Welcome to mirror list, hosted at ThFree Co, Russian Federation.

imp.rs « rgb2gray « src « tutorial - gitlab.freedesktop.org/gstreamer/gst-plugins-rs.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3f5e724dc3cdaa44142ea11efd7573eed61f9e3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
// Copyright (C) 2017,2018 Sebastian Dröge <sebastian@centricular.com>
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use gst::glib;
use gst::prelude::*;
use gst::subclass::prelude::*;
use gst::{gst_debug, gst_info};
use gst_base::subclass::prelude::*;

use std::i32;
use std::sync::Mutex;

use once_cell::sync::Lazy;

// This module contains the private implementation details of our element
//
static CAT: Lazy<gst::DebugCategory> = Lazy::new(|| {
    gst::DebugCategory::new(
        "rsrgb2gray",
        gst::DebugColorFlags::empty(),
        Some("Rust RGB-GRAY converter"),
    )
});

// Default values of properties
const DEFAULT_INVERT: bool = false;
const DEFAULT_SHIFT: u32 = 0;

// Property value storage
#[derive(Debug, Clone, Copy)]
struct Settings {
    invert: bool,
    shift: u32,
}

impl Default for Settings {
    fn default() -> Self {
        Settings {
            invert: DEFAULT_INVERT,
            shift: DEFAULT_SHIFT,
        }
    }
}

// Stream-specific state, i.e. video format configuration
struct State {
    in_info: gst_video::VideoInfo,
    out_info: gst_video::VideoInfo,
}

// Struct containing all the element data
#[derive(Default)]
pub struct Rgb2Gray {
    settings: Mutex<Settings>,
    state: Mutex<Option<State>>,
}

impl Rgb2Gray {
    // Converts one pixel of BGRx to a grayscale value, shifting and/or
    // inverting it as configured
    #[inline]
    fn bgrx_to_gray(in_p: &[u8], shift: u8, invert: bool) -> u8 {
        // See https://en.wikipedia.org/wiki/YUV#SDTV_with_BT.601
        const R_Y: u32 = 19595; // 0.299 * 65536
        const G_Y: u32 = 38470; // 0.587 * 65536
        const B_Y: u32 = 7471; // 0.114 * 65536

        assert_eq!(in_p.len(), 4);

        let b = u32::from(in_p[0]);
        let g = u32::from(in_p[1]);
        let r = u32::from(in_p[2]);

        let gray = ((r * R_Y) + (g * G_Y) + (b * B_Y)) / 65536;
        let gray = (gray as u8).wrapping_add(shift);

        if invert {
            255 - gray
        } else {
            gray
        }
    }
}

// This trait registers our type with the GObject object system and
// provides the entry points for creating a new instance and setting
// up the class data
#[glib::object_subclass]
impl ObjectSubclass for Rgb2Gray {
    const NAME: &'static str = "RsRgb2Gray";
    type Type = super::Rgb2Gray;
    type ParentType = gst_base::BaseTransform;
}

// Implementation of glib::Object virtual methods
impl ObjectImpl for Rgb2Gray {
    fn properties() -> &'static [glib::ParamSpec] {
        // Metadata for the properties
        static PROPERTIES: Lazy<Vec<glib::ParamSpec>> = Lazy::new(|| {
            vec![
                glib::ParamSpec::new_boolean(
                    "invert",
                    "Invert",
                    "Invert grayscale output",
                    DEFAULT_INVERT,
                    glib::ParamFlags::READWRITE | gst::PARAM_FLAG_MUTABLE_PLAYING,
                ),
                glib::ParamSpec::new_uint(
                    "shift",
                    "Shift",
                    "Shift grayscale output (wrapping around)",
                    0,
                    255,
                    DEFAULT_SHIFT,
                    glib::ParamFlags::READWRITE | gst::PARAM_FLAG_MUTABLE_PLAYING,
                ),
            ]
        });

