Welcome to mirror list, hosted at ThFree Co, Russian Federation.

NSQ_del_dec_avx2.c « x86 « silk - gitlab.xiph.org/xiph/opus.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b8beff97445897c905080863388614fb8465bdfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
/***********************************************************************
Copyright (c) 2021 Google Inc.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef OPUS_CHECK_ASM
#include <string.h>
#endif

#include "opus_defines.h"
#include <immintrin.h>

#include "main.h"
#include "stack_alloc.h"
#include "NSQ.h"
#include "celt/x86/x86cpu.h"

/* Returns TRUE if all assumptions met */
static OPUS_INLINE int verify_assumptions(const silk_encoder_state *psEncC)
{
    /* This optimization is based on these assumptions        */
    /* These assumptions are fundamental and hence assert are */
    /* used. Should any assert triggers, we have to re-visit  */
    /* all related code to make sure it still functions the   */
    /* same as the C implementation.                          */
    silk_assert(MAX_DEL_DEC_STATES  <= 4      &&
                MAX_FRAME_LENGTH     % 4 == 0 &&
                MAX_SUB_FRAME_LENGTH % 4 == 0 &&
                LTP_MEM_LENGTH_MS    % 4 == 0 );
    silk_assert(psEncC->fs_kHz ==  8 ||
                psEncC->fs_kHz == 12 ||
                psEncC->fs_kHz == 16 );
    silk_assert(psEncC->nb_subfr <= MAX_NB_SUBFR &&
                psEncC->nb_subfr > 0             );
    silk_assert(psEncC->nStatesDelayedDecision <= MAX_DEL_DEC_STATES &&
                psEncC->nStatesDelayedDecision > 0                   );
    silk_assert(psEncC->ltp_mem_length == psEncC->fs_kHz * LTP_MEM_LENGTH_MS);

    /* Regressions were observed on certain AMD Zen CPUs when      */
    /* nStatesDelayedDecision is 1 or 2. Ideally we should detect  */
    /* these CPUs and enable this optimization on others; however, */
    /* there is no good way to do so under current OPUS framework. */
    return psEncC->nStatesDelayedDecision == 3 ||
           psEncC->nStatesDelayedDecision == 4;
}

/* Intrinsics not defined on MSVC */
#ifdef _MSC_VER
#include <Intsafe.h>
#define __m128i_u __m128i
static inline int __builtin_sadd_overflow(opus_int32 a, opus_int32 b, opus_int32* res)
{
    *res = a+b;
    return (*res ^ a) & (*res ^ b) & 0x80000000;
}
static inline int __builtin_ctz(unsigned int x)
{
    DWORD res = 0;
    return _BitScanForward(&res, x) ? res : 32;
}
#endif

/*
 * GCC implemented _mm_loadu_si32() since GCC 11; HOWEVER, there is a bug!
 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99754
 */
#if !OPUS_GNUC_PREREQ(11,3) && !(defined(__clang__) && (__clang_major__ >= 8))
#define _mm_loadu_si32 WORKAROUND_mm_loadu_si32
static inline __m128i WORKAROUND_mm_loadu_si32(void const* mem_addr)
{
  return _mm_cvtsi32_si128(OP_LOADU_EPI32(mem_addr));
}
#endif

static OPUS_INLINE __m128i silk_cvtepi64_epi32_high(__m256i num)
{
    return _mm256_castsi256_si128(_mm256_permutevar8x32_epi32(num, _mm256_set_epi32(0, 0, 0, 0, 7, 5, 3, 1)));
}

static OPUS_INLINE opus_int16 silk_sat16(opus_int32 num)
{
    num = num > silk_int16_MAX ? silk_int16_MAX : num;
    num = num < silk_int16_MIN ? silk_int16_MIN : num;
    return num;
}

static OPUS_INLINE opus_int32 silk_sar_round_32(opus_int32 a, int bits)
{
    silk_assert(bits > 0 && bits < 31);
    a += 1 << (bits-1);
    return a >> bits;
}

static OPUS_INLINE opus_int64 silk_sar_round_smulww(opus_int32 a, opus_int32 b, int bits)
{
    silk_assert(bits > 0 && bits < 63);
#ifdef OPUS_CHECK_ASM
    return silk_RSHIFT_ROUND(silk_SMULWW(a, b), bits);
#else
    /* This code is more correct, but it won't overflow like the C code in some rare cases. */
    silk_assert(bits > 0 && bits < 63);
    opus_int64 t = ((opus_int64)a) * ((opus_int64)b);
    bits += 16;
    t += 1ull << (bits-1);
    return t >> bits;
#endif
}

static OPUS_INLINE opus_int32 silk_add_sat32(opus_int32 a, opus_int32 b)
{
    opus_int32 sum;
    if (__builtin_sadd_overflow(a, b, &sum))
    {
        return a >= 0 ? silk_int32_MAX : silk_int32_MIN;
    }
    return sum;
}

static OPUS_INLINE __m128i silk_mm_srai_round_epi32(__m128i a, int bits)
{
    silk_assert(bits > 0 && bits < 31);
    return _mm_srai_epi32(_mm_add_epi32(a, _mm_set1_epi32(1 << (bits - 1))), bits);
}

