 1) / 2);
+ max = max.multiply(BigInteger.valueOf(2).pow((degree() + 1) / 2));
+ BigInteger max2 = max.multiply(BigInteger.valueOf(2));
+
+ // compute resultants modulo prime numbers
+ BigInteger prime = BigInteger.valueOf(10000);
+ BigInteger pProd = Constants.BIGINT_ONE;
+ LinkedBlockingQueue<Future<ModularResultant>> resultantTasks = new LinkedBlockingQueue<Future<ModularResultant>>();
+ Iterator<BigInteger> primes = BIGINT_PRIMES.iterator();
+ ExecutorService executor = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());
+ while (pProd.compareTo(max2) < 0)
+ {
+ if (primes.hasNext())
+ {
+ prime = primes.next();
+ }
+ else
+ {
+ prime = prime.nextProbablePrime();
+ }
+ Future<ModularResultant> task = executor.submit(new ModResultantTask(prime.intValue()));
+ resultantTasks.add(task);
+ pProd = pProd.multiply(prime);
+ }
+
+ // Combine modular resultants to obtain the resultant.
+ // For efficiency, first combine all pairs of small resultants to bigger resultants,
+ // then combine pairs of those, etc. until only one is left.
+ ModularResultant overallResultant = null;
+ while (!resultantTasks.isEmpty())
+ {
+ try
+ {
+ Future<ModularResultant> modRes1 = resultantTasks.take();
+ Future<ModularResultant> modRes2 = resultantTasks.poll();
+ if (modRes2 == null)
+ {
+ // modRes1 is the only one left
+ overallResultant = modRes1.get();
+ break;
+ }
+ Future<ModularResultant> newTask = executor.submit(new CombineTask(modRes1.get(), modRes2.get()));
+ resultantTasks.add(newTask);
+ }
+ catch (Exception e)
+ {
+ throw new IllegalStateException(e.toString());
+ }
+ }
+ executor.shutdown();
+ BigInteger res = overallResultant.res;
+ BigIntPolynomial rhoP = overallResultant.rho;
+
+ BigInteger pProd2 = pProd.divide(BigInteger.valueOf(2));
+ BigInteger pProd2n = pProd2.negate();
+
+ if (res.compareTo(pProd2) > 0)
+ {
+ res = res.subtract(pProd);
+ }
+ if (res.compareTo(pProd2n) < 0)
+ {
+ res = res.add(pProd);
+ }
+
+ for (int i = 0; i < N; i++)
+ {
+ BigInteger c = rhoP.coeffs[i];
+ if (c.compareTo(pProd2) > 0)
+ {
+ rhoP.coeffs[i] = c.subtract(pProd);
+ }
+ if (c.compareTo(pProd2n) < 0)
+ {
+ rhoP.coeffs[i] = c.add(pProd);
+ }
+ }
+
+ return new Resultant(rhoP, res);
+ }
+
+ /**
+ * Resultant of this polynomial with <code>x^n-1 mod p</code>.
+ *
+ * @return <code>(rho, res)</code> satisfying <code>res = rho*this + t*(x^n-1) mod p</code> for some integer <code>t</code>.
+ */
+ public ModularResultant resultant(int p)
+ {
+ // Add a coefficient as the following operations involve polynomials of degree deg(f)+1
+ int[] fcoeffs = Arrays.copyOf(coeffs, coeffs.length + 1);
+ IntegerPolynomial f = new IntegerPolynomial(fcoeffs);
+ int N = fcoeffs.length;
+
+ IntegerPolynomial a = new IntegerPolynomial(N);
+ a.coeffs[0] = -1;
+ a.coeffs[N - 1] = 1;
+ IntegerPolynomial b = new IntegerPolynomial(f.coeffs);
+ IntegerPolynomial v1 = new IntegerPolynomial(N);
+ IntegerPolynomial v2 = new IntegerPolynomial(N);
+ v2.coeffs[0] = 1;
+ int da = N - 1;
+ int db = b.degree();
+ int ta = da;
+ int c = 0;
+ int r = 1;
+ while (db > 0)
+ {
+ c = Util.invert(b.coeffs[db], p);
+ c = (c * a.coeffs[da]) % p;
+ a.multShiftSub(b, c, da - db, p);
+ v1.multShiftSub(v2, c, da - db, p);
+
+ da = a.degree();
+ if (da < db)
+ {
+ r *= Util.pow(b.coeffs[db], ta - da, p);
+ r %= p;
+ if (ta % 2 == 1 && db % 2 == 1)
+ {
+ r = (-r) % p;
+ }
+ IntegerPolynomial temp = a;
+ a = b;
+ b = temp;
+ int tempdeg = da;
+ da = db;
+ temp = v1;
+ v1 = v2;
+ v2 = temp;
+ ta = db;
+ db = tempdeg;
+ }
+ }
+ r *= Util.pow(b.coeffs[0], da, p);
+ r %= p;
+ c = Util.invert(b.coeffs[0], p);
+ v2.mult(c);
+ v2.mod(p);
+ v2.mult(r);
+ v2.mod(p);
+
+ // drop the highest coefficient so #coeffs matches the original input
+ v2.coeffs = Arrays.copyOf(v2.coeffs, v2.coeffs.length - 1);
+ return new ModularResultant(new BigIntPolynomial(v2), BigInteger.valueOf(r), BigInteger.valueOf(p));
+ }
+
+ /**
+ * Computes <code>this-b*c*(x^k) mod p</code> and stores the result in this polynomial.<br/>
+ * See steps 4a,4b in EESS algorithm 2.2.7.1.
+ *
+ * @param b
+ * @param c
+ * @param k
+ * @param p
+ */
+ private void multShiftSub(IntegerPolynomial b, int c, int k, int p)
+ {
+ int N = coeffs.length;
+ for (int i = k; i < N; i++)
+ {
+ coeffs[i] = (coeffs[i] - b.coeffs[i - k] * c) % p;
+ }
+ }
+
+ /**
+ * Adds the squares of all coefficients.
+ *
+ * @return the sum of squares
+ */
+ private BigInteger squareSum()
+ {
+ BigInteger sum = Constants.BIGINT_ZERO;
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ sum = sum.add(BigInteger.valueOf(coeffs[i] * coeffs[i]));
+ }
+ return sum;
+ }
+
+ /**
+ * Returns the degree of the polynomial
+ *
+ * @return the degree
+ */
+ int degree()
+ {
+ int degree = coeffs.length - 1;
+ while (degree > 0 && coeffs[degree] == 0)
+ {
+ degree--;
+ }
+ return degree;
+ }
+
+ /**
+ * Adds another polynomial which can have a different number of coefficients,
+ * and takes the coefficient values mod <code>modulus</code>.
+ *
+ * @param b another polynomial
+ */
+ public void add(IntegerPolynomial b, int modulus)
+ {
+ add(b);
+ mod(modulus);
+ }
+
+ /**
+ * Adds another polynomial which can have a different number of coefficients.
+ *
+ * @param b another polynomial
+ */
+ public void add(IntegerPolynomial b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ coeffs = Arrays.copyOf(coeffs, b.coeffs.length);
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] += b.coeffs[i];
+ }
+ }
+
+ /**
+ * Subtracts another polynomial which can have a different number of coefficients,
+ * and takes the coefficient values mod <code>modulus</code>.
+ *
+ * @param b another polynomial
+ */
+ public void sub(IntegerPolynomial b, int modulus)
+ {
+ sub(b);
+ mod(modulus);
+ }
+
+ /**
+ * Subtracts another polynomial which can have a different number of coefficients.
+ *
+ * @param b another polynomial
+ */
+ public void sub(IntegerPolynomial b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ coeffs = Arrays.copyOf(coeffs, b.coeffs.length);
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] -= b.coeffs[i];
+ }
+ }
+
+ /**
+ * Subtracts a <code>int</code> from each coefficient. Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param b
+ */
+ void sub(int b)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] -= b;
+ }
+ }
+
+ /**
+ * Multiplies each coefficient by a <code>int</code>. Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param factor
+ */
+ public void mult(int factor)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] *= factor;
+ }
+ }
+
+ /**
+ * Multiplies each coefficient by a 2 and applies a modulus. Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param modulus a modulus
+ */
+ private void mult2(int modulus)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] *= 2;
+ coeffs[i] %= modulus;
+ }
+ }
+
+ /**
+ * Multiplies each coefficient by a 2 and applies a modulus. Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param modulus a modulus
+ */
+ public void mult3(int modulus)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] *= 3;
+ coeffs[i] %= modulus;
+ }
+ }
+
+ /**
+ * Divides each coefficient by <code>k</code> and rounds to the nearest integer. Does not return a new polynomial but modifies this polynomial.