        PROPERTIES.as_ref()
    }

    // Called whenever a value of a property is changed. It can be called
    // at any time from any thread.
    fn set_property(
        &self,
        obj: &Self::Type,
        _id: usize,
        value: &glib::Value,
        pspec: &glib::ParamSpec,
    ) {
        match pspec.name() {
            "invert" => {
                let mut settings = self.settings.lock().unwrap();
                let invert = value.get().expect("type checked upstream");
                gst_info!(
                    CAT,
                    obj: obj,
                    "Changing invert from {} to {}",
                    settings.invert,
                    invert
                );
                settings.invert = invert;
            }
            "shift" => {
                let mut settings = self.settings.lock().unwrap();
                let shift = value.get().expect("type checked upstream");
                gst_info!(
                    CAT,
                    obj: obj,
                    "Changing shift from {} to {}",
                    settings.shift,
                    shift
                );
                settings.shift = shift;
            }
            _ => unimplemented!(),
        }
    }

    // Called whenever a value of a property is read. It can be called
    // at any time from any thread.
    fn property(&self, _obj: &Self::Type, _id: usize, pspec: &glib::ParamSpec) -> glib::Value {
        match pspec.name() {
            "invert" => {
                let settings = self.settings.lock().unwrap();
                settings.invert.to_value()
            }
            "shift" => {
                let settings = self.settings.lock().unwrap();
                settings.shift.to_value()
            }
            _ => unimplemented!(),
        }
    }
}

// Implementation of gst::Element virtual methods
impl ElementImpl for Rgb2Gray {
    // Set the element specific metadata. This information is what
    // is visible from gst-inspect-1.0 and can also be programatically
    // retrieved from the gst::Registry after initial registration
    // without having to load the plugin in memory.
    fn metadata() -> Option<&'static gst::subclass::ElementMetadata> {
        static ELEMENT_METADATA: Lazy<gst::subclass::ElementMetadata> = Lazy::new(|| {
            gst::subclass::ElementMetadata::new(
                "RGB-GRAY Converter",
                "Filter/Effect/Converter/Video",
                "Converts RGB to GRAY or grayscale RGB",
                "Sebastian Dröge <sebastian@centricular.com>",
            )
        });

        Some(&*ELEMENT_METADATA)
    }

    // Create and add pad templates for our sink and source pad. These
    // are later used for actually creating the pads and beforehand
    // already provide information to GStreamer about all possible
    // pads that could exist for this type.
    //
    // Our element here can convert BGRx to BGRx or GRAY8, both being grayscale.
    fn pad_templates() -> &'static [gst::PadTemplate] {
        static PAD_TEMPLATES: Lazy<Vec<gst::PadTemplate>> = Lazy::new(|| {
            // On the src pad, we can produce BGRx and GRAY8 of any
            // width/height and with any framerate
            let caps = gst::Caps::new_simple(
                "video/x-raw",
                &[
                    (
                        "format",
                        &gst::List::new(&[
                            &gst_video::VideoFormat::Bgrx.to_str(),
                            &gst_video::VideoFormat::Gray8.to_str(),
                        ]),
                    ),
                    ("width", &gst::IntRange::<i32>::new(0, i32::MAX)),
                    ("height", &gst::IntRange::<i32>::new(0, i32::MAX)),
                    (
                        "framerate",
                        &gst::FractionRange::new(
                            gst::Fraction::new(0, 1),
                            gst::Fraction::new(i32::MAX, 1),
                        ),
                    ),
                ],
            );
            // The src pad template must be named "src" for basetransform
            // and specific a pad that is always there
            let src_pad_template = gst::PadTemplate::new(
                "src",
                gst::PadDirection::Src,
                gst::PadPresence::Always,
                &caps,
            )
            .unwrap();