/* add/subtract with output saturated */
static OPUS_INLINE __m128i silk_mm_add_sat_epi32(__m128i a, __m128i b)
{
    __m128i r = _mm_add_epi32(a, b);
    __m128i OF = _mm_and_si128(_mm_xor_si128(a, r), _mm_xor_si128(b, r));           /* OF = (sum ^ a) & (sum ^ b)   */
    __m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF */
    return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
}
static OPUS_INLINE __m128i silk_mm_sub_sat_epi32(__m128i a, __m128i b)
{
    __m128i r = _mm_sub_epi32(a, b);
    __m128i OF = _mm_andnot_si128(_mm_xor_si128(b, r), _mm_xor_si128(a, r));        /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
    __m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF                         */
    return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
}
static OPUS_INLINE __m256i silk_mm256_sub_sat_epi32(__m256i a, __m256i b)
{
    __m256i r = _mm256_sub_epi32(a, b);
    __m256i OF = _mm256_andnot_si256(_mm256_xor_si256(b, r), _mm256_xor_si256(a, r));        /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
    __m256i SAT = _mm256_add_epi32(_mm256_srli_epi32(a, 31), _mm256_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF                         */
    return _mm256_blendv_epi8(r, SAT, _mm256_srai_epi32(OF, 31));
}

static OPUS_INLINE __m128i silk_mm_limit_epi32(__m128i num, opus_int32 limit1, opus_int32 limit2)
{
    opus_int32 lo = limit1 < limit2 ? limit1 : limit2;
    opus_int32 hi = limit1 > limit2 ? limit1 : limit2;

    num = _mm_min_epi32(num, _mm_set1_epi32(hi));
    num = _mm_max_epi32(num, _mm_set1_epi32(lo));
    return num;
}

/* cond < 0 ? -num : num */
static OPUS_INLINE __m128i silk_mm_sign_epi32(__m128i num, __m128i cond)
{
    return _mm_sign_epi32(num, _mm_or_si128(cond, _mm_set1_epi32(1)));
}
static OPUS_INLINE __m256i silk_mm256_sign_epi32(__m256i num, __m256i cond)
{
    return _mm256_sign_epi32(num, _mm256_or_si256(cond, _mm256_set1_epi32(1)));
}

/* (a32 * b32) >> 16 */
static OPUS_INLINE __m128i silk_mm_smulww_epi32(__m128i a, opus_int32 b)
{
    return silk_cvtepi64_epi32_high(_mm256_slli_epi64(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32(b)), 16));
}

/* (a32 * (opus_int32)((opus_int16)(b32))) >> 16 output have to be 32bit int */
static OPUS_INLINE __m128i silk_mm_smulwb_epi32(__m128i a, opus_int32 b)
{
    return silk_cvtepi64_epi32_high(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32(silk_LSHIFT(b, 16))));
}

/* (opus_int32)((opus_int16)(a3))) * (opus_int32)((opus_int16)(b32)) output have to be 32bit int */
static OPUS_INLINE __m256i silk_mm256_smulbb_epi32(__m256i a, __m256i b)
{
    const char FF = (char)0xFF;
    __m256i msk = _mm256_set_epi8(
        FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0,
        FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0);
    __m256i lo = _mm256_mullo_epi16(a, b);
    __m256i hi = _mm256_mulhi_epi16(a, b);
    lo = _mm256_shuffle_epi8(lo, msk);
    hi = _mm256_shuffle_epi8(hi, msk);
    return _mm256_unpacklo_epi16(lo, hi);
}

static OPUS_INLINE __m256i silk_mm256_reverse_epi32(__m256i v)
{
    v = _mm256_shuffle_epi32(v, 0x1B);
    v = _mm256_permute4x64_epi64(v, 0x4E);
    return v;
}

static OPUS_INLINE opus_int32 silk_mm256_hsum_epi32(__m256i v)
{
    __m128i sum = _mm_add_epi32(_mm256_extracti128_si256(v, 1), _mm256_extracti128_si256(v, 0));
    sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E));
    sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1));
    return _mm_cvtsi128_si32(sum);
}

static OPUS_INLINE __m128i silk_mm_hmin_epi32(__m128i num)
{
    num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2301 */
    num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
    return num;
}

static OPUS_INLINE __m128i silk_mm_hmax_epi32(__m128i num)
{
    num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2310 */
    num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
    return num;
}

static OPUS_INLINE __m128i silk_mm_mask_hmin_epi32(__m128i num, __m128i mask)
{
    num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MAX), mask);
    return silk_mm_hmin_epi32(num);
}

static OPUS_INLINE __m128i silk_mm_mask_hmax_epi32(__m128i num, __m128i mask)
{
    num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MIN), mask);
    return silk_mm_hmax_epi32(num);
}

static OPUS_INLINE __m128i silk_mm256_rand_epi32(__m128i seed)
{
    seed = _mm_mullo_epi32(seed, _mm_set1_epi32(RAND_MULTIPLIER));
    seed = _mm_add_epi32(seed, _mm_set1_epi32(RAND_INCREMENT));
    return seed;
}

static OPUS_INLINE opus_int32 silk_index_of_first_equal_epi32(__m128i a, __m128i b)
{
    unsigned int mask = _mm_movemask_epi8(_mm_cmpeq_epi32(a, b)) & 0x1111;
    silk_assert(mask != 0);
    return __builtin_ctz(mask) >> 2;
}

static __m128i silk_index_to_selector(opus_int32 index)
{
    silk_assert(index < 4);
    index <<= 2;
    return _mm_set_epi8(
        index + 3, index + 2, index + 1, index + 0,
        index + 3, index + 2, index + 1, index + 0,
        index + 3, index + 2, index + 1, index + 0,
        index + 3, index + 2, index + 1, index + 0);
}

static opus_int32 silk_select_winner(__m128i num, __m128i selector)
{
    return _mm_cvtsi128_si32(_mm_shuffle_epi8(num, selector));
}

typedef struct
{
    __m128i RandState;
    __m128i Q_Q10;
    __m128i Xq_Q14;
    __m128i Pred_Q15;
    __m128i Shape_Q14;
} NSQ_del_dec_sample_struct;

typedef struct
{
    __m128i sLPC_Q14[MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH];
    __m128i LF_AR_Q14;
    __m128i Seed;
    __m128i SeedInit;
    __m128i RD_Q10;
    __m128i Diff_Q14;
    __m128i sAR2_Q14[MAX_SHAPE_LPC_ORDER];
    NSQ_del_dec_sample_struct Samples[DECISION_DELAY];
} NSQ_del_dec_struct;

