Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lavoce_400_ar.py « models « osce « torch « dnn - gitlab.xiph.org/xiph/opus.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4bbb6a171572fb5d6b2c359eb9b8b76c07532f11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
/* Copyright (c) 2023 Amazon
   Written by Jan Buethe */
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""


import torch
from torch import nn
import torch.nn.functional as F

import numpy as np

from utils.layers.limited_adaptive_comb1d import LimitedAdaptiveComb1d
from utils.layers.limited_adaptive_conv1d import LimitedAdaptiveConv1d
from utils.layers.ar_filter import ARFilter
from utils.layers.td_shaper import TDShaper
from utils.layers.noise_shaper import NoiseShaper
from utils.complexity import _conv1d_flop_count
from utils.endoscopy import write_data

from models.nns_base import NNSBase
from models.lpcnet_feature_net import LPCNetFeatureNet
from .scale_embedding import ScaleEmbedding

class LaVoce400AR(nn.Module):
    """ Linear-Adaptive VOCodEr """
    FEATURE_FRAME_SIZE=160
    FRAME_SIZE=40

    def __init__(self,
                 num_features=20,
                 pitch_embedding_dim=64,
                 cond_dim=256,
                 pitch_max=300,
                 kernel_size=15,
                 preemph=0.85,
                 comb_gain_limit_db=-6,
                 global_gain_limits_db=[-6, 6],
                 conv_gain_limits_db=[-6, 6],
                 norm_p=2,
                 avg_pool_k=4,
                 pulses=False):

        super().__init__()


        self.num_features           = num_features
        self.cond_dim               = cond_dim
        self.pitch_max              = pitch_max
        self.pitch_embedding_dim    = pitch_embedding_dim
        self.kernel_size            = kernel_size
        self.preemph                = preemph
        self.pulses                 = pulses

        assert self.FEATURE_FRAME_SIZE % self.FRAME_SIZE == 0
        self.upsamp_factor =  self.FEATURE_FRAME_SIZE // self.FRAME_SIZE

        # pitch embedding
        self.pitch_embedding = nn.Embedding(pitch_max + 1, pitch_embedding_dim)

        # feature net
        self.feature_net = LPCNetFeatureNet(num_features + pitch_embedding_dim, cond_dim, self.upsamp_factor)

        # noise shaper
        self.noise_shaper = NoiseShaper(cond_dim, self.FRAME_SIZE)

        # comb filters
        left_pad = self.kernel_size // 2
        right_pad = self.kernel_size - 1 - left_pad
        self.cf1 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=20, use_bias=False, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)
        self.cf2 = LimitedAdaptiveComb1d(self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=20, use_bias=False, padding=[left_pad, right_pad], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, global_gain_limits_db=global_gain_limits_db, norm_p=norm_p)

        self.cf_ar = ARFilter(5, cond_dim, frame_size=self.FRAME_SIZE, overlap_size=20, padding=[2, 2], max_lag=pitch_max + 1, gain_limit_db=comb_gain_limit_db, norm_p=norm_p)

        self.af_prescale = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
        self.af_mix = LimitedAdaptiveConv1d(3, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)

        # spectral shaping
        self.af1 = LimitedAdaptiveConv1d(1, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)

        # non-linear transforms
        self.tdshape1 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k, innovate=True)
        self.tdshape2 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k)
        self.tdshape3 = TDShaper(cond_dim, frame_size=self.FRAME_SIZE, avg_pool_k=avg_pool_k)

        # combinators
        self.af2 = LimitedAdaptiveConv1d(2, 2, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
        self.af3 = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)
        self.af4 = LimitedAdaptiveConv1d(2, 1, self.kernel_size, cond_dim, frame_size=self.FRAME_SIZE, use_bias=False, padding=[self.kernel_size - 1, 0], gain_limits_db=conv_gain_limits_db, norm_p=norm_p)