            // On the sink pad, we can accept BGRx of any
            // width/height and with any framerate
            let caps = gst::Caps::new_simple(
                "video/x-raw",
                &[
                    ("format", &gst_video::VideoFormat::Bgrx.to_str()),
                    ("width", &gst::IntRange::<i32>::new(0, i32::MAX)),
                    ("height", &gst::IntRange::<i32>::new(0, i32::MAX)),
                    (
                        "framerate",
                        &gst::FractionRange::new(
                            gst::Fraction::new(0, 1),
                            gst::Fraction::new(i32::MAX, 1),
                        ),
                    ),
                ],
            );
            // The sink pad template must be named "sink" for basetransform
            // and specific a pad that is always there
            let sink_pad_template = gst::PadTemplate::new(
                "sink",
                gst::PadDirection::Sink,
                gst::PadPresence::Always,
                &caps,
            )
            .unwrap();

            vec![src_pad_template, sink_pad_template]
        });

        PAD_TEMPLATES.as_ref()
    }
}

// Implementation of gst_base::BaseTransform virtual methods
impl BaseTransformImpl for Rgb2Gray {
    // Configure basetransform so that we are never running in-place,
    // don't passthrough on same caps and also never call transform_ip
    // in passthrough mode (which does not matter for us here).
    //
    // We could work in-place for BGRx->BGRx but don't do here for simplicity
    // for now.
    const MODE: gst_base::subclass::BaseTransformMode =
        gst_base::subclass::BaseTransformMode::NeverInPlace;
    const PASSTHROUGH_ON_SAME_CAPS: bool = false;
    const TRANSFORM_IP_ON_PASSTHROUGH: bool = false;

    // Called for converting caps from one pad to another to account for any
    // changes in the media format this element is performing.
    //
    // In our case that means that:
    fn transform_caps(
        &self,
        element: &Self::Type,
        direction: gst::PadDirection,
        caps: &gst::Caps,
        filter: Option<&gst::Caps>,
    ) -> Option<gst::Caps> {
        let other_caps = if direction == gst::PadDirection::Src {
            // For src to sink, no matter if we get asked for BGRx or GRAY8 caps, we can only
            // accept corresponding BGRx caps on the sinkpad. We will only ever get BGRx and GRAY8
            // caps here as input.
            let mut caps = caps.clone();

            for s in caps.make_mut().iter_mut() {
                s.set("format", &gst_video::VideoFormat::Bgrx.to_str());
            }

            caps
        } else {
            // For the sink to src case, we will only get BGRx caps and for each of them we could
            // output the same caps or the same caps as GRAY8. We prefer GRAY8 (put it first), and
            // at a later point the caps negotiation mechanism of GStreamer will decide on which
            // one to actually produce.
            let mut gray_caps = gst::Caps::new_empty();

            {
                let gray_caps = gray_caps.get_mut().unwrap();

                for s in caps.iter() {
                    let mut s_gray = s.to_owned();
                    s_gray.set("format", &gst_video::VideoFormat::Gray8.to_str());
                    gray_caps.append_structure(s_gray);
                }
                gray_caps.append(caps.clone());
            }

            gray_caps
        };

        gst_debug!(
            CAT,
            obj: element,
            "Transformed caps from {} to {} in direction {:?}",
            caps,
            other_caps,
            direction
        );

        // In the end we need to filter the caps through an optional filter caps to get rid of any
        // unwanted caps.
        if let Some(filter) = filter {
            Some(filter.intersect_with_mode(&other_caps, gst::CapsIntersectMode::First))
        } else {
            Some(other_caps)
        }
    }

    // Returns the size of one processing unit (i.e. a frame in our case) corresponding
    // to the given caps. This is used for allocating a big enough output buffer and
    // sanity checking the input buffer size, among other things.
    fn unit_size(&self, _element: &Self::Type, caps: &gst::Caps) -> Option<usize> {
        gst_video::VideoInfo::from_caps(caps)
            .map(|info| info.size())
            .ok()
    }

