Welcome to mirror list, hosted at ThFree Co, Russian Federation.

RC564Engine.java « engines « crypto « spongycastle « org « java « main « src « core - gitlab.com/quite/humla-spongycastle.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 06fcbf7c3278c0ae41e3f0037d1532e0be04e001 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
package org.spongycastle.crypto.engines;

import org.spongycastle.crypto.BlockCipher;
import org.spongycastle.crypto.CipherParameters;
import org.spongycastle.crypto.params.RC5Parameters;

/**
 * The specification for RC5 came from the <code>RC5 Encryption Algorithm</code>
 * publication in RSA CryptoBytes, Spring of 1995. 
 * <em>http://www.rsasecurity.com/rsalabs/cryptobytes</em>.
 * <p>
 * This implementation is set to work with a 64 bit word size.
 * <p>
 * Implementation courtesy of Tito Pena.
 */
public class RC564Engine
    implements BlockCipher
{
    private static final int wordSize = 64;
    private static final int bytesPerWord = wordSize / 8;

    /*
     * the number of rounds to perform
     */
    private int _noRounds;

    /*
     * the expanded key array of size 2*(rounds + 1)
     */
    private long _S[];

    /*
     * our "magic constants" for wordSize 62
     *
     * Pw = Odd((e-2) * 2^wordsize)
     * Qw = Odd((o-2) * 2^wordsize)
     *
     * where e is the base of natural logarithms (2.718281828...)
     * and o is the golden ratio (1.61803398...)
     */
    private static final long P64 = 0xb7e151628aed2a6bL;
    private static final long Q64 = 0x9e3779b97f4a7c15L;

    private boolean forEncryption;

    /**
     * Create an instance of the RC5 encryption algorithm
     * and set some defaults
     */
    public RC564Engine()
    {
        _noRounds     = 12;
        _S            = null;
    }

    public String getAlgorithmName()
    {
        return "RC5-64";
    }

    public int getBlockSize()
    {
        return 2 * bytesPerWord;
    }

    /**
     * initialise a RC5-64 cipher.
     *
     * @param forEncryption whether or not we are for encryption.
     * @param params the parameters required to set up the cipher.
     * @exception IllegalArgumentException if the params argument is
     * inappropriate.
     */
    public void init(
        boolean             forEncryption,
        CipherParameters    params)
    {
        if (!(params instanceof RC5Parameters))
        {
            throw new IllegalArgumentException("invalid parameter passed to RC564 init - " + params.getClass().getName());
        }

        RC5Parameters       p = (RC5Parameters)params;

        this.forEncryption = forEncryption;

        _noRounds     = p.getRounds();

        setKey(p.getKey());
    }

    public int processBlock(
        byte[]  in,
        int     inOff,
        byte[]  out,
        int     outOff)
    {
        return (forEncryption) ? encryptBlock(in, inOff, out, outOff) 
                                    : decryptBlock(in, inOff, out, outOff);
    }

    public void reset()
    {
    }

    /**
     * Re-key the cipher.
     * <p>
     * @param  key  the key to be used
     */
    private void setKey(
        byte[]      key)
    {
        //
        // KEY EXPANSION:
        //
        // There are 3 phases to the key expansion.
        //
        // Phase 1:
        //   Copy the secret key K[0...b-1] into an array L[0..c-1] of
        //   c = ceil(b/u), where u = wordSize/8 in little-endian order.
        //   In other words, we fill up L using u consecutive key bytes
        //   of K. Any unfilled byte positions in L are zeroed. In the
        //   case that b = c = 0, set c = 1 and L[0] = 0.
        //
        long[]   L = new long[(key.length + (bytesPerWord - 1)) / bytesPerWord];

        for (int i = 0; i != key.length; i++)
        {
            L[i / bytesPerWord] += (long)(key[i] & 0xff) << (8 * (i % bytesPerWord));
        }

        //
        // Phase 2:
        //   Initialize S to a particular fixed pseudo-random bit pattern
        //   using an arithmetic progression modulo 2^wordsize determined
        //   by the magic numbers, Pw & Qw.
        //
        _S            = new long[2*(_noRounds + 1)];