        # feature transforms
        self.post_cf1 = nn.Conv1d(cond_dim, cond_dim, 2)
        self.post_cf2 = nn.Conv1d(cond_dim, cond_dim, 2)
        self.post_af1 = nn.Conv1d(cond_dim, cond_dim, 2)
        self.post_af2 = nn.Conv1d(cond_dim, cond_dim, 2)
        self.post_af3 = nn.Conv1d(cond_dim, cond_dim, 2)


    def create_phase_signals(self, periods):

        batch_size = periods.size(0)
        progression = torch.arange(1, self.FRAME_SIZE + 1, dtype=periods.dtype, device=periods.device).view((1, -1))
        progression = torch.repeat_interleave(progression, batch_size, 0)

        phase0 = torch.zeros(batch_size, dtype=periods.dtype, device=periods.device).unsqueeze(-1)
        chunks = []
        for sframe in range(periods.size(1)):
            f = (2.0 * torch.pi / periods[:, sframe]).unsqueeze(-1)

            if self.pulses:
                alpha = torch.cos(f).view(batch_size, 1, 1)
                chunk_sin = torch.sin(f  * progression + phase0).view(batch_size, 1, self.FRAME_SIZE)
                pulse_a = torch.relu(chunk_sin - alpha) / (1 - alpha)
                pulse_b = torch.relu(-chunk_sin - alpha) / (1 - alpha)

                chunk = torch.cat((pulse_a, pulse_b), dim = 1)
            else:
                chunk_sin = torch.sin(f  * progression + phase0).view(batch_size, 1, self.FRAME_SIZE)
                chunk_cos = torch.cos(f  * progression + phase0).view(batch_size, 1, self.FRAME_SIZE)

                chunk = torch.cat((chunk_sin, chunk_cos), dim = 1)

            phase0 = phase0 + self.FRAME_SIZE * f

            chunks.append(chunk)

        phase_signals = torch.cat(chunks, dim=-1)

        return phase_signals

    def flop_count(self, rate=16000, verbose=False):

        frame_rate = rate / self.FRAME_SIZE

        # feature net
        feature_net_flops = self.feature_net.flop_count(frame_rate)
        comb_flops = self.cf1.flop_count(rate) + self.cf2.flop_count(rate)
        af_flops = self.af1.flop_count(rate) + self.af2.flop_count(rate) + self.af3.flop_count(rate) + self.af4.flop_count(rate) + self.af_mix.flop_count(rate)
        feature_flops = (_conv1d_flop_count(self.post_cf1, frame_rate) + _conv1d_flop_count(self.post_cf2, frame_rate)
                         + _conv1d_flop_count(self.post_af1, frame_rate) + _conv1d_flop_count(self.post_af2, frame_rate) + _conv1d_flop_count(self.post_af3, frame_rate))

        if verbose:
            print(f"feature net: {feature_net_flops / 1e6} MFLOPS")
            print(f"comb filters: {comb_flops / 1e6} MFLOPS")
            print(f"adaptive conv: {af_flops / 1e6} MFLOPS")
            print(f"feature transforms: {feature_flops / 1e6} MFLOPS")

        return feature_net_flops + comb_flops + af_flops + feature_flops

    def feature_transform(self, f, layer):
        f = f.permute(0, 2, 1)
        f = F.pad(f, [1, 0])
        f = torch.tanh(layer(f))
        return f.permute(0, 2, 1)

    def forward(self, features, periods, signal=None, debug=False):

        periods         = periods.squeeze(-1)
        pitch_embedding = self.pitch_embedding(periods)

        if signal is not None:
            nb_pre_frames = signal.size(-1) // self.FRAME_SIZE
            if len(signal.shape) < 3:
                signal = signal.unsqueeze(1)
        else:
            nb_pre_frames = 0

        full_features = torch.cat((features, pitch_embedding), dim=-1)
        cf = self.feature_net(full_features)
        cf1 = self.feature_transform(cf, self.post_af2)
        cf2= self.feature_transform(cf1, self.post_af3)
        cf3 = self.feature_transform(cf2, self.post_cf1)
        cf4 = self.feature_transform(cf3, self.post_cf2)
        cf5 = self.feature_transform(cf4, self.post_af1)