    // Called whenever the input/output caps are changing, i.e. in the very beginning before data
    // flow happens and whenever the situation in the pipeline is changing. All buffers after this
    // call have the caps given here.
    //
    // We simply remember the resulting VideoInfo from the caps to be able to use this for knowing
    // the width, stride, etc when transforming buffers
    fn set_caps(
        &self,
        element: &Self::Type,
        incaps: &gst::Caps,
        outcaps: &gst::Caps,
    ) -> Result<(), gst::LoggableError> {
        let in_info = match gst_video::VideoInfo::from_caps(incaps) {
            Err(_) => return Err(gst::loggable_error!(CAT, "Failed to parse input caps")),
            Ok(info) => info,
        };
        let out_info = match gst_video::VideoInfo::from_caps(outcaps) {
            Err(_) => return Err(gst::loggable_error!(CAT, "Failed to parse output caps")),
            Ok(info) => info,
        };

        gst_debug!(
            CAT,
            obj: element,
            "Configured for caps {} to {}",
            incaps,
            outcaps
        );

        *self.state.lock().unwrap() = Some(State { in_info, out_info });

        Ok(())
    }

    // Called when shutting down the element so we can release all stream-related state
    // There's also start(), which is called whenever starting the element again
    fn stop(&self, element: &Self::Type) -> Result<(), gst::ErrorMessage> {
        // Drop state
        let _ = self.state.lock().unwrap().take();

        gst_info!(CAT, obj: element, "Stopped");

        Ok(())
    }

    // Does the actual transformation of the input buffer to the output buffer
    fn transform(
        &self,
        element: &Self::Type,
        inbuf: &gst::Buffer,
        outbuf: &mut gst::BufferRef,
    ) -> Result<gst::FlowSuccess, gst::FlowError> {
        // Keep a local copy of the values of all our properties at this very moment. This
        // ensures that the mutex is never locked for long and the application wouldn't
        // have to block until this function returns when getting/setting property values
        let settings = *self.settings.lock().unwrap();

        // Get a locked reference to our state, i.e. the input and output VideoInfo
        let mut state_guard = self.state.lock().unwrap();
        let state = state_guard.as_mut().ok_or_else(|| {
            gst::element_error!(element, gst::CoreError::Negotiation, ["Have no state yet"]);
            gst::FlowError::NotNegotiated
        })?;

        // Map the input buffer as a VideoFrameRef. This is similar to directly mapping
        // the buffer with inbuf.map_readable() but in addition extracts various video
        // specific metadata and sets up a convenient data structure that directly gives
        // pointers to the different planes and has all the information about the raw
        // video frame, like width, height, stride, video format, etc.
        //
        // This fails if the buffer can't be read or is invalid in relation to the video
        // info that is passed here
        let in_frame =
            gst_video::VideoFrameRef::from_buffer_ref_readable(inbuf.as_ref(), &state.in_info)
                .map_err(|_| {
                    gst::element_error!(
                        element,
                        gst::CoreError::Failed,
                        ["Failed to map input buffer readable"]
                    );
                    gst::FlowError::Error
                })?;

        // And now map the output buffer writable, so we can fill it.
        let mut out_frame =
            gst_video::VideoFrameRef::from_buffer_ref_writable(outbuf, &state.out_info).map_err(
                |_| {
                    gst::element_error!(
                        element,
                        gst::CoreError::Failed,
                        ["Failed to map output buffer writable"]
                    );
                    gst::FlowError::Error
                },
            )?;

        // Keep the various metadata we need for working with the video frames in
        // local variables. This saves some typing below.
        let width = in_frame.width() as usize;
        let in_stride = in_frame.plane_stride()[0] as usize;
        let in_data = in_frame.plane_data(0).unwrap();
        let out_stride = out_frame.plane_stride()[0] as usize;
        let out_format = out_frame.format();
        let out_data = out_frame.plane_data_mut(0).unwrap();