+ *
+ * @param k the divisor
+ */
+ public void div(int k)
+ {
+ int k2 = (k + 1) / 2;
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] += coeffs[i] > 0 ? k2 : -k2;
+ coeffs[i] /= k;
+ }
+ }
+
+ /**
+ * Takes each coefficient modulo 3 such that all coefficients are ternary.
+ */
+ public void mod3()
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] %= 3;
+ if (coeffs[i] > 1)
+ {
+ coeffs[i] -= 3;
+ }
+ if (coeffs[i] < -1)
+ {
+ coeffs[i] += 3;
+ }
+ }
+ }
+
+ /**
+ * Ensures all coefficients are between 0 and <code>modulus-1</code>
+ *
+ * @param modulus a modulus
+ */
+ public void modPositive(int modulus)
+ {
+ mod(modulus);
+ ensurePositive(modulus);
+ }
+
+ /**
+ * Reduces all coefficients to the interval [-modulus/2, modulus/2)
+ */
+ void modCenter(int modulus)
+ {
+ mod(modulus);
+ for (int j = 0; j < coeffs.length; j++)
+ {
+ while (coeffs[j] < modulus / 2)
+ {
+ coeffs[j] += modulus;
+ }
+ while (coeffs[j] >= modulus / 2)
+ {
+ coeffs[j] -= modulus;
+ }
+ }
+ }
+
+ /**
+ * Takes each coefficient modulo <code>modulus</code>.
+ */
+ public void mod(int modulus)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] %= modulus;
+ }
+ }
+
+ /**
+ * Adds <code>modulus</code> until all coefficients are above 0.
+ *
+ * @param modulus a modulus
+ */
+ public void ensurePositive(int modulus)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ while (coeffs[i] < 0)
+ {
+ coeffs[i] += modulus;
+ }
+ }
+ }
+
+ /**
+ * Computes the centered euclidean norm of the polynomial.
+ *
+ * @param q a modulus
+ * @return the centered norm
+ */
+ public long centeredNormSq(int q)
+ {
+ int N = coeffs.length;
+ IntegerPolynomial p = (IntegerPolynomial)clone();
+ p.shiftGap(q);
+
+ long sum = 0;
+ long sqSum = 0;
+ for (int i = 0; i != p.coeffs.length; i++)
+ {
+ int c = p.coeffs[i];
+ sum += c;
+ sqSum += c * c;
+ }
+
+ long centeredNormSq = sqSum - sum * sum / N;
+ return centeredNormSq;
+ }
+
+ /**
+ * Shifts all coefficients so the largest gap is centered around <code>-q/2</code>.
+ *
+ * @param q a modulus
+ */
+ void shiftGap(int q)
+ {
+ modCenter(q);
+
+ int[] sorted = Arrays.clone(coeffs);
+
+ sort(sorted);
+
+ int maxrange = 0;
+ int maxrangeStart = 0;
+ for (int i = 0; i < sorted.length - 1; i++)
+ {
+ int range = sorted[i + 1] - sorted[i];
+ if (range > maxrange)
+ {
+ maxrange = range;
+ maxrangeStart = sorted[i];
+ }
+ }
+
+ int pmin = sorted[0];
+ int pmax = sorted[sorted.length - 1];
+
+ int j = q - pmax + pmin;
+ int shift;
+ if (j > maxrange)
+ {
+ shift = (pmax + pmin) / 2;
+ }
+ else
+ {
+ shift = maxrangeStart + maxrange / 2 + q / 2;
+ }
+
+ sub(shift);
+ }
+
+ private void sort(int[] ints)
+ {
+ boolean swap = true;
+
+ while (swap)
+ {
+ swap = false;
+ for (int i = 0; i != ints.length - 1; i++)
+ {
+ if (ints[i] > ints[i+1])
+ {
+ int tmp = ints[i];
+ ints[i] = ints[i+1];
+ ints[i+1] = tmp;
+ swap = true;
+ }
+ }
+ }
+ }
+
+ /**
+ * Shifts the values of all coefficients to the interval <code>[-q/2, q/2]</code>.
+ *
+ * @param q a modulus
+ */
+ public void center0(int q)
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ while (coeffs[i] < -q / 2)
+ {
+ coeffs[i] += q;
+ }
+ while (coeffs[i] > q / 2)
+ {
+ coeffs[i] -= q;
+ }
+ }
+ }
+
+ /**
+ * Returns the sum of all coefficients, i.e. evaluates the polynomial at 0.
+ *
+ * @return the sum of all coefficients
+ */
+ public int sumCoeffs()
+ {
+ int sum = 0;
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ sum += coeffs[i];
+ }
+ return sum;
+ }
+
+ /**
+ * Tests if <code>p(x) = 0</code>.
+ *
+ * @return true iff all coefficients are zeros
+ */
+ private boolean equalsZero()
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ if (coeffs[i] != 0)
+ {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Tests if <code>p(x) = 1</code>.
+ *
+ * @return true iff all coefficients are equal to zero, except for the lowest coefficient which must equal 1
+ */
+ public boolean equalsOne()
+ {
+ for (int i = 1; i < coeffs.length; i++)
+ {
+ if (coeffs[i] != 0)
+ {
+ return false;
+ }
+ }
+ return coeffs[0] == 1;
+ }
+
+ /**
+ * Tests if <code>|p(x)| = 1</code>.
+ *
+ * @return true iff all coefficients are equal to zero, except for the lowest coefficient which must equal 1 or -1
+ */
+ private boolean equalsAbsOne()
+ {
+ for (int i = 1; i < coeffs.length; i++)
+ {
+ if (coeffs[i] != 0)
+ {
+ return false;
+ }
+ }
+ return Math.abs(coeffs[0]) == 1;
+ }
+
+ /**
+ * Counts the number of coefficients equal to an integer
+ *
+ * @param value an integer
+ * @return the number of coefficients equal to <code>value</code>
+ */
+ public int count(int value)
+ {
+ int count = 0;
+ for (int i = 0; i != coeffs.length; i++)
+ {
+ if (coeffs[i] == value)
+ {
+ count++;
+ }
+ }
+ return count;
+ }
+
+ /**
+ * Multiplication by <code>X</code> in <code>Z[X]/Z[X^n-1]</code>.
+ */
+ public void rotate1()
+ {
+ int clast = coeffs[coeffs.length - 1];
+ for (int i = coeffs.length - 1; i > 0; i--)
+ {
+ coeffs[i] = coeffs[i - 1];
+ }
+ coeffs[0] = clast;
+ }
+
+ public void clear()
+ {
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] = 0;
+ }
+ }
+
+ public IntegerPolynomial toIntegerPolynomial()
+ {
+ return (IntegerPolynomial)clone();
+ }
+
+ public Object clone()
+ {
+ return new IntegerPolynomial(coeffs.clone());
+ }
+
+ public boolean equals(Object obj)
+ {
+ if (obj instanceof IntegerPolynomial)
+ {
+ return Arrays.areEqual(coeffs, ((IntegerPolynomial)obj).coeffs);
+ }
+ else
+ {
+ return false;
+ }
+ }
+
+ /**
+ * Calls {@link IntegerPolynomial#resultant(int)
+ */
+ private class ModResultantTask
+ implements Callable<ModularResultant>
+ {
+ private int modulus;
+
+ private ModResultantTask(int modulus)
+ {
+ this.modulus = modulus;
+ }
+
+ public ModularResultant call()
+ {
+ return resultant(modulus);
+ }
+ }
+
+ /**
+ * Calls {@link ModularResultant#combineRho(ModularResultant, ModularResultant)
+ */
+ private class CombineTask
+ implements Callable<ModularResultant>
+ {
+ private ModularResultant modRes1;
+ private ModularResultant modRes2;
+
+ private CombineTask(ModularResultant modRes1, ModularResultant modRes2)
+ {
+ this.modRes1 = modRes1;
+ this.modRes2 = modRes2;
+ }
+
+ public ModularResultant call()
+ {
+ return ModularResultant.combineRho(modRes1, modRes2);
+ }
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial2.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial2.java
new file mode 100644
index 00000000..513cac50
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial2.java
@@ -0,0 +1,255 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import org.spongycastle.util.Arrays;
+
+/**
+ * A polynomial class that combines two coefficients into one <code>long</code> value for
+ * faster multiplication in 64 bit environments.<br>
+ * Coefficients can be between 0 and 2047 and are stored in pairs in the bits 0..10 and 24..34 of a <code>long</code> number.
