Welcome to mirror list, hosted at ThFree Co, Russian Federation.

neural_pitch_update.py « neural-pitch « torch « dnn - gitlab.xiph.org/xiph/opus.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a72abee685c073ff27e1470310b2994ce26944eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
parser = argparse.ArgumentParser()

parser.add_argument('features', type=str, help='Features generated from dump_data')
parser.add_argument('data', type=str, help='Data generated from dump_data (offset by 5ms)')
parser.add_argument('output', type=str, help='output .f32 feature file with replaced neural pitch')
parser.add_argument('checkpoint', type=str, help='model checkpoint file')
parser.add_argument('path_lpcnet_extractor', type=str, help='path to LPCNet extractor object file (generated on compilation)')
parser.add_argument('--device', type=str, help='compute device',default = None,required = False)
parser.add_argument('--replace_xcorr', type = bool, default = False, help='Replace LPCNet xcorr with updated one')

args = parser.parse_args()

import os

from utils import stft, random_filter
import subprocess
import numpy as np
import json
import torch
import tqdm


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device is not None:
    device = torch.device(args.device)

# Loading the appropriate model
checkpoint = torch.load(args.checkpoint, map_location='cpu')
dict_params = checkpoint['config']

if dict_params['data_format'] == 'if':
    from models import large_if_ccode as model
    pitch_nn = model(dict_params['freq_keep']*3,dict_params['gru_dim'],dict_params['output_dim'])
elif dict_params['data_format'] == 'xcorr':
    from models import large_xcorr as model
    pitch_nn = model(dict_params['xcorr_dim'],dict_params['gru_dim'],dict_params['output_dim'])
else:
    from models import large_joint as model
    pitch_nn = model(dict_params['freq_keep']*3,dict_params['xcorr_dim'],dict_params['gru_dim'],dict_params['output_dim'])

pitch_nn.load_state_dict(checkpoint['state_dict'])
pitch_nn = pitch_nn.to(device)

N = dict_params['window_size']
H = dict_params['hop_factor']
freq_keep = dict_params['freq_keep']

# import os
# import argparse



# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["OMP_NUM_THREADS"] = "16"

# parser = argparse.ArgumentParser()

# parser.add_argument('features', type=str, help='input features')
# parser.add_argument('data', type=str, help='input data')
# parser.add_argument('output', type=str, help='output features')
# parser.add_argument('--add-confidence', action='store_true', help='add CREPE confidence to features')
# parser.add_argument('--viterbi', action='store_true', help='enable viterbi algo for pitch tracking')


def run_lpc(signal, lpcs, frame_length=160):
    num_frames, lpc_order = lpcs.shape

    prediction = np.concatenate(
        [- np.convolve(signal[i * frame_length : (i + 1) * frame_length + lpc_order - 1], lpcs[i], mode='valid') for i in range(num_frames)]
    )
    error = signal[lpc_order :] - prediction

    return prediction, error


if __name__ == "__main__":
    args = parser.parse_args()

    features = np.memmap(args.features, dtype=np.float32,mode = 'r').reshape((-1, 36))
    data     = np.memmap(args.data, dtype=np.int16,mode = 'r').reshape((-1, 2))

    num_frames = features.shape[0]
    feature_dim = features.shape[1]

    assert feature_dim == 36

    # if args.add_confidence:
        # feature_dim += 1

    output  = np.memmap(args.output, dtype=np.float32, shape=(num_frames, feature_dim), mode='w+')
    output[:, :36] = features

    # lpc coefficients and signal
    lpcs = features[:, 20:36]
    sig = data[:, 1]

    # parameters
    # use_viterbi=args.viterbi

    # constants
    pitch_min = 32
    pitch_max = 256
    lpc_order = 16
    fs = 16000
    frame_length = 160
    overlap_frames = 100
    chunk_size = 10000
    history_length = frame_length * overlap_frames
    history = np.zeros(history_length, dtype=np.int16)
    pitch_position=18
    xcorr_position=19
    conf_position=36

    num_frames = len(sig) // 160 - 1

    frame_start = 0
    frame_stop = min(frame_start + chunk_size, num_frames)
    signal_start = 0
    signal_stop = frame_stop * frame_length

    niters = (num_frames - 1)//chunk_size
    for i in tqdm.trange(niters):
        if (frame_start > num_frames - 1):
            break
        chunk = np.concatenate((history, sig[signal_start:signal_stop]))
        chunk_la = np.concatenate((history, sig[signal_start:signal_stop + 80]))
        # time, frequency, confidence, _ = crepe.predict(chunk, fs, center=True, viterbi=True,verbose=0)