static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
    const silk_encoder_state *psEncC,          /* I    Encoder State                   */
    silk_nsq_state *NSQ,                       /* I/O  NSQ state                       */
    NSQ_del_dec_struct *psDelDec,              /* I/O  Delayed decision states         */
    const opus_int16 x16[],                    /* I    Input                           */
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O    Input scaled with 1/Gain in Q10 */
    const opus_int16 sLTP[],                   /* I    Re-whitened LTP state in Q0     */
    opus_int32 sLTP_Q15[],                     /* O    LTP state matching scaled input */
    opus_int subfr,                            /* I    Subframe number                 */
    const opus_int LTP_scale_Q14,              /* I    LTP state scaling               */
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],  /* I                                    */
    const opus_int pitchL[MAX_NB_SUBFR],       /* I    Pitch lag                       */
    const opus_int signal_type,                /* I    Signal type                     */
    const opus_int decisionDelay               /* I    Decision delay                  */
);

/*******************************************/
/* LPC analysis filter                     */
/* NB! State is kept internally and the    */
/* filter always starts with zero state    */
/* first d output samples are set to zero  */
/*******************************************/
static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
    opus_int16                  *out,               /* O    Output signal                           */
    const opus_int16            *in,                /* I    Input signal                            */
    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order] */
    const opus_int32            len,                /* I    Signal length                           */
    const opus_int32            order               /* I    Filter order                            */
);

/******************************************/
/* Noise shape quantizer for one subframe */
/******************************************/
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
    silk_nsq_state *NSQ,                        /* I/O  NSQ state                          */
    NSQ_del_dec_struct psDelDec[],              /* I/O  Delayed decision states            */
    opus_int signalType,                        /* I    Signal type                        */
    const opus_int32 x_Q10[],                   /* I                                       */
    opus_int8 pulses[],                         /* O                                       */
    opus_int16 xq[],                            /* O                                       */
    opus_int32 sLTP_Q15[],                      /* I/O  LTP filter state                   */
    opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O  Gain delay buffer                  */
    const opus_int16 a_Q12[],                   /* I    Short term prediction coefs        */
    const opus_int16 b_Q14[],                   /* I    Long term prediction coefs         */
    const opus_int16 AR_shp_Q13[],              /* I    Noise shaping coefs                */
    opus_int lag,                               /* I    Pitch lag                          */
    opus_int32 HarmShapeFIRPacked_Q14,          /* I                                       */
    opus_int Tilt_Q14,                          /* I    Spectral tilt                      */
    opus_int32 LF_shp_Q14,                      /* I                                       */
    opus_int32 Gain_Q16,                        /* I                                       */
    opus_int Lambda_Q10,                        /* I                                       */
    opus_int offset_Q10,                        /* I                                       */
    opus_int length,                            /* I    Input length                       */
    opus_int subfr,                             /* I    Subframe number                    */
    opus_int shapingLPCOrder,                   /* I    Shaping LPC filter order           */
    opus_int predictLPCOrder,                   /* I    Prediction filter order            */
    opus_int warping_Q16,                       /* I                                       */
    __m128i MaskDelDec,                         /* I    Mask of states in decision tree    */
    opus_int *smpl_buf_idx,                     /* I/O  Index to newest samples in buffers */
    opus_int decisionDelay                      /* I                                       */
);

void silk_NSQ_del_dec_avx2(
    const silk_encoder_state *psEncC,                            /* I    Encoder State               */
    silk_nsq_state *NSQ,                                         /* I/O  NSQ state                   */
    SideInfoIndices *psIndices,                                  /* I/O  Quantization Indices        */
    const opus_int16 x16[],                                      /* I    Input                       */
    opus_int8 pulses[],                                          /* O    Quantized pulse signal      */
    const opus_int16 *PredCoef_Q12,                              /* I    Short term prediction coefs */
    const opus_int16 LTPCoef_Q14[LTP_ORDER * MAX_NB_SUBFR],      /* I    Long term prediction coefs  */
    const opus_int16 AR_Q13[MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER], /* I    Noise shaping coefs         */
    const opus_int HarmShapeGain_Q14[MAX_NB_SUBFR],              /* I    Long term shaping coefs     */
    const opus_int Tilt_Q14[MAX_NB_SUBFR],                       /* I    Spectral tilt               */
    const opus_int32 LF_shp_Q14[MAX_NB_SUBFR],                   /* I    Low frequency shaping coefs */
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],                    /* I    Quantization step sizes     */
    const opus_int32 pitchL[MAX_NB_SUBFR],                       /* I    Pitch lags                  */
    const opus_int Lambda_Q10,                                   /* I    Rate/distortion tradeoff    */
    const opus_int LTP_scale_Q14                                 /* I    LTP state scaling           */
)
{
#ifdef OPUS_CHECK_ASM
    silk_nsq_state NSQ_c;
    SideInfoIndices psIndices_c;
    opus_int8 pulses_c[MAX_FRAME_LENGTH];
    const opus_int8 *const pulses_a = pulses;

    silk_memcpy(&NSQ_c, NSQ, sizeof(NSQ_c));
    silk_memcpy(&psIndices_c, psIndices, sizeof(psIndices_c));
    silk_memcpy(pulses_c, pulses, sizeof(pulses_c));
    silk_NSQ_del_dec_c(psEncC, &NSQ_c, &psIndices_c, x16, pulses_c, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16,
                       pitchL, Lambda_Q10, LTP_scale_Q14);
#endif

    if (!verify_assumptions(psEncC))
    {
        silk_NSQ_del_dec_c(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14);
        return;
    }

    opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
    opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
    const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
    opus_int16 *pxq;
    VARDECL(opus_int32, sLTP_Q15);
    VARDECL(opus_int16, sLTP);
    opus_int32 HarmShapeFIRPacked_Q14;
    opus_int offset_Q10;
    opus_int32 Gain_Q10;
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH];
    opus_int32 delayedGain_Q10[DECISION_DELAY];
    NSQ_del_dec_struct psDelDec = {0};
    NSQ_del_dec_sample_struct *psSample;
    __m128i RDmin_Q10, MaskDelDec, Winner_selector;
    SAVE_STACK;