+ */
+public class LongPolynomial2
+{
+ private long[] coeffs; // each representing two coefficients in the original IntegerPolynomial
+ private int numCoeffs;
+
+ /**
+ * Constructs a <code>LongPolynomial2</code> from a <code>IntegerPolynomial</code>. The two polynomials are independent of each other.
+ *
+ * @param p the original polynomial. Coefficients must be between 0 and 2047.
+ */
+ public LongPolynomial2(IntegerPolynomial p)
+ {
+ numCoeffs = p.coeffs.length;
+ coeffs = new long[(numCoeffs + 1) / 2];
+ int idx = 0;
+ for (int pIdx = 0; pIdx < numCoeffs; )
+ {
+ int c0 = p.coeffs[pIdx++];
+ while (c0 < 0)
+ {
+ c0 += 2048;
+ }
+ long c1 = pIdx < numCoeffs ? p.coeffs[pIdx++] : 0;
+ while (c1 < 0)
+ {
+ c1 += 2048;
+ }
+ coeffs[idx] = c0 + (c1 << 24);
+ idx++;
+ }
+ }
+
+ private LongPolynomial2(long[] coeffs)
+ {
+ this.coeffs = coeffs;
+ }
+
+ private LongPolynomial2(int N)
+ {
+ coeffs = new long[N];
+ }
+
+ /**
+ * Multiplies the polynomial with another, taking the indices mod N and the values mod 2048.
+ */
+ public LongPolynomial2 mult(LongPolynomial2 poly2)
+ {
+ int N = coeffs.length;
+ if (poly2.coeffs.length != N || numCoeffs != poly2.numCoeffs)
+ {
+ throw new IllegalArgumentException("Number of coefficients must be the same");
+ }
+
+ LongPolynomial2 c = multRecursive(poly2);
+
+ if (c.coeffs.length > N)
+ {
+ if (numCoeffs % 2 == 0)
+ {
+ for (int k = N; k < c.coeffs.length; k++)
+ {
+ c.coeffs[k - N] = (c.coeffs[k - N] + c.coeffs[k]) & 0x7FF0007FFL;
+ }
+ c.coeffs = Arrays.copyOf(c.coeffs, N);
+ }
+ else
+ {
+ for (int k = N; k < c.coeffs.length; k++)
+ {
+ c.coeffs[k - N] = c.coeffs[k - N] + (c.coeffs[k - 1] >> 24);
+ c.coeffs[k - N] = c.coeffs[k - N] + ((c.coeffs[k] & 2047) << 24);
+ c.coeffs[k - N] &= 0x7FF0007FFL;
+ }
+ c.coeffs = Arrays.copyOf(c.coeffs, N);
+ c.coeffs[c.coeffs.length - 1] &= 2047;
+ }
+ }
+
+ c = new LongPolynomial2(c.coeffs);
+ c.numCoeffs = numCoeffs;
+ return c;
+ }
+
+ public IntegerPolynomial toIntegerPolynomial()
+ {
+ int[] intCoeffs = new int[numCoeffs];
+ int uIdx = 0;
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ intCoeffs[uIdx++] = (int)(coeffs[i] & 2047);
+ if (uIdx < numCoeffs)
+ {
+ intCoeffs[uIdx++] = (int)((coeffs[i] >> 24) & 2047);
+ }
+ }
+ return new IntegerPolynomial(intCoeffs);
+ }
+
+ /**
+ * Karazuba multiplication
+ */
+ private LongPolynomial2 multRecursive(LongPolynomial2 poly2)
+ {
+ long[] a = coeffs;
+ long[] b = poly2.coeffs;
+
+ int n = poly2.coeffs.length;
+ if (n <= 32)
+ {
+ int cn = 2 * n;
+ LongPolynomial2 c = new LongPolynomial2(new long[cn]);
+ for (int k = 0; k < cn; k++)
+ {
+ for (int i = Math.max(0, k - n + 1); i <= Math.min(k, n - 1); i++)
+ {
+ long c0 = a[k - i] * b[i];
+ long cu = c0 & 0x7FF000000L + (c0 & 2047);
+ long co = (c0 >>> 48) & 2047;
+
+ c.coeffs[k] = (c.coeffs[k] + cu) & 0x7FF0007FFL;
+ c.coeffs[k + 1] = (c.coeffs[k + 1] + co) & 0x7FF0007FFL;
+ }
+ }
+ return c;
+ }
+ else
+ {
+ int n1 = n / 2;
+
+ LongPolynomial2 a1 = new LongPolynomial2(Arrays.copyOf(a, n1));
+ LongPolynomial2 a2 = new LongPolynomial2(Arrays.copyOfRange(a, n1, n));
+ LongPolynomial2 b1 = new LongPolynomial2(Arrays.copyOf(b, n1));
+ LongPolynomial2 b2 = new LongPolynomial2(Arrays.copyOfRange(b, n1, n));
+
+ LongPolynomial2 A = (LongPolynomial2)a1.clone();
+ A.add(a2);
+ LongPolynomial2 B = (LongPolynomial2)b1.clone();
+ B.add(b2);
+
+ LongPolynomial2 c1 = a1.multRecursive(b1);
+ LongPolynomial2 c2 = a2.multRecursive(b2);
+ LongPolynomial2 c3 = A.multRecursive(B);
+ c3.sub(c1);
+ c3.sub(c2);
+
+ LongPolynomial2 c = new LongPolynomial2(2 * n);
+ for (int i = 0; i < c1.coeffs.length; i++)
+ {
+ c.coeffs[i] = c1.coeffs[i] & 0x7FF0007FFL;
+ }
+ for (int i = 0; i < c3.coeffs.length; i++)
+ {
+ c.coeffs[n1 + i] = (c.coeffs[n1 + i] + c3.coeffs[i]) & 0x7FF0007FFL;
+ }
+ for (int i = 0; i < c2.coeffs.length; i++)
+ {
+ c.coeffs[2 * n1 + i] = (c.coeffs[2 * n1 + i] + c2.coeffs[i]) & 0x7FF0007FFL;
+ }
+ return c;
+ }
+ }
+
+ /**
+ * Adds another polynomial which can have a different number of coefficients.
+ *
+ * @param b another polynomial
+ */
+ private void add(LongPolynomial2 b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ coeffs = Arrays.copyOf(coeffs, b.coeffs.length);
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] = (coeffs[i] + b.coeffs[i]) & 0x7FF0007FFL;
+ }
+ }
+
+ /**
+ * Subtracts another polynomial which can have a different number of coefficients.
+ *
+ * @param b another polynomial
+ */
+ private void sub(LongPolynomial2 b)
+ {
+ if (b.coeffs.length > coeffs.length)
+ {
+ coeffs = Arrays.copyOf(coeffs, b.coeffs.length);
+ }
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] = (0x0800000800000L + coeffs[i] - b.coeffs[i]) & 0x7FF0007FFL;
+ }
+ }
+
+ /**
+ * Subtracts another polynomial which must have the same number of coefficients,
+ * and applies an AND mask to the upper and lower halves of each coefficients.
+ *
+ * @param b another polynomial
+ * @param mask a bit mask less than 2048 to apply to each 11-bit coefficient
+ */
+ public void subAnd(LongPolynomial2 b, int mask)
+ {
+ long longMask = (((long)mask) << 24) + mask;
+ for (int i = 0; i < b.coeffs.length; i++)
+ {
+ coeffs[i] = (0x0800000800000L + coeffs[i] - b.coeffs[i]) & longMask;
+ }
+ }
+
+ /**
+ * Multiplies this polynomial by 2 and applies an AND mask to the upper and
+ * lower halves of each coefficients.
+ *
+ * @param mask a bit mask less than 2048 to apply to each 11-bit coefficient
+ */
+ public void mult2And(int mask)
+ {
+ long longMask = (((long)mask) << 24) + mask;
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ coeffs[i] = (coeffs[i] << 1) & longMask;
+ }
+ }
+
+ public Object clone()
+ {
+ LongPolynomial2 p = new LongPolynomial2(coeffs.clone());
+ p.numCoeffs = numCoeffs;
+ return p;
+ }
+
+ public boolean equals(Object obj)
+ {
+ if (obj instanceof LongPolynomial2)
+ {
+ return Arrays.areEqual(coeffs, ((LongPolynomial2)obj).coeffs);
+ }
+ else
+ {
+ return false;
+ }
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial5.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial5.java
new file mode 100644
index 00000000..f8764c68
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/LongPolynomial5.java
@@ -0,0 +1,149 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import org.spongycastle.util.Arrays;
+
+/**
+ * A polynomial class that combines five coefficients into one <code>long</code> value for
+ * faster multiplication by a ternary polynomial.<br>
+ * Coefficients can be between 0 and 2047 and are stored in bits 0..11, 12..23, ..., 48..59 of a <code>long</code> number.