        _S[0] = P64;
        for (int i=1; i < _S.length; i++)
        {
            _S[i] = (_S[i-1] + Q64);
        }

        //
        // Phase 3:
        //   Mix in the user's secret key in 3 passes over the arrays S & L.
        //   The max of the arrays sizes is used as the loop control
        //
        int iter;

        if (L.length > _S.length)
        {
            iter = 3 * L.length;
        }
        else
        {
            iter = 3 * _S.length;
        }

        long A = 0, B = 0;
        int i = 0, j = 0;

        for (int k = 0; k < iter; k++)
        {
            A = _S[i] = rotateLeft(_S[i] + A + B, 3);
            B =  L[j] = rotateLeft(L[j] + A + B, A+B);
            i = (i+1) % _S.length;
            j = (j+1) %  L.length;
        }
    }

    /**
     * Encrypt the given block starting at the given offset and place
     * the result in the provided buffer starting at the given offset.
     * <p>
     * @param  in      in byte buffer containing data to encrypt
     * @param  inOff   offset into src buffer
     * @param  out     out buffer where encrypted data is written
     * @param  outOff  offset into out buffer
     */
    private int encryptBlock(
        byte[]  in,
        int     inOff,
        byte[]  out,
        int     outOff)
    {
        long A = bytesToWord(in, inOff) + _S[0];
        long B = bytesToWord(in, inOff + bytesPerWord) + _S[1];

        for (int i = 1; i <= _noRounds; i++)
        {
            A = rotateLeft(A ^ B, B) + _S[2*i];
            B = rotateLeft(B ^ A, A) + _S[2*i+1];
        }
        
        wordToBytes(A, out, outOff);
        wordToBytes(B, out, outOff + bytesPerWord);
        
        return 2 * bytesPerWord;
    }

    private int decryptBlock(
        byte[]  in,
        int     inOff,
        byte[]  out,
        int     outOff)
    {
        long A = bytesToWord(in, inOff);
        long B = bytesToWord(in, inOff + bytesPerWord);

        for (int i = _noRounds; i >= 1; i--)
        {
            B = rotateRight(B - _S[2*i+1], A) ^ A;
            A = rotateRight(A - _S[2*i],   B) ^ B;
        }
        
        wordToBytes(A - _S[0], out, outOff);
        wordToBytes(B - _S[1], out, outOff + bytesPerWord);
        
        return 2 * bytesPerWord;
    }

    
    //////////////////////////////////////////////////////////////
    //
    // PRIVATE Helper Methods
    //
    //////////////////////////////////////////////////////////////

    /**
     * Perform a left "spin" of the word. The rotation of the given
     * word <em>x</em> is rotated left by <em>y</em> bits.
     * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
     * are used to determine the rotation amount. Here it is 
     * assumed that the wordsize used is a power of 2.
     * <p>
     * @param  x  word to rotate
     * @param  y    number of bits to rotate % wordSize
     */
    private long rotateLeft(long x, long y)
    {
        return ((x << (y & (wordSize-1))) | (x >>> (wordSize - (y & (wordSize-1)))));
    }

    /**
     * Perform a right "spin" of the word. The rotation of the given
     * word <em>x</em> is rotated left by <em>y</em> bits.
     * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
     * are used to determine the rotation amount. Here it is 
     * assumed that the wordsize used is a power of 2.
     * <p>
     * @param  x  word to rotate
     * @param  y    number of bits to rotate % wordSize
     */
    private long rotateRight(long x, long y)
    {
        return ((x >>> (y & (wordSize-1))) | (x << (wordSize - (y & (wordSize-1)))));
    }

    private long bytesToWord(
        byte[]  src,
        int     srcOff)
    {
        long    word = 0;

        for (int i = bytesPerWord - 1; i >= 0; i--)
        {
            word = (word << 8) + (src[i + srcOff] & 0xff);
        }

        return word;
    }

    private void wordToBytes(
        long    word,
        byte[]  dst,
        int     dstOff)
    {
        for (int i = 0; i < bytesPerWord; i++)
        {
            dst[i + dstOff] = (byte)word;
            word >>>= 8;
        }
    }
}