    MaskDelDec = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFFFFF00ul << ((psEncC->nStatesDelayedDecision - 1) << 3)));

    /* Set unvoiced lag to the previous one, overwrite later for voiced */
    lag = NSQ->lagPrev;

    silk_assert(NSQ->prev_gain_Q16 != 0);
    psDelDec.Seed = _mm_and_si128(
        _mm_add_epi32(_mm_set_epi32(3, 2, 1, 0), _mm_set1_epi32(psIndices->Seed)),
        _mm_set1_epi32(3));
    psDelDec.SeedInit = psDelDec.Seed;
    psDelDec.RD_Q10 = _mm_setzero_si128();
    psDelDec.LF_AR_Q14 = _mm_set1_epi32(NSQ->sLF_AR_shp_Q14);
    psDelDec.Diff_Q14 = _mm_set1_epi32(NSQ->sDiff_shp_Q14);
    psDelDec.Samples[0].Shape_Q14 = _mm_set1_epi32(NSQ->sLTP_shp_Q14[psEncC->ltp_mem_length - 1]);
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
    {
        psDelDec.sLPC_Q14[i] = _mm_set1_epi32(NSQ->sLPC_Q14[i]);
    }
    for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
    {
        psDelDec.sAR2_Q14[i] = _mm_set1_epi32(NSQ->sAR2_Q14[i]);
    }

    offset_Q10 = silk_Quantization_Offsets_Q10[psIndices->signalType >> 1][psIndices->quantOffsetType];
    smpl_buf_idx = 0; /* index of oldest samples */

    decisionDelay = silk_min_int(DECISION_DELAY, psEncC->subfr_length);

    /* For voiced frames limit the decision delay to lower than the pitch lag */
    if (psIndices->signalType == TYPE_VOICED)
    {
        for (k = 0; k < psEncC->nb_subfr; k++)
        {
            decisionDelay = silk_min_int(decisionDelay, pitchL[k] - LTP_ORDER / 2 - 1);
        }
    }
    else
    {
        if (lag > 0)
        {
            decisionDelay = silk_min_int(decisionDelay, lag - LTP_ORDER / 2 - 1);
        }
    }

    if (psIndices->NLSFInterpCoef_Q2 == 4)
    {
        LSF_interpolation_flag = 0;
    }
    else
    {
        LSF_interpolation_flag = 1;
    }

    ALLOC(sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32);
    ALLOC(sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16);
    /* Set up pointers to start of sub frame */
    pxq = &NSQ->xq[psEncC->ltp_mem_length];
    NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
    NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
    subfr = 0;
    for (k = 0; k < psEncC->nb_subfr; k++)
    {
        A_Q12 = &PredCoef_Q12[((k >> 1) | (1 ^ LSF_interpolation_flag)) * MAX_LPC_ORDER];
        B_Q14 = &LTPCoef_Q14[k * LTP_ORDER];
        AR_shp_Q13 = &AR_Q13[k * MAX_SHAPE_LPC_ORDER];

        /* Noise shape parameters */
        silk_assert(HarmShapeGain_Q14[k] >= 0);
        HarmShapeFIRPacked_Q14  =                          silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
        HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );

        NSQ->rewhite_flag = 0;
        if (psIndices->signalType == TYPE_VOICED)
        {
            /* Voiced */
            lag = pitchL[k];

            /* Re-whitening */
            if ((k & (3 ^ (LSF_interpolation_flag << 1))) == 0)
            {
                if (k == 2)
                {
                    /* RESET DELAYED DECISIONS */
                    /* Find winner */
                    RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
                    Winner_ind = silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10);
                    Winner_selector = silk_index_to_selector(Winner_ind);
                    psDelDec.RD_Q10 = _mm_add_epi32(
                        psDelDec.RD_Q10,
                        _mm_blendv_epi8(
                            _mm_set1_epi32(silk_int32_MAX >> 4),
                            _mm_setzero_si128(),
                            _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(Winner_ind << 3)))));

                    /* Copy final part of signals from winner state to output and long-term filter states */
                    last_smple_idx = smpl_buf_idx + decisionDelay;
                    for (i = 0; i < decisionDelay; i++)
                    {
                        last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
                        psSample = &psDelDec.Samples[last_smple_idx];
                        pulses[i - decisionDelay] =
                            (opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
                        pxq[i - decisionDelay] =
                            silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gains_Q16[1], 14));
                        NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
                            silk_select_winner(psSample->Shape_Q14, Winner_selector);
                    }

                    subfr = 0;
                }

                /* Rewhiten with new A coefs */
                start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
                silk_assert(start_idx > 0);

                silk_LPC_analysis_filter_avx2(&sLTP[start_idx], &NSQ->xq[start_idx + k * psEncC->subfr_length],
                                              A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder);

                NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
                NSQ->rewhite_flag = 1;
            }
        }

        silk_nsq_del_dec_scale_states_avx2(psEncC, NSQ, &psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k,
                                           LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay);

        silk_noise_shape_quantizer_del_dec_avx2(NSQ, &psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
                                                delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[k], LF_shp_Q14[k],
                                                Gains_Q16[k], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
                                                psEncC->predictLPCOrder, psEncC->warping_Q16, MaskDelDec, &smpl_buf_idx, decisionDelay);

        x16 += psEncC->subfr_length;
        pulses += psEncC->subfr_length;
        pxq += psEncC->subfr_length;
    }

    /* Find winner */
    RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
    Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10));