+ */
+public class LongPolynomial5
+{
+ private long[] coeffs; // groups of 5 coefficients
+ private int numCoeffs;
+
+ /**
+ * Constructs a <code>LongPolynomial5</code> from a <code>IntegerPolynomial</code>. The two polynomials are independent of each other.
+ *
+ * @param p the original polynomial. Coefficients must be between 0 and 2047.
+ */
+ public LongPolynomial5(IntegerPolynomial p)
+ {
+ numCoeffs = p.coeffs.length;
+
+ coeffs = new long[(numCoeffs + 4) / 5];
+ int cIdx = 0;
+ int shift = 0;
+ for (int i = 0; i < numCoeffs; i++)
+ {
+ coeffs[cIdx] |= ((long)p.coeffs[i]) << shift;
+ shift += 12;
+ if (shift >= 60)
+ {
+ shift = 0;
+ cIdx++;
+ }
+ }
+ }
+
+ private LongPolynomial5(long[] coeffs, int numCoeffs)
+ {
+ this.coeffs = coeffs;
+ this.numCoeffs = numCoeffs;
+ }
+
+ /**
+ * Multiplies the polynomial with a <code>TernaryPolynomial</code>, taking the indices mod N and the values mod 2048.
+ */
+ public LongPolynomial5 mult(TernaryPolynomial poly2)
+ {
+ long[][] prod = new long[5][coeffs.length + (poly2.size() + 4) / 5 - 1]; // intermediate results, the subarrays are shifted by 0,...,4 coefficients
+
+ // multiply ones
+ int[] ones = poly2.getOnes();
+ for (int idx = 0; idx != ones.length; idx++)
+ {
+ int pIdx = ones[idx];
+ int cIdx = pIdx / 5;
+ int m = pIdx - cIdx * 5; // m = pIdx % 5
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ prod[m][cIdx] = (prod[m][cIdx] + coeffs[i]) & 0x7FF7FF7FF7FF7FFL;
+ cIdx++;
+ }
+ }
+
+ // multiply negative ones
+ int[] negOnes = poly2.getNegOnes();
+ for (int idx = 0; idx != negOnes.length; idx++)
+ {
+ int pIdx = negOnes[idx];
+ int cIdx = pIdx / 5;
+ int m = pIdx - cIdx * 5; // m = pIdx % 5
+ for (int i = 0; i < coeffs.length; i++)
+ {
+ prod[m][cIdx] = (0x800800800800800L + prod[m][cIdx] - coeffs[i]) & 0x7FF7FF7FF7FF7FFL;
+ cIdx++;
+ }
+ }
+
+ // combine shifted coefficients (5 arrays) into a single array of length prod[*].length+1
+ long[] cCoeffs = Arrays.copyOf(prod[0], prod[0].length + 1);
+ for (int m = 1; m <= 4; m++)
+ {
+ int shift = m * 12;
+ int shift60 = 60 - shift;
+ long mask = (1L << shift60) - 1;
+ int pLen = prod[m].length;
+ for (int i = 0; i < pLen; i++)
+ {
+ long upper, lower;
+ upper = prod[m][i] >> shift60;
+ lower = prod[m][i] & mask;
+
+ cCoeffs[i] = (cCoeffs[i] + (lower << shift)) & 0x7FF7FF7FF7FF7FFL;
+ int nextIdx = i + 1;
+ cCoeffs[nextIdx] = (cCoeffs[nextIdx] + upper) & 0x7FF7FF7FF7FF7FFL;
+ }
+ }
+
+ // reduce indices of cCoeffs modulo numCoeffs
+ int shift = 12 * (numCoeffs % 5);
+ for (int cIdx = coeffs.length - 1; cIdx < cCoeffs.length; cIdx++)
+ {
+ long iCoeff; // coefficient to shift into the [0..numCoeffs-1] range
+ int newIdx;
+ if (cIdx == coeffs.length - 1)
+ {
+ iCoeff = numCoeffs == 5 ? 0 : cCoeffs[cIdx] >> shift;
+ newIdx = 0;
+ }
+ else
+ {
+ iCoeff = cCoeffs[cIdx];
+ newIdx = cIdx * 5 - numCoeffs;
+ }
+
+ int base = newIdx / 5;
+ int m = newIdx - base * 5; // m = newIdx % 5
+ long lower = iCoeff << (12 * m);
+ long upper = iCoeff >> (12 * (5 - m));
+ cCoeffs[base] = (cCoeffs[base] + lower) & 0x7FF7FF7FF7FF7FFL;
+ int base1 = base + 1;
+ if (base1 < coeffs.length)
+ {
+ cCoeffs[base1] = (cCoeffs[base1] + upper) & 0x7FF7FF7FF7FF7FFL;
+ }
+ }
+
+ return new LongPolynomial5(cCoeffs, numCoeffs);
+ }
+
+ public IntegerPolynomial toIntegerPolynomial()
+ {
+ int[] intCoeffs = new int[numCoeffs];
+ int cIdx = 0;
+ int shift = 0;
+ for (int i = 0; i < numCoeffs; i++)
+ {
+ intCoeffs[i] = (int)((coeffs[cIdx] >> shift) & 2047);
+ shift += 12;
+ if (shift >= 60)
+ {
+ shift = 0;
+ cIdx++;
+ }
+ }
+ return new IntegerPolynomial(intCoeffs);
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ModularResultant.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ModularResultant.java
new file mode 100644
index 00000000..7e8031fe
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ModularResultant.java
@@ -0,0 +1,46 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.math.BigInteger;
+
+import org.spongycastle.pqc.math.ntru.euclid.BigIntEuclidean;
+
+/**
+ * A resultant modulo a <code>BigInteger</code>
+ */
+public class ModularResultant
+ extends Resultant
+{
+ BigInteger modulus;
+
+ ModularResultant(BigIntPolynomial rho, BigInteger res, BigInteger modulus)
+ {
+ super(rho, res);
+ this.modulus = modulus;
+ }
+
+ /**
+ * Calculates a <code>rho</code> modulo <code>m1*m2</code> from
+ * two resultants whose <code>rho</code>s are modulo <code>m1</code> and <code>m2</code>.<br/>
+ * </code>res</code> is set to <code>null</code>.
+ *
+ * @param modRes1
+ * @param modRes2
+ * @return <code>rho</code> modulo <code>modRes1.modulus * modRes2.modulus</code>, and <code>null</code> for </code>res</code>.
+ */
+ static ModularResultant combineRho(ModularResultant modRes1, ModularResultant modRes2)
+ {
+ BigInteger mod1 = modRes1.modulus;
+ BigInteger mod2 = modRes2.modulus;
+ BigInteger prod = mod1.multiply(mod2);
+ BigIntEuclidean er = BigIntEuclidean.calculate(mod2, mod1);
+
+ BigIntPolynomial rho1 = (BigIntPolynomial)modRes1.rho.clone();
+ rho1.mult(er.x.multiply(mod2));
+ BigIntPolynomial rho2 = (BigIntPolynomial)modRes2.rho.clone();
+ rho2.mult(er.y.multiply(mod1));
+ rho1.add(rho2);
+ rho1.mod(prod);
+
+ return new ModularResultant(rho1, null, prod);
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Polynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Polynomial.java
new file mode 100644
index 00000000..1d1f1dfb
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Polynomial.java
@@ -0,0 +1,42 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+public interface Polynomial
+{
+
+ /**
+ * Multiplies the polynomial by an <code>IntegerPolynomial</code>,
+ * taking the indices mod <code>N</code>.
+ *
+ * @param poly2 a polynomial
+ * @return the product of the two polynomials
+ */
+ IntegerPolynomial mult(IntegerPolynomial poly2);
+
+ /**
+ * Multiplies the polynomial by an <code>IntegerPolynomial</code>,
+ * taking the coefficient values mod <code>modulus</code> and the indices mod <code>N</code>.
+ *
+ * @param poly2 a polynomial
+ * @param modulus a modulus to apply
+ * @return the product of the two polynomials
+ */
+ IntegerPolynomial mult(IntegerPolynomial poly2, int modulus);
+
+ /**
+ * Returns a polynomial that is equal to this polynomial (in the sense that {@link #mult(IntegerPolynomial, int)}
+ * returns equal <code>IntegerPolynomial</code>s). The new polynomial is guaranteed to be independent of the original.