        # Feature computation
        spec = stft(x = np.concatenate([np.zeros(80),chunk_la/(2**15 - 1)]), w = 'boxcar', N = N, H = H).T
        phase_diff = spec*np.conj(np.roll(spec,1,axis = -1))
        phase_diff = phase_diff/(np.abs(phase_diff) + 1.0e-8)
        idx_save = np.concatenate([np.arange(freq_keep),(N//2 + 1) + np.arange(freq_keep),2*(N//2 + 1) + np.arange(freq_keep)])
        feature = np.concatenate([np.log(np.abs(spec) + 1.0e-8),np.real(phase_diff),np.imag(phase_diff)],axis = 0).T
        feature_if = feature[:,idx_save]

        data_temp = np.memmap('./temp_featcompute_' + dict_params['data_format'] + '_.raw', dtype=np.int16, shape=(chunk.shape[0]), mode='w+')
        data_temp[:chunk.shape[0]] = chunk_la[80:].astype(np.int16)

        subprocess.run([args.path_lpcnet_extractor, './temp_featcompute_' + dict_params['data_format'] + '_.raw', './temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw'])
        feature_xcorr = np.flip(np.fromfile('./temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw', dtype='float32').reshape((-1,256),order = 'C'),axis = 1)
        ones_zero_lag = np.expand_dims(np.ones(feature_xcorr.shape[0]),-1)
        feature_xcorr = np.concatenate([ones_zero_lag,feature_xcorr],axis = -1)

        os.remove('./temp_featcompute_' + dict_params['data_format'] + '_.raw')
        os.remove('./temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw')

        if dict_params['data_format'] == 'if':
            feature = feature_if
        elif dict_params['data_format'] == 'xcorr':
            feature = feature_xcorr
        else:
            indmin = min(feature_if.shape[0],feature_xcorr.shape[0])
            feature = np.concatenate([feature_xcorr[:indmin,:],feature_if[:indmin,:]],-1)

        # Compute pitch with my model
        model_cents = pitch_nn(torch.from_numpy(np.copy(np.expand_dims(feature,0))).float().to(device))
        model_cents = 20*model_cents.argmax(dim=1).cpu().detach().squeeze().numpy()
        frequency = 62.5*2**(model_cents/1200)

        frequency  = frequency[overlap_frames : overlap_frames + frame_stop - frame_start]
        # confidence = confidence[overlap_frames : overlap_frames + frame_stop - frame_start]

        # convert frequencies to periods
        periods    = np.round(fs / frequency)

        # adjust to pitch range
        # confidence[periods < pitch_min] = 0
        # confidence[periods > pitch_max] = 0
        periods = np.clip(periods, pitch_min, pitch_max)

        output[frame_start:frame_stop, pitch_position] = (periods - 100) / 50

        # if args.replace_xcorr:
            # re-calculate xcorr
        frame_offset = (pitch_max + frame_length - 1) // frame_length
        offset = frame_offset * frame_length
        padding = lpc_order


        if frame_start < frame_offset:
            lpc_coeffs = np.concatenate((np.zeros((frame_offset - frame_start, lpc_order), dtype=np.float32), lpcs[:frame_stop]))
        else:
            lpc_coeffs = lpcs[frame_start - frame_offset : frame_stop]

        pred, error = run_lpc(chunk[history_length - offset - padding :], lpc_coeffs, frame_length=frame_length)

        xcorr = np.zeros(frame_stop - frame_start)
        for i, p in enumerate(periods.astype(np.int16)):
            if p > 0:
                f1 = error[offset + i * frame_length : offset + (i + 1) * frame_length]
                f2 = error[offset + i * frame_length - p : offset + (i + 1) * frame_length - p]
                xcorr[i] = np.dot(f1, f2) / np.sqrt(np.dot(f1, f1) * np.dot(f2, f2) + 1e-6)

        output[frame_start:frame_stop, xcorr_position] = xcorr - 0.5

        # update buffers and indices
        history = chunk[-history_length :]

        frame_start += chunk_size
        frame_stop += chunk_size
        frame_stop = min(frame_stop, num_frames)

        signal_start = frame_start * frame_length
        signal_stop  = frame_stop  * frame_length