    /* Copy final part of signals from winner state to output and long-term filter states */
    psIndices->Seed = silk_select_winner(psDelDec.SeedInit, Winner_selector);
    last_smple_idx = smpl_buf_idx + decisionDelay;
    Gain_Q10 = Gains_Q16[psEncC->nb_subfr - 1] >> 6;
    for (i = 0; i < decisionDelay; i++)
    {
        last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
        psSample = &psDelDec.Samples[last_smple_idx];

        pulses[i - decisionDelay] =
            (opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
        pxq[i - decisionDelay] =
            silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gain_Q10, 8));
        NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
            silk_select_winner(psSample->Shape_Q14, Winner_selector);
    }
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
    {
        NSQ->sLPC_Q14[i] = silk_select_winner(psDelDec.sLPC_Q14[i], Winner_selector);
    }
    for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
    {
        NSQ->sAR2_Q14[i] = silk_select_winner(psDelDec.sAR2_Q14[i], Winner_selector);
    }

    /* Update states */
    NSQ->sLF_AR_shp_Q14 = silk_select_winner(psDelDec.LF_AR_Q14, Winner_selector);
    NSQ->sDiff_shp_Q14 = silk_select_winner(psDelDec.Diff_Q14, Winner_selector);
    NSQ->lagPrev = pitchL[psEncC->nb_subfr - 1];

    /* Save quantized speech signal */
    silk_memmove(NSQ->xq, &NSQ->xq[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int16));
    silk_memmove(NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int32));

#ifdef OPUS_CHECK_ASM
    silk_assert(!memcmp(&NSQ_c, NSQ, sizeof(NSQ_c)));
    silk_assert(!memcmp(&psIndices_c, psIndices, sizeof(psIndices_c)));
    silk_assert(!memcmp(pulses_c, pulses_a, sizeof(pulses_c)));
#endif

    RESTORE_STACK;
}

static OPUS_INLINE __m128i silk_noise_shape_quantizer_short_prediction_x4(const __m128i *buf32, const opus_int16 *coef16, opus_int order)
{
    __m256i out;
    silk_assert(order == 10 || order == 16);

    /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
    out = _mm256_set1_epi32(order >> 1);
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-0]), _mm256_set1_epi32(silk_LSHIFT(coef16[0], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-1]), _mm256_set1_epi32(silk_LSHIFT(coef16[1], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-2]), _mm256_set1_epi32(silk_LSHIFT(coef16[2], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-3]), _mm256_set1_epi32(silk_LSHIFT(coef16[3], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-4]), _mm256_set1_epi32(silk_LSHIFT(coef16[4], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-5]), _mm256_set1_epi32(silk_LSHIFT(coef16[5], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-6]), _mm256_set1_epi32(silk_LSHIFT(coef16[6], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-7]), _mm256_set1_epi32(silk_LSHIFT(coef16[7], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-8]), _mm256_set1_epi32(silk_LSHIFT(coef16[8], 16)))); /* High DWORD */
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-9]), _mm256_set1_epi32(silk_LSHIFT(coef16[9], 16)))); /* High DWORD */

    if (order == 16)
    {
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-10]), _mm256_set1_epi32(silk_LSHIFT(coef16[10], 16)))); /* High DWORD */
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-11]), _mm256_set1_epi32(silk_LSHIFT(coef16[11], 16)))); /* High DWORD */
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-12]), _mm256_set1_epi32(silk_LSHIFT(coef16[12], 16)))); /* High DWORD */
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-13]), _mm256_set1_epi32(silk_LSHIFT(coef16[13], 16)))); /* High DWORD */
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-14]), _mm256_set1_epi32(silk_LSHIFT(coef16[14], 16)))); /* High DWORD */
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-15]), _mm256_set1_epi32(silk_LSHIFT(coef16[15], 16)))); /* High DWORD */
    }
    return silk_cvtepi64_epi32_high(out);
}

/******************************************/
/* Noise shape quantizer for one subframe */
/******************************************/
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
    silk_nsq_state *NSQ,                        /* I/O  NSQ state                          */
    NSQ_del_dec_struct *psDelDec,               /* I/O  Delayed decision states            */
    opus_int signalType,                        /* I    Signal type                        */
    const opus_int32 x_Q10[],                   /* I                                       */
    opus_int8 pulses[],                         /* O                                       */
    opus_int16 xq[],                            /* O                                       */
    opus_int32 sLTP_Q15[],                      /* I/O  LTP filter state                   */
    opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O  Gain delay buffer                  */
    const opus_int16 a_Q12[],                   /* I    Short term prediction coefs        */
    const opus_int16 b_Q14[],                   /* I    Long term prediction coefs         */
    const opus_int16 AR_shp_Q13[],              /* I    Noise shaping coefs                */
    opus_int lag,                               /* I    Pitch lag                          */
    opus_int32 HarmShapeFIRPacked_Q14,          /* I                                       */
    opus_int Tilt_Q14,                          /* I    Spectral tilt                      */
    opus_int32 LF_shp_Q14,                      /* I                                       */
    opus_int32 Gain_Q16,                        /* I                                       */
    opus_int Lambda_Q10,                        /* I                                       */
    opus_int offset_Q10,                        /* I                                       */
    opus_int length,                            /* I    Input length                       */
    opus_int subfr,                             /* I    Subframe number                    */
    opus_int shapingLPCOrder,                   /* I    Shaping LPC filter order           */
    opus_int predictLPCOrder,                   /* I    Prediction filter order            */
    opus_int warping_Q16,                       /* I                                       */
    __m128i MaskDelDec,                         /* I    Mask of states in decision tree    */
    opus_int *smpl_buf_idx,                     /* I/O  Index to newest samples in buffers */
    opus_int decisionDelay                      /* I                                       */
)
{
    opus_int32 *shp_lag_ptr = &NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2];
    opus_int32 *pred_lag_ptr = &sLTP_Q15[NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2];
    opus_int32 Gain_Q10 = Gain_Q16 >> 6;