+ *
+ * @return a new <code>IntegerPolynomial</code>.
+ */
+ IntegerPolynomial toIntegerPolynomial();
+
+ /**
+ * Multiplies the polynomial by a <code>BigIntPolynomial</code>, taking the indices mod N. Does not
+ * change this polynomial but returns the result as a new polynomial.<br>
+ * Both polynomials must have the same number of coefficients.
+ *
+ * @param poly2 the polynomial to multiply by
+ * @return a new polynomial
+ */
+ BigIntPolynomial mult(BigIntPolynomial poly2);
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ProductFormPolynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ProductFormPolynomial.java
new file mode 100644
index 00000000..e60ce8b8
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/ProductFormPolynomial.java
@@ -0,0 +1,153 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.io.ByteArrayInputStream;
+import java.io.IOException;
+import java.io.InputStream;
+import java.security.SecureRandom;
+
+import org.spongycastle.util.Arrays;
+
+/**
+ * A polynomial of the form <code>f1*f2+f3</code>, where
+ * <code>f1,f2,f3</code> are very sparsely populated ternary polynomials.
+ */
+public class ProductFormPolynomial
+ implements Polynomial
+{
+ private SparseTernaryPolynomial f1, f2, f3;
+
+ public ProductFormPolynomial(SparseTernaryPolynomial f1, SparseTernaryPolynomial f2, SparseTernaryPolynomial f3)
+ {
+ this.f1 = f1;
+ this.f2 = f2;
+ this.f3 = f3;
+ }
+
+ public static ProductFormPolynomial generateRandom(int N, int df1, int df2, int df3Ones, int df3NegOnes, SecureRandom random)
+ {
+ SparseTernaryPolynomial f1 = SparseTernaryPolynomial.generateRandom(N, df1, df1, random);
+ SparseTernaryPolynomial f2 = SparseTernaryPolynomial.generateRandom(N, df2, df2, random);
+ SparseTernaryPolynomial f3 = SparseTernaryPolynomial.generateRandom(N, df3Ones, df3NegOnes, random);
+ return new ProductFormPolynomial(f1, f2, f3);
+ }
+
+ public static ProductFormPolynomial fromBinary(byte[] data, int N, int df1, int df2, int df3Ones, int df3NegOnes)
+ throws IOException
+ {
+ return fromBinary(new ByteArrayInputStream(data), N, df1, df2, df3Ones, df3NegOnes);
+ }
+
+ public static ProductFormPolynomial fromBinary(InputStream is, int N, int df1, int df2, int df3Ones, int df3NegOnes)
+ throws IOException
+ {
+ SparseTernaryPolynomial f1;
+
+ f1 = SparseTernaryPolynomial.fromBinary(is, N, df1, df1);
+ SparseTernaryPolynomial f2 = SparseTernaryPolynomial.fromBinary(is, N, df2, df2);
+ SparseTernaryPolynomial f3 = SparseTernaryPolynomial.fromBinary(is, N, df3Ones, df3NegOnes);
+ return new ProductFormPolynomial(f1, f2, f3);
+ }
+
+ public byte[] toBinary()
+ {
+ byte[] f1Bin = f1.toBinary();
+ byte[] f2Bin = f2.toBinary();
+ byte[] f3Bin = f3.toBinary();
+
+ byte[] all = Arrays.copyOf(f1Bin, f1Bin.length + f2Bin.length + f3Bin.length);
+ System.arraycopy(f2Bin, 0, all, f1Bin.length, f2Bin.length);
+ System.arraycopy(f3Bin, 0, all, f1Bin.length + f2Bin.length, f3Bin.length);
+ return all;
+ }
+
+ public IntegerPolynomial mult(IntegerPolynomial b)
+ {
+ IntegerPolynomial c = f1.mult(b);
+ c = f2.mult(c);
+ c.add(f3.mult(b));
+ return c;
+ }
+
+ public BigIntPolynomial mult(BigIntPolynomial b)
+ {
+ BigIntPolynomial c = f1.mult(b);
+ c = f2.mult(c);
+ c.add(f3.mult(b));
+ return c;
+ }
+
+ public IntegerPolynomial toIntegerPolynomial()
+ {
+ IntegerPolynomial i = f1.mult(f2.toIntegerPolynomial());
+ i.add(f3.toIntegerPolynomial());
+ return i;
+ }
+
+ public IntegerPolynomial mult(IntegerPolynomial poly2, int modulus)
+ {
+ IntegerPolynomial c = mult(poly2);
+ c.mod(modulus);
+ return c;
+ }
+
+ public int hashCode()
+ {
+ final int prime = 31;
+ int result = 1;
+ result = prime * result + ((f1 == null) ? 0 : f1.hashCode());
+ result = prime * result + ((f2 == null) ? 0 : f2.hashCode());
+ result = prime * result + ((f3 == null) ? 0 : f3.hashCode());
+ return result;
+ }
+
+ public boolean equals(Object obj)
+ {
+ if (this == obj)
+ {
+ return true;
+ }
+ if (obj == null)
+ {
+ return false;
+ }
+ if (getClass() != obj.getClass())
+ {
+ return false;
+ }
+ ProductFormPolynomial other = (ProductFormPolynomial)obj;
+ if (f1 == null)
+ {
+ if (other.f1 != null)
+ {
+ return false;
+ }
+ }
+ else if (!f1.equals(other.f1))
+ {
+ return false;
+ }
+ if (f2 == null)
+ {
+ if (other.f2 != null)
+ {
+ return false;
+ }
+ }
+ else if (!f2.equals(other.f2))
+ {
+ return false;
+ }
+ if (f3 == null)
+ {
+ if (other.f3 != null)
+ {
+ return false;
+ }
+ }
+ else if (!f3.equals(other.f3))
+ {
+ return false;
+ }
+ return true;
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Resultant.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Resultant.java
new file mode 100644
index 00000000..8fa13328
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/Resultant.java
@@ -0,0 +1,28 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.math.BigInteger;
+
+/**
+ * Contains a resultant and a polynomial <code>rho</code> such that
+ * <code>res = rho*this + t*(x^n-1) for some integer t</code>.
+ *
+ * @see IntegerPolynomial#resultant()
+ * @see IntegerPolynomial#resultant(int)
+ */
+public class Resultant
+{
+ /**
+ * A polynomial such that <code>res = rho*this + t*(x^n-1) for some integer t</code>
+ */
+ public BigIntPolynomial rho;
+ /**
+ * Resultant of a polynomial with <code>x^n-1</code>
+ */
+ public BigInteger res;
+
+ Resultant(BigIntPolynomial rho, BigInteger res)
+ {
+ this.rho = rho;
+ this.res = res;
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/SparseTernaryPolynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/SparseTernaryPolynomial.java
new file mode 100644
index 00000000..2fbd70a4
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/SparseTernaryPolynomial.java
@@ -0,0 +1,320 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+import java.io.IOException;
+import java.io.InputStream;
+import java.math.BigInteger;
+import java.security.SecureRandom;
+
+import org.spongycastle.pqc.math.ntru.util.ArrayEncoder;
+import org.spongycastle.pqc.math.ntru.util.Util;
+import org.spongycastle.util.Arrays;
+
+/**
+ * A <code>TernaryPolynomial</code> with a "low" number of nonzero coefficients.
+ */
+public class SparseTernaryPolynomial
+ implements TernaryPolynomial
+{
+ /**
+ * Number of bits to use for each coefficient. Determines the upper bound for <code>N</code>.
+ */
+ private static final int BITS_PER_INDEX = 11;
+
+ private int N;
+ private int[] ones;
+ private int[] negOnes;
+
+ /**
+ * Constructs a new polynomial.
+ *
+ * @param N total number of coefficients including zeros
+ * @param ones indices of coefficients equal to 1
+ * @param negOnes indices of coefficients equal to -1
+ */
+ SparseTernaryPolynomial(int N, int[] ones, int[] negOnes)
+ {
+ this.N = N;
+ this.ones = ones;
+ this.negOnes = negOnes;
+ }
+
+ /**
+ * Constructs a <code>DenseTernaryPolynomial</code> from a <code>IntegerPolynomial</code>. The two polynomials are
+ * independent of each other.
+ *
+ * @param intPoly the original polynomial
+ */
+ public SparseTernaryPolynomial(IntegerPolynomial intPoly)
+ {
+ this(intPoly.coeffs);
+ }
+
+ /**
+ * Constructs a new <code>SparseTernaryPolynomial</code> with a given set of coefficients.