        # upsample periods
        periods = torch.repeat_interleave(periods, self.upsamp_factor, 1)
        periods_ar = torch.where(periods > 42, periods, 2*periods)

        num_frames = periods.size(1)

        # pre-net
        ref_phase = torch.tanh(self.create_phase_signals(periods))
        x = self.af_prescale(ref_phase, cf)
        noise = self.noise_shaper(cf)
        prior = torch.cat((x, noise), dim=1)

        # states
        state_cf_ar = None
        state_af_mix = None
        state_tdshape1 = None
        state_tdshape2 = None
        state_cf1 = None
        state_cf2 = None
        state_af1 = None
        state_af2 = None
        state_af3 = None
        state_tdshape3 = None
        state_af4 = None
        last_frame = torch.zeros((features.size(0), 1, self.FRAME_SIZE), device=features.device)

        frames = []

        for i in range(num_frames):
            y, state_cf_ar = self.cf_ar(last_frame, cf[:, i:i+1], periods_ar[:, i:i+1], state=state_cf_ar, return_state=True)
            y = torch.cat((y, prior[..., i * self.FRAME_SIZE : (i+1) * self.FRAME_SIZE]), dim=1)
            y, state_af_mix = self.af_mix(y, cf[:, i:i+1], state=state_af_mix, return_state=True)

            # temporal shaping + innovating
            y1 = y[:, 0:1, :]
            y2, state_tdshape1 = self.tdshape1(y[:, 1:2, :], cf[:, i:i+1], state=state_tdshape1, return_state=True)
            y = torch.cat((y1, y2), dim=1)
            y, state_af2 = self.af2(y, cf[:, i:i+1], state=state_af2, return_state=True, debug=debug)

            # second temporal shaping
            y1 = y[:, 0:1, :]
            y2, state_tdshape2 = self.tdshape2(y[:, 1:2, :], cf1[:, i:i+1], state=state_tdshape2, return_state=True)
            y = torch.cat((y1, y2), dim=1)
            y, state_af3 = self.af3(y, cf1[:, i:i+1], state=state_af3, return_state=True, debug=debug)

            # spectral shaping
            y, state_cf1 = self.cf1(y, cf2[:, i:i+1], periods[:, i:i+1], state=state_cf1, return_state=True, debug=debug)
            y, state_cf2 = self.cf2(y, cf3[:, i:i+1], periods[:, i:i+1], state=state_cf2, return_state=True, debug=debug)
            y, state_af1 = self.af1(y, cf4[:, i:i+1], state=state_af1, return_state=True, debug=debug)

            # final temporal env adjustment
            y1 = y[:, 0:1, :]
            y2, state_tdshape3 = self.tdshape3(y[:, 1:2, :], cf5[:, i:i+1], state=state_tdshape3, return_state=True)
            y = torch.cat((y1, y2), dim=1)
            y, state_af4 = self.af4(y, cf5[:, i:i+1], state=state_af4, return_state=True, debug=debug)

            if i < nb_pre_frames:
                y = signal[:, :, i * self.FRAME_SIZE : (i + 1) * self.FRAME_SIZE]

            last_frame = y
            frames.append(y)

        return torch.cat(frames, dim=-1)

    def process(self, features, periods, debug=False):

        self.eval()
        device = next(iter(self.parameters())).device
        with torch.no_grad():

            # run model
            f = features.unsqueeze(0).to(device)
            p = periods.unsqueeze(0).to(device)

            y = self.forward(f, p, debug=debug).squeeze()

            # deemphasis
            if self.preemph > 0:
                for i in range(len(y) - 1):
                    y[i + 1] += self.preemph * y[i]

            # clip to valid range
            out = torch.clip((2**15) * y, -2**15, 2**15 - 1).short()

        return out