    for (int i = 0; i < length; i++)
    {
        /* Perform common calculations used in all states */
        /* NSQ_sample_struct */
        /* Low  128 bits => 1st set */
        /* High 128 bits => 2nd set */
        __m256i SS_Q_Q10;
        __m256i SS_RD_Q10;
        __m256i SS_xq_Q14;
        __m256i SS_LF_AR_Q14;
        __m256i SS_Diff_Q14;
        __m256i SS_sLTP_shp_Q14;
        __m256i SS_LPC_exc_Q14;
        __m256i exc_Q14;
        __m256i q_Q10, rr_Q10, rd_Q10;
        __m256i mask;
        __m128i LPC_pred_Q14, n_AR_Q14;
        __m128i RDmin_Q10, RDmax_Q10;
        __m128i n_LF_Q14;
        __m128i r_Q10, q1_Q0, q1_Q10, q2_Q10;
        __m128i Winner_rand_state, Winner_selector;
        __m128i tmp0, tmp1;
        NSQ_del_dec_sample_struct *psLastSample, *psSample;
        opus_int32 RDmin_ind, RDmax_ind, last_smple_idx;
        opus_int32 LTP_pred_Q14, n_LTP_Q14;

        /* Long-term prediction */
        if (signalType == TYPE_VOICED)
        {
            /* Unrolled loop */
            /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
            LTP_pred_Q14 = 2;
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-0], b_Q14[0]);
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-1], b_Q14[1]);
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-2], b_Q14[2]);
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-3], b_Q14[3]);
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-4], b_Q14[4]);
            LTP_pred_Q14 = silk_LSHIFT(LTP_pred_Q14, 1); /* Q13 -> Q14 */
            pred_lag_ptr++;
        }
        else
        {
            LTP_pred_Q14 = 0;
        }

        /* Long-term shaping */
        if (lag > 0)
        {
            /* Symmetric, packed FIR coefficients */
            n_LTP_Q14 = silk_add_sat32(shp_lag_ptr[0], shp_lag_ptr[-2]);
            n_LTP_Q14 = silk_SMULWB(n_LTP_Q14, HarmShapeFIRPacked_Q14);
            n_LTP_Q14 = n_LTP_Q14 + silk_SMULWT(shp_lag_ptr[-1], HarmShapeFIRPacked_Q14);
            n_LTP_Q14 = LTP_pred_Q14 - (silk_LSHIFT(n_LTP_Q14, 2)); /* Q12 -> Q14 */
            shp_lag_ptr++;
        }
        else
        {
            n_LTP_Q14 = 0;
        }

        /* BEGIN Updating Delayed Decision States */

        /* Generate dither */
        psDelDec->Seed = silk_mm256_rand_epi32(psDelDec->Seed);

        /* Short-term prediction */
        LPC_pred_Q14 = silk_noise_shape_quantizer_short_prediction_x4(&psDelDec->sLPC_Q14[NSQ_LPC_BUF_LENGTH - 1 + i], a_Q12, predictLPCOrder);
        LPC_pred_Q14 = _mm_slli_epi32(LPC_pred_Q14, 4); /* Q10 -> Q14 */

        /* Noise shape feedback */
        silk_assert(shapingLPCOrder > 0);
        silk_assert((shapingLPCOrder & 1) == 0); /* check that order is even */
        /* Output of lowpass section */
        tmp0 = _mm_add_epi32(psDelDec->Diff_Q14, silk_mm_smulwb_epi32(psDelDec->sAR2_Q14[0], warping_Q16));
        n_AR_Q14 = _mm_set1_epi32(shapingLPCOrder >> 1);
        for (int j = 0; j < shapingLPCOrder - 1; j++)
        {
            /* Output of allpass section */
            tmp1 = psDelDec->sAR2_Q14[j];
            psDelDec->sAR2_Q14[j] = tmp0;
            n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[j]));
            tmp0 = _mm_add_epi32(tmp1, silk_mm_smulwb_epi32(_mm_sub_epi32(psDelDec->sAR2_Q14[j + 1], tmp0), warping_Q16));
        }
        psDelDec->sAR2_Q14[shapingLPCOrder - 1] = tmp0;
        n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[shapingLPCOrder - 1]));

        n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 1);                                                  /* Q11 -> Q12 */
        n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, Tilt_Q14)); /* Q12 */
        n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 2);                                                  /* Q12 -> Q14 */

        tmp0 = silk_mm_smulwb_epi32(psDelDec->Samples[*smpl_buf_idx].Shape_Q14, LF_shp_Q14); /* Q12 */
        tmp1 = silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, LF_shp_Q14 >> 16);                  /* Q12 */
        n_LF_Q14 = _mm_add_epi32(tmp0, tmp1);                                                /* Q12 */
        n_LF_Q14 = _mm_slli_epi32(n_LF_Q14, 2);                                              /* Q12 -> Q14 */

        /* Input minus prediction plus noise feedback                       */
        /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP  */
        tmp0 = silk_mm_add_sat_epi32(n_AR_Q14, n_LF_Q14);              /* Q14 */
        tmp1 = _mm_add_epi32(_mm_set1_epi32(n_LTP_Q14), LPC_pred_Q14); /* Q13 */
        tmp0 = silk_mm_sub_sat_epi32(tmp1, tmp0);                      /* Q13 */
        tmp0 = silk_mm_srai_round_epi32(tmp0, 4);                      /* Q10 */

        r_Q10 = _mm_sub_epi32(_mm_set1_epi32(x_Q10[i]), tmp0); /* residual error Q10 */

        /* Flip sign depending on dither */
        r_Q10 = silk_mm_sign_epi32(r_Q10, psDelDec->Seed);
        r_Q10 = silk_mm_limit_epi32(r_Q10, -(31 << 10), 30 << 10);