+ *
+ * @param coeffs the coefficients
+ */
+ public SparseTernaryPolynomial(int[] coeffs)
+ {
+ N = coeffs.length;
+ ones = new int[N];
+ negOnes = new int[N];
+ int onesIdx = 0;
+ int negOnesIdx = 0;
+ for (int i = 0; i < N; i++)
+ {
+ int c = coeffs[i];
+ switch (c)
+ {
+ case 1:
+ ones[onesIdx++] = i;
+ break;
+ case -1:
+ negOnes[negOnesIdx++] = i;
+ break;
+ case 0:
+ break;
+ default:
+ throw new IllegalArgumentException("Illegal value: " + c + ", must be one of {-1, 0, 1}");
+ }
+ }
+ ones = Arrays.copyOf(ones, onesIdx);
+ negOnes = Arrays.copyOf(negOnes, negOnesIdx);
+ }
+
+ /**
+ * Decodes a byte array encoded with {@link #toBinary()} to a ploynomial.
+ *
+ * @param is an input stream containing an encoded polynomial
+ * @param N number of coefficients including zeros
+ * @param numOnes number of coefficients equal to 1
+ * @param numNegOnes number of coefficients equal to -1
+ * @return the decoded polynomial
+ * @throws IOException
+ */
+ public static SparseTernaryPolynomial fromBinary(InputStream is, int N, int numOnes, int numNegOnes)
+ throws IOException
+ {
+ int maxIndex = 1 << BITS_PER_INDEX;
+ int bitsPerIndex = 32 - Integer.numberOfLeadingZeros(maxIndex - 1);
+
+ int data1Len = (numOnes * bitsPerIndex + 7) / 8;
+ byte[] data1 = Util.readFullLength(is, data1Len);
+ int[] ones = ArrayEncoder.decodeModQ(data1, numOnes, maxIndex);
+
+ int data2Len = (numNegOnes * bitsPerIndex + 7) / 8;
+ byte[] data2 = Util.readFullLength(is, data2Len);
+ int[] negOnes = ArrayEncoder.decodeModQ(data2, numNegOnes, maxIndex);
+
+ return new SparseTernaryPolynomial(N, ones, negOnes);
+ }
+
+ /**
+ * Generates a random polynomial with <code>numOnes</code> coefficients equal to 1,
+ * <code>numNegOnes</code> coefficients equal to -1, and the rest equal to 0.
+ *
+ * @param N number of coefficients
+ * @param numOnes number of 1's
+ * @param numNegOnes number of -1's
+ */
+ public static SparseTernaryPolynomial generateRandom(int N, int numOnes, int numNegOnes, SecureRandom random)
+ {
+ int[] coeffs = Util.generateRandomTernary(N, numOnes, numNegOnes, random);
+ return new SparseTernaryPolynomial(coeffs);
+ }
+
+ public IntegerPolynomial mult(IntegerPolynomial poly2)
+ {
+ int[] b = poly2.coeffs;
+ if (b.length != N)
+ {
+ throw new IllegalArgumentException("Number of coefficients must be the same");
+ }
+
+ int[] c = new int[N];
+ for (int idx = 0; idx != ones.length; idx++)
+ {
+ int i = ones[idx];
+ int j = N - 1 - i;
+ for (int k = N - 1; k >= 0; k--)
+ {
+ c[k] += b[j];
+ j--;
+ if (j < 0)
+ {
+ j = N - 1;
+ }
+ }
+ }
+
+ for (int idx = 0; idx != negOnes.length; idx++)
+ {
+ int i = negOnes[idx];
+ int j = N - 1 - i;
+ for (int k = N - 1; k >= 0; k--)
+ {
+ c[k] -= b[j];
+ j--;
+ if (j < 0)
+ {
+ j = N - 1;
+ }
+ }
+ }
+
+ return new IntegerPolynomial(c);
+ }
+
+ public IntegerPolynomial mult(IntegerPolynomial poly2, int modulus)
+ {
+ IntegerPolynomial c = mult(poly2);
+ c.mod(modulus);
+ return c;
+ }
+
+ public BigIntPolynomial mult(BigIntPolynomial poly2)
+ {
+ BigInteger[] b = poly2.coeffs;
+ if (b.length != N)
+ {
+ throw new IllegalArgumentException("Number of coefficients must be the same");
+ }
+
+ BigInteger[] c = new BigInteger[N];
+ for (int i = 0; i < N; i++)
+ {
+ c[i] = BigInteger.ZERO;
+ }
+
+ for (int idx = 0; idx != ones.length; idx++)
+ {
+ int i = ones[idx];
+ int j = N - 1 - i;
+ for (int k = N - 1; k >= 0; k--)
+ {
+ c[k] = c[k].add(b[j]);
+ j--;
+ if (j < 0)
+ {
+ j = N - 1;
+ }
+ }
+ }
+
+ for (int idx = 0; idx != negOnes.length; idx++)
+ {
+ int i = negOnes[idx];
+ int j = N - 1 - i;
+ for (int k = N - 1; k >= 0; k--)
+ {
+ c[k] = c[k].subtract(b[j]);
+ j--;
+ if (j < 0)
+ {
+ j = N - 1;
+ }
+ }
+ }
+
+ return new BigIntPolynomial(c);
+ }
+
+ public int[] getOnes()
+ {
+ return ones;
+ }
+
+ public int[] getNegOnes()
+ {
+ return negOnes;
+ }
+
+ /**
+ * Encodes the polynomial to a byte array writing <code>BITS_PER_INDEX</code> bits for each coefficient.
+ *
+ * @return the encoded polynomial
+ */
+ public byte[] toBinary()
+ {
+ int maxIndex = 1 << BITS_PER_INDEX;
+ byte[] bin1 = ArrayEncoder.encodeModQ(ones, maxIndex);
+ byte[] bin2 = ArrayEncoder.encodeModQ(negOnes, maxIndex);
+
+ byte[] bin = Arrays.copyOf(bin1, bin1.length + bin2.length);
+ System.arraycopy(bin2, 0, bin, bin1.length, bin2.length);
+ return bin;
+ }
+
+ public IntegerPolynomial toIntegerPolynomial()
+ {
+ int[] coeffs = new int[N];
+ for (int idx = 0; idx != ones.length; idx++)
+ {
+ int i = ones[idx];
+ coeffs[i] = 1;
+ }
+ for (int idx = 0; idx != negOnes.length; idx++)
+ {
+ int i = negOnes[idx];
+ coeffs[i] = -1;
+ }
+ return new IntegerPolynomial(coeffs);
+ }
+
+ public int size()
+ {
+ return N;
+ }
+
+ public void clear()
+ {
+ for (int i = 0; i < ones.length; i++)
+ {
+ ones[i] = 0;
+ }
+ for (int i = 0; i < negOnes.length; i++)
+ {
+ negOnes[i] = 0;
+ }
+ }
+
+ public int hashCode()
+ {
+ final int prime = 31;
+ int result = 1;
+ result = prime * result + N;
+ result = prime * result + Arrays.hashCode(negOnes);
+ result = prime * result + Arrays.hashCode(ones);
+ return result;
+ }
+
+ public boolean equals(Object obj)
+ {
+ if (this == obj)
+ {
+ return true;
+ }
+ if (obj == null)
+ {
+ return false;
+ }
+ if (getClass() != obj.getClass())
+ {
+ return false;
+ }
+ SparseTernaryPolynomial other = (SparseTernaryPolynomial)obj;
+ if (N != other.N)
+ {
+ return false;
+ }
+ if (!Arrays.areEqual(negOnes, other.negOnes))
+ {
+ return false;
+ }
+ if (!Arrays.areEqual(ones, other.ones))
+ {
+ return false;
+ }
+ return true;
+ }
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/TernaryPolynomial.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/TernaryPolynomial.java
new file mode 100644
index 00000000..6b9530b3
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/polynomial/TernaryPolynomial.java
@@ -0,0 +1,25 @@
+package org.spongycastle.pqc.math.ntru.polynomial;
+
+/**
+ * A polynomial whose coefficients are all equal to -1, 0, or 1
+ */
+public interface TernaryPolynomial
+ extends Polynomial
+{
+
+ /**
+ * Multiplies the polynomial by an <code>IntegerPolynomial</code>, taking the indices mod N
+ */
+ IntegerPolynomial mult(IntegerPolynomial poly2);
+
+ int[] getOnes();
+
+ int[] getNegOnes();
+
+ /**
+ * Returns the maximum number of coefficients the polynomial can have
+ */
+ int size();
+
+ void clear();
+}
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/util/ArrayEncoder.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/util/ArrayEncoder.java
new file mode 100644
index 00000000..c4888cfc
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/util/ArrayEncoder.java
@@ -0,0 +1,292 @@
+package org.spongycastle.pqc.math.ntru.util;
+
+import java.io.IOException;
+import java.io.InputStream;
+import java.math.BigInteger;
+
+import org.spongycastle.util.Arrays;
+
+/**
+ * Converts a coefficient array to a compact byte array and vice versa.