        // First check the output format. Our input format is always BGRx but the output might
        // be BGRx or GRAY8. Based on what it is we need to do processing slightly differently.
        if out_format == gst_video::VideoFormat::Bgrx {
            // Some assertions about our assumptions how the data looks like. This is only there
            // to give some further information to the compiler, in case these can be used for
            // better optimizations of the resulting code.
            //
            // If any of the assertions were not true, the code below would fail cleanly.
            assert_eq!(in_data.len() % 4, 0);
            assert_eq!(out_data.len() % 4, 0);
            assert_eq!(out_data.len() / out_stride, in_data.len() / in_stride);

            let in_line_bytes = width * 4;
            let out_line_bytes = width * 4;

            assert!(in_line_bytes <= in_stride);
            assert!(out_line_bytes <= out_stride);

            // Iterate over each line of the input and output frame, mutable for the output frame.
            // Each input line has in_stride bytes, each output line out_stride. We use the
            // chunks_exact/chunks_exact_mut iterators here for getting a chunks of that many bytes per
            // iteration and zip them together to have access to both at the same time.
            for (in_line, out_line) in in_data
                .chunks_exact(in_stride)
                .zip(out_data.chunks_exact_mut(out_stride))
            {
                // Next iterate the same way over each actual pixel in each line. Every pixel is 4
                // bytes in the input and output, so we again use the chunks_exact/chunks_exact_mut iterators
                // to give us each pixel individually and zip them together.
                //
                // Note that we take a sub-slice of the whole lines: each line can contain an
                // arbitrary amount of padding at the end (e.g. for alignment purposes) and we
                // don't want to process that padding.
                for (in_p, out_p) in in_line[..in_line_bytes]
                    .chunks_exact(4)
                    .zip(out_line[..out_line_bytes].chunks_exact_mut(4))
                {
                    assert_eq!(out_p.len(), 4);

                    // Use our above-defined function to convert a BGRx pixel with the settings to
                    // a grayscale value. Then store the same value in the red/green/blue component
                    // of the pixel.
                    let gray = Rgb2Gray::bgrx_to_gray(in_p, settings.shift as u8, settings.invert);
                    out_p[0] = gray;
                    out_p[1] = gray;
                    out_p[2] = gray;
                }
            }
        } else if out_format == gst_video::VideoFormat::Gray8 {
            assert_eq!(in_data.len() % 4, 0);
            assert_eq!(out_data.len() / out_stride, in_data.len() / in_stride);

            let in_line_bytes = width * 4;
            let out_line_bytes = width;

            assert!(in_line_bytes <= in_stride);
            assert!(out_line_bytes <= out_stride);

            // Iterate over each line of the input and output frame, mutable for the output frame.
            // Each input line has in_stride bytes, each output line out_stride. We use the
            // chunks_exact/chunks_exact_mut iterators here for getting a chunks of that many bytes per
            // iteration and zip them together to have access to both at the same time.
            for (in_line, out_line) in in_data
                .chunks_exact(in_stride)
                .zip(out_data.chunks_exact_mut(out_stride))
            {
                // Next iterate the same way over each actual pixel in each line. Every pixel is 4
                // bytes in the input and 1 byte in the output, so we again use the
                // chunks_exact/chunks_exact_mut iterators to give us each pixel individually and zip them
                // together.
                //
                // Note that we take a sub-slice of the whole lines: each line can contain an
                // arbitrary amount of padding at the end (e.g. for alignment purposes) and we
                // don't want to process that padding.
                for (in_p, out_p) in in_line[..in_line_bytes]
                    .chunks_exact(4)
                    .zip(out_line[..out_line_bytes].iter_mut())
                {
                    // Use our above-defined function to convert a BGRx pixel with the settings to
                    // a grayscale value. Then store the value in the grayscale output directly.
                    let gray = Rgb2Gray::bgrx_to_gray(in_p, settings.shift as u8, settings.invert);
                    *out_p = gray;
                }
            }
        } else {
            unimplemented!();
        }

        Ok(gst::FlowSuccess::Ok)
    }
}