        /* Find two quantization level candidates and measure their rate-distortion */
        q1_Q10 = _mm_sub_epi32(r_Q10, _mm_set1_epi32(offset_Q10));
        q1_Q0 = _mm_srai_epi32(q1_Q10, 10);
        if (Lambda_Q10 > 2048)
        {
            /* For aggressive RDO, the bias becomes more than one pulse. */
            tmp0 = _mm_sub_epi32(_mm_abs_epi32(q1_Q10), _mm_set1_epi32(Lambda_Q10 / 2 - 512)); /* rdo_offset */
            q1_Q0 = _mm_srai_epi32(q1_Q10, 31);
            tmp1 = _mm_cmpgt_epi32(tmp0, _mm_setzero_si128());
            tmp0 = _mm_srai_epi32(silk_mm_sign_epi32(tmp0, q1_Q10), 10);
            q1_Q0 = _mm_blendv_epi8(q1_Q0, tmp0, tmp1);
        }

        tmp0 = _mm_sign_epi32(_mm_set1_epi32(QUANT_LEVEL_ADJUST_Q10), q1_Q0);
        q1_Q10 = _mm_sub_epi32(_mm_slli_epi32(q1_Q0, 10), tmp0);
        q1_Q10 = _mm_add_epi32(q1_Q10, _mm_set1_epi32(offset_Q10));

        /* check if q1_Q0 is 0 or -1 */
        tmp0 = _mm_add_epi32(_mm_srli_epi32(q1_Q0, 31), q1_Q0);
        tmp1 = _mm_cmpeq_epi32(tmp0, _mm_setzero_si128());
        tmp0 = _mm_blendv_epi8(_mm_set1_epi32(1024), _mm_set1_epi32(1024 - QUANT_LEVEL_ADJUST_Q10), tmp1);
        q2_Q10 = _mm_add_epi32(q1_Q10, tmp0);
        q_Q10 = _mm256_set_m128i(q2_Q10, q1_Q10);

        rr_Q10 = _mm256_sub_epi32(_mm256_broadcastsi128_si256(r_Q10), q_Q10);
        rd_Q10 = _mm256_abs_epi32(q_Q10);
        rr_Q10 = silk_mm256_smulbb_epi32(rr_Q10, rr_Q10);
        rd_Q10 = silk_mm256_smulbb_epi32(rd_Q10, _mm256_set1_epi32(Lambda_Q10));
        rd_Q10 = _mm256_add_epi32(rd_Q10, rr_Q10);
        rd_Q10 = _mm256_srai_epi32(rd_Q10, 10);

        mask = _mm256_broadcastsi128_si256(_mm_cmplt_epi32(_mm256_extracti128_si256(rd_Q10, 0), _mm256_extracti128_si256(rd_Q10, 1)));
        SS_RD_Q10 = _mm256_add_epi32(
            _mm256_broadcastsi128_si256(psDelDec->RD_Q10),
            _mm256_blendv_epi8(
                _mm256_permute2x128_si256(rd_Q10, rd_Q10, 0x1),
                rd_Q10,
                mask));
        SS_Q_Q10 = _mm256_blendv_epi8(
            _mm256_permute2x128_si256(q_Q10, q_Q10, 0x1),
            q_Q10,
            mask);

        /* Update states for best and second best quantization */

        /* Quantized excitation */
        exc_Q14 = silk_mm256_sign_epi32(_mm256_slli_epi32(SS_Q_Q10, 4), _mm256_broadcastsi128_si256(psDelDec->Seed));

        /* Add predictions */
        exc_Q14 = _mm256_add_epi32(exc_Q14, _mm256_set1_epi32(LTP_pred_Q14));
        SS_LPC_exc_Q14 = _mm256_slli_epi32(exc_Q14, 1);
        SS_xq_Q14 = _mm256_add_epi32(exc_Q14, _mm256_broadcastsi128_si256(LPC_pred_Q14));

        /* Update states */
        SS_Diff_Q14 = _mm256_sub_epi32(SS_xq_Q14, _mm256_set1_epi32(silk_LSHIFT(x_Q10[i], 4)));
        SS_LF_AR_Q14 = _mm256_sub_epi32(SS_Diff_Q14, _mm256_broadcastsi128_si256(n_AR_Q14));
        SS_sLTP_shp_Q14 = silk_mm256_sub_sat_epi32(SS_LF_AR_Q14, _mm256_broadcastsi128_si256(n_LF_Q14));

        /* END Updating Delayed Decision States */

        *smpl_buf_idx = (*smpl_buf_idx + DECISION_DELAY - 1) % DECISION_DELAY;
        last_smple_idx = (*smpl_buf_idx + decisionDelay) % DECISION_DELAY;
        psLastSample = &psDelDec->Samples[last_smple_idx];

        /* Find winner */
        RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_castsi256_si128(SS_RD_Q10), MaskDelDec);
        Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_castsi256_si128(SS_RD_Q10)));

        /* Increase RD values of expired states */
        Winner_rand_state = _mm_shuffle_epi8(psLastSample->RandState, Winner_selector);

        SS_RD_Q10 = _mm256_blendv_epi8(
            _mm256_add_epi32(SS_RD_Q10, _mm256_set1_epi32(silk_int32_MAX >> 4)),
            SS_RD_Q10,
            _mm256_broadcastsi128_si256(_mm_cmpeq_epi32(psLastSample->RandState, Winner_rand_state)));

        /* find worst in first set */
        RDmax_Q10 = silk_mm_mask_hmax_epi32(_mm256_extracti128_si256(SS_RD_Q10, 0), MaskDelDec);
        /* find best in second set */
        RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_extracti128_si256(SS_RD_Q10, 1), MaskDelDec);