+ */
+public class ArrayEncoder
+{
+ /**
+ * Bit string to coefficient conversion table from P1363.1. Also found at
+ * {@link http://stackoverflow.com/questions/1562548/how-to-make-a-message-into-a-polynomial}
+ * <p/>
+ * Convert each three-bit quantity to two ternary coefficients as follows, and concatenate the resulting
+ * ternary quantities to obtain [the output].
+ * <p/>
+ * <code>
+ * {0, 0, 0} -> {0, 0}<br/>
+ * {0, 0, 1} -> {0, 1}<br/>
+ * {0, 1, 0} -> {0, -1}<br/>
+ * {0, 1, 1} -> {1, 0}<br/>
+ * {1, 0, 0} -> {1, 1}<br/>
+ * {1, 0, 1} -> {1, -1}<br/>
+ * {1, 1, 0} -> {-1, 0}<br/>
+ * {1, 1, 1} -> {-1, 1}<br/>
+ * </code>
+ */
+ private static final int[] COEFF1_TABLE = {0, 0, 0, 1, 1, 1, -1, -1};
+ private static final int[] COEFF2_TABLE = {0, 1, -1, 0, 1, -1, 0, 1};
+ /**
+ * Coefficient to bit string conversion table from P1363.1. Also found at
+ * {@link http://stackoverflow.com/questions/1562548/how-to-make-a-message-into-a-polynomial}
+ * <p/>
+ * Convert each set of two ternary coefficients to three bits as follows, and concatenate the resulting bit
+ * quantities to obtain [the output]:
+ * <p/>
+ * <code>
+ * {-1, -1} -> set "fail" to 1 and set bit string to {1, 1, 1}
+ * {-1, 0} -> {1, 1, 0}<br/>
+ * {-1, 1} -> {1, 1, 1}<br/>
+ * {0, -1} -> {0, 1, 0}<br/>
+ * {0, 0} -> {0, 0, 0}<br/>
+ * {0, 1} -> {0, 0, 1}<br/>
+ * {1, -1} -> {1, 0, 1}<br/>
+ * {1, 0} -> {0, 1, 1}<br/>
+ * {1, 1} -> {1, 0, 0}<br/>
+ * </code>
+ */
+ private static final int[] BIT1_TABLE = {1, 1, 1, 0, 0, 0, 1, 0, 1};
+ private static final int[] BIT2_TABLE = {1, 1, 1, 1, 0, 0, 0, 1, 0};
+ private static final int[] BIT3_TABLE = {1, 0, 1, 0, 0, 1, 1, 1, 0};
+
+ /**
+ * Encodes an int array whose elements are between 0 and <code>q</code>,
+ * to a byte array leaving no gaps between bits.<br>
+ * <code>q</code> must be a power of 2.
+ *
+ * @param a the input array
+ * @param q the modulus
+ * @return the encoded array
+ */
+ public static byte[] encodeModQ(int[] a, int q)
+ {
+ int bitsPerCoeff = 31 - Integer.numberOfLeadingZeros(q);
+ int numBits = a.length * bitsPerCoeff;
+ int numBytes = (numBits + 7) / 8;
+ byte[] data = new byte[numBytes];
+ int bitIndex = 0;
+ int byteIndex = 0;
+ for (int i = 0; i < a.length; i++)
+ {
+ for (int j = 0; j < bitsPerCoeff; j++)
+ {
+ int currentBit = (a[i] >> j) & 1;
+ data[byteIndex] |= currentBit << bitIndex;
+ if (bitIndex == 7)
+ {
+ bitIndex = 0;
+ byteIndex++;
+ }
+ else
+ {
+ bitIndex++;
+ }
+ }
+ }
+ return data;
+ }
+
+ /**
+ * Decodes a <code>byte</code> array encoded with {@link #encodeModQ(int[], int)} back to an <code>int</code> array.<br>
+ * <code>N</code> is the number of coefficients. <code>q</code> must be a power of <code>2</code>.<br>
+ * Ignores any excess bytes.
+ *
+ * @param data an encoded ternary polynomial
+ * @param N number of coefficients
+ * @param q
+ * @return an array containing <code>N</code> coefficients between <code>0</code> and <code>q-1</code>
+ */
+ public static int[] decodeModQ(byte[] data, int N, int q)
+ {
+ int[] coeffs = new int[N];
+ int bitsPerCoeff = 31 - Integer.numberOfLeadingZeros(q);
+ int numBits = N * bitsPerCoeff;
+ int coeffIndex = 0;
+ for (int bitIndex = 0; bitIndex < numBits; bitIndex++)
+ {
+ if (bitIndex > 0 && bitIndex % bitsPerCoeff == 0)
+ {
+ coeffIndex++;
+ }
+ int bit = getBit(data, bitIndex);
+ coeffs[coeffIndex] += bit << (bitIndex % bitsPerCoeff);
+ }
+ return coeffs;
+ }
+
+ /**
+ * Decodes data encoded with {@link #encodeModQ(int[], int)} back to an <code>int</code> array.<br>
+ * <code>N</code> is the number of coefficients. <code>q</code> must be a power of <code>2</code>.<br>
+ * Ignores any excess bytes.
+ *
+ * @param is an encoded ternary polynomial
+ * @param N number of coefficients
+ * @param q
+ * @return the decoded polynomial
+ */
+ public static int[] decodeModQ(InputStream is, int N, int q)
+ throws IOException
+ {
+ int qBits = 31 - Integer.numberOfLeadingZeros(q);
+ int size = (N * qBits + 7) / 8;
+ byte[] arr = Util.readFullLength(is, size);
+ return decodeModQ(arr, N, q);
+ }
+
+ /**
+ * Decodes a <code>byte</code> array encoded with {@link #encodeMod3Sves(int[])} back to an <code>int</code> array
+ * with <code>N</code> coefficients between <code>-1</code> and <code>1</code>.<br>
+ * Ignores any excess bytes.<br>
+ * See P1363.1 section 9.2.2.
+ *
+ * @param data an encoded ternary polynomial
+ * @param N number of coefficients
+ * @return the decoded coefficients
+ */
+ public static int[] decodeMod3Sves(byte[] data, int N)
+ {
+ int[] coeffs = new int[N];
+ int coeffIndex = 0;
+ for (int bitIndex = 0; bitIndex < data.length * 8; )
+ {
+ int bit1 = getBit(data, bitIndex++);
+ int bit2 = getBit(data, bitIndex++);
+ int bit3 = getBit(data, bitIndex++);
+ int coeffTableIndex = bit1 * 4 + bit2 * 2 + bit3;
+ coeffs[coeffIndex++] = COEFF1_TABLE[coeffTableIndex];
+ coeffs[coeffIndex++] = COEFF2_TABLE[coeffTableIndex];
+ // ignore bytes that can't fit
+ if (coeffIndex > N - 2)
+ {
+ break;
+ }
+ }
+ return coeffs;
+ }
+
+ /**
+ * Encodes an <code>int</code> array whose elements are between <code>-1</code> and <code>1</code>, to a byte array.
+ * <code>coeffs[2*i]</code> and <code>coeffs[2*i+1]</code> must not both equal -1 for any integer <code>i</code>,
+ * so this method is only safe to use with arrays produced by {@link #decodeMod3Sves(byte[], int)}.<br>
+ * See P1363.1 section 9.2.3.
+ *
+ * @param arr
+ * @return the encoded array
+ */
+ public static byte[] encodeMod3Sves(int[] arr)
+ {
+ int numBits = (arr.length * 3 + 1) / 2;
+ int numBytes = (numBits + 7) / 8;
+ byte[] data = new byte[numBytes];
+ int bitIndex = 0;
+ int byteIndex = 0;
+ for (int i = 0; i < arr.length / 2 * 2; )
+ { // if length is an odd number, throw away the highest coeff
+ int coeff1 = arr[i++] + 1;
+ int coeff2 = arr[i++] + 1;
+ if (coeff1 == 0 && coeff2 == 0)
+ {
+ throw new IllegalStateException("Illegal encoding!");
+ }
+ int bitTableIndex = coeff1 * 3 + coeff2;
+ int[] bits = new int[]{BIT1_TABLE[bitTableIndex], BIT2_TABLE[bitTableIndex], BIT3_TABLE[bitTableIndex]};
+ for (int j = 0; j < 3; j++)
+ {
+ data[byteIndex] |= bits[j] << bitIndex;
+ if (bitIndex == 7)
+ {
+ bitIndex = 0;
+ byteIndex++;
+ }
+ else
+ {
+ bitIndex++;
+ }
+ }
+ }
+ return data;
+ }
+
+ /**
+ * Encodes an <code>int</code> array whose elements are between <code>-1</code> and <code>1</code>, to a byte array.
+ *
+ * @return the encoded array
+ */
+ public static byte[] encodeMod3Tight(int[] intArray)
+ {
+ BigInteger sum = BigInteger.ZERO;
+ for (int i = intArray.length - 1; i >= 0; i--)
+ {
+ sum = sum.multiply(BigInteger.valueOf(3));
+ sum = sum.add(BigInteger.valueOf(intArray[i] + 1));
+ }
+
+ int size = (BigInteger.valueOf(3).pow(intArray.length).bitLength() + 7) / 8;
+ byte[] arr = sum.toByteArray();
+
+ if (arr.length < size)
+ {
+ // pad with leading zeros so arr.length==size
+ byte[] arr2 = new byte[size];
+ System.arraycopy(arr, 0, arr2, size - arr.length, arr.length);
+ return arr2;
+ }
+
+ if (arr.length > size)
+ // drop sign bit
+ {
+ arr = Arrays.copyOfRange(arr, 1, arr.length);
+ }
+ return arr;
+ }
+
+ /**
+ * Converts a byte array produced by {@link #encodeMod3Tight(int[])} back to an <code>int</code> array.
+ *
+ * @param b a byte array
+ * @param N number of coefficients
+ * @return the decoded array
+ */
+ public static int[] decodeMod3Tight(byte[] b, int N)
+ {
+ BigInteger sum = new BigInteger(1, b);
+ int[] coeffs = new int[N];
+ for (int i = 0; i < N; i++)
+ {
+ coeffs[i] = sum.mod(BigInteger.valueOf(3)).intValue() - 1;
+ if (coeffs[i] > 1)
+ {
+ coeffs[i] -= 3;
+ }
+ sum = sum.divide(BigInteger.valueOf(3));
+ }
+ return coeffs;
+ }
+
+ /**
+ * Converts data produced by {@link #encodeMod3Tight(int[])} back to an <code>int</code> array.
+ *
+ * @param is an input stream containing the data to decode
+ * @param N number of coefficients
+ * @return the decoded array
+ */
+ public static int[] decodeMod3Tight(InputStream is, int N)
+ throws IOException
+ {
+ int size = (int)Math.ceil(N * Math.log(3) / Math.log(2) / 8);
+ byte[] arr = Util.readFullLength(is, size);
+ return decodeMod3Tight(arr, N);
+ }
+
+ private static int getBit(byte[] arr, int bitIndex)
+ {
+ int byteIndex = bitIndex / 8;
+ int arrElem = arr[byteIndex] & 0xFF;
+ return (arrElem >> (bitIndex % 8)) & 1;
+ }
+} \ No newline at end of file
diff --git a/core/src/main/java/org/spongycastle/pqc/math/ntru/util/Util.java b/core/src/main/java/org/spongycastle/pqc/math/ntru/util/Util.java
new file mode 100644
index 00000000..b07e1cb8
--- /dev/null
+++ b/core/src/main/java/org/spongycastle/pqc/math/ntru/util/Util.java
@@ -0,0 +1,158 @@
+package org.spongycastle.pqc.math.ntru.util;
+
+import java.io.IOException;
+import java.io.InputStream;
+import java.security.SecureRandom;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.List;
+
+import org.spongycastle.pqc.math.ntru.euclid.IntEuclidean;
+import org.spongycastle.pqc.math.ntru.polynomial.DenseTernaryPolynomial;
+import org.spongycastle.pqc.math.ntru.polynomial.SparseTernaryPolynomial;
+import org.spongycastle.pqc.math.ntru.polynomial.TernaryPolynomial;
+import org.spongycastle.util.Integers;
+
+public class Util
+{
+ private static volatile boolean IS_64_BITNESS_KNOWN;
+ private static volatile boolean IS_64_BIT_JVM;
+
+ /**
+ * Calculates the inverse of n mod modulus
+ */
+ public static int invert(int n, int modulus)
+ {
+ n %= modulus;
+ if (n < 0)
+ {
+ n += modulus;
+ }
+ return IntEuclidean.calculate(n, modulus).x;
+ }
+
+ /**
+ * Calculates a^b mod modulus
+ */
+ public static int pow(int a, int b, int modulus)
+ {
+ int p = 1;
+ for (int i = 0; i < b; i++)
+ {
+ p = (p * a) % modulus;
+ }
+ return p;
+ }
+
+ /**
+ * Calculates a^b mod modulus
+ */
+ public static long pow(long a, int b, long modulus)
+ {
+ long p = 1;
+ for (int i = 0; i < b; i++)
+ {
+ p = (p * a) % modulus;
+ }
+ return p;
+ }
+
+ /**
+ * Generates a "sparse" or "dense" polynomial containing numOnes ints equal to 1,
+ * numNegOnes int equal to -1, and the rest equal to 0.
+ *
+ * @param N
+ * @param numOnes
+ * @param numNegOnes
+ * @param sparse whether to create a {@link SparseTernaryPolynomial} or {@link DenseTernaryPolynomial}
+ * @return a ternary polynomial
+ */
+ public static TernaryPolynomial generateRandomTernary(int N, int numOnes, int numNegOnes, boolean sparse, SecureRandom random)
+ {
+ if (sparse)
+ {
+ return SparseTernaryPolynomial.generateRandom(N, numOnes, numNegOnes, random);
+ }
+ else
+ {
+ return DenseTernaryPolynomial.generateRandom(N, numOnes, numNegOnes, random);
+ }
+ }
+
+ /**
+ * Generates an array containing numOnes ints equal to 1,
+ * numNegOnes int equal to -1, and the rest equal to 0.
+ *
+ * @param N
+ * @param numOnes
+ * @param numNegOnes
+ * @return an array of integers
+ */
+ public static int[] generateRandomTernary(int N, int numOnes, int numNegOnes, SecureRandom random)
+ {
+ Integer one = Integers.valueOf(1);
+ Integer minusOne = Integers.valueOf(-1);
+ Integer zero = Integers.valueOf(0);
+
+ List list = new ArrayList();
+ for (int i = 0; i < numOnes; i++)
+ {
+ list.add(one);
+ }
+ for (int i = 0; i < numNegOnes; i++)
+ {
+ list.add(minusOne);
+ }
+ while (list.size() < N)
+ {
+ list.add(zero);
+ }
+
+ Collections.shuffle(list, random);
+
+ int[] arr = new int[N];
+ for (int i = 0; i < N; i++)
+ {
+ arr[i] = ((Integer)list.get(i)).intValue();
+ }
+ return arr;
+ }
+
+ /**
+ * Takes an educated guess as to whether 64 bits are supported by the JVM.
+ *
+ * @return <code>true</code> if 64-bit support detected, <code>false</code> otherwise
+ */
+ public static boolean is64BitJVM()
+ {
+ if (!IS_64_BITNESS_KNOWN)
+ {
+ String arch = System.getProperty("os.arch");
+ String sunModel = System.getProperty("sun.arch.data.model");
+ IS_64_BIT_JVM = "amd64".equals(arch) || "x86_64".equals(arch) || "ppc64".equals(arch) || "64".equals(sunModel);
+ IS_64_BITNESS_KNOWN = true;
+ }
+ return IS_64_BIT_JVM;
+ }
+
+ /**
+ * Reads a given number of bytes from an <code>InputStream</code>.
+ * If there are not enough bytes in the stream, an <code>IOException</code>
+ * is thrown.
+ *
+ * @param is
+ * @param length
+ * @return an array of length <code>length</code>
+ * @throws IOException
+ */
+ public static byte[] readFullLength(InputStream is, int length)
+ throws IOException
+ {
+ byte[] arr = new byte[length];
+ if (is.read(arr) != arr.length)
+ {
+ throw new IOException("Not enough bytes to read.");
+ }
+ return arr;
+ }
+} \ No newline at end of file