        /* Replace a state if best from second set outperforms worst in first set */
        tmp0 = _mm_cmplt_epi32(RDmin_Q10, RDmax_Q10);
        if (!_mm_test_all_zeros(tmp0, tmp0))
        {
            RDmax_ind = silk_index_of_first_equal_epi32(RDmax_Q10, _mm256_extracti128_si256(SS_RD_Q10, 0));
            RDmin_ind = silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_extracti128_si256(SS_RD_Q10, 1));
            tmp1 = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(RDmax_ind << 3)));
            tmp0 = _mm_blendv_epi8(
                _mm_set_epi8(0xF, 0xE, 0xD, 0xC, 0xB, 0xA, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0),
                silk_index_to_selector(RDmin_ind),
                tmp1);
            for (int t = i; t < MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH; t++)
            {
                psDelDec->sLPC_Q14[t] = _mm_shuffle_epi8(psDelDec->sLPC_Q14[t], tmp0);
            }
            psDelDec->Seed = _mm_shuffle_epi8(psDelDec->Seed, tmp0);
            psDelDec->SeedInit = _mm_shuffle_epi8(psDelDec->SeedInit, tmp0);
            for (int t = 0; t < MAX_SHAPE_LPC_ORDER; t++)
            {
                psDelDec->sAR2_Q14[t] = _mm_shuffle_epi8(psDelDec->sAR2_Q14[t], tmp0);
            }
            for (int t = 0; t < DECISION_DELAY; t++)
            {
                psDelDec->Samples[t].RandState = _mm_shuffle_epi8(psDelDec->Samples[t].RandState, tmp0);
                psDelDec->Samples[t].Q_Q10 = _mm_shuffle_epi8(psDelDec->Samples[t].Q_Q10, tmp0);
                psDelDec->Samples[t].Xq_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Xq_Q14, tmp0);
                psDelDec->Samples[t].Pred_Q15 = _mm_shuffle_epi8(psDelDec->Samples[t].Pred_Q15, tmp0);
                psDelDec->Samples[t].Shape_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Shape_Q14, tmp0);
            }
            mask = _mm256_castsi128_si256(_mm_blendv_epi8(_mm_set_epi32(0x3, 0x2, 0x1, 0x0), _mm_set1_epi32(RDmin_ind + 4), tmp1));
            SS_Q_Q10 = _mm256_permutevar8x32_epi32(SS_Q_Q10, mask);
            SS_RD_Q10 = _mm256_permutevar8x32_epi32(SS_RD_Q10, mask);
            SS_xq_Q14 = _mm256_permutevar8x32_epi32(SS_xq_Q14, mask);
            SS_LF_AR_Q14 = _mm256_permutevar8x32_epi32(SS_LF_AR_Q14, mask);
            SS_Diff_Q14 = _mm256_permutevar8x32_epi32(SS_Diff_Q14, mask);
            SS_sLTP_shp_Q14 = _mm256_permutevar8x32_epi32(SS_sLTP_shp_Q14, mask);
            SS_LPC_exc_Q14 = _mm256_permutevar8x32_epi32(SS_LPC_exc_Q14, mask);
        }

        /* Write samples from winner to output and long-term filter states */
        if (subfr > 0 || i >= decisionDelay)
        {
            pulses[i - decisionDelay] =
                (opus_int8)silk_sar_round_32(silk_select_winner(psLastSample->Q_Q10, Winner_selector), 10);
            xq[i - decisionDelay] =
                silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psLastSample->Xq_Q14, Winner_selector), delayedGain_Q10[last_smple_idx], 8));
            NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay] =
                silk_select_winner(psLastSample->Shape_Q14, Winner_selector);
            sLTP_Q15[NSQ->sLTP_buf_idx - decisionDelay] =
                silk_select_winner(psLastSample->Pred_Q15, Winner_selector);
        }
        NSQ->sLTP_shp_buf_idx++;
        NSQ->sLTP_buf_idx++;

        /* Update states */
        psSample = &psDelDec->Samples[*smpl_buf_idx];
        psDelDec->Seed = _mm_add_epi32(psDelDec->Seed, silk_mm_srai_round_epi32(_mm256_castsi256_si128(SS_Q_Q10), 10));
        psDelDec->LF_AR_Q14 = _mm256_castsi256_si128(SS_LF_AR_Q14);
        psDelDec->Diff_Q14 = _mm256_castsi256_si128(SS_Diff_Q14);
        psDelDec->sLPC_Q14[i + NSQ_LPC_BUF_LENGTH] = _mm256_castsi256_si128(SS_xq_Q14);
        psDelDec->RD_Q10 = _mm256_castsi256_si128(SS_RD_Q10);
        psSample->Xq_Q14 = _mm256_castsi256_si128(SS_xq_Q14);
        psSample->Q_Q10 = _mm256_castsi256_si128(SS_Q_Q10);
        psSample->Pred_Q15 = _mm256_castsi256_si128(SS_LPC_exc_Q14);
        psSample->Shape_Q14 = _mm256_castsi256_si128(SS_sLTP_shp_Q14);
        psSample->RandState = psDelDec->Seed;
        delayedGain_Q10[*smpl_buf_idx] = Gain_Q10;
    }
    /* Update LPC states */
    for (int i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
    {
        psDelDec->sLPC_Q14[i] = (&psDelDec->sLPC_Q14[length])[i];
    }
}

static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
    const silk_encoder_state *psEncC,          /* I    Encoder State                   */
    silk_nsq_state *NSQ,                       /* I/O  NSQ state                       */
    NSQ_del_dec_struct *psDelDec,              /* I/O  Delayed decision states         */
    const opus_int16 x16[],                    /* I    Input                           */
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O    Input scaled with 1/Gain in Q10 */
    const opus_int16 sLTP[],                   /* I    Re-whitened LTP state in Q0     */
    opus_int32 sLTP_Q15[],                     /* O    LTP state matching scaled input */
    opus_int subfr,                            /* I    Subframe number                 */
    const opus_int LTP_scale_Q14,              /* I    LTP state scaling               */
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],  /* I                                    */
    const opus_int pitchL[MAX_NB_SUBFR],       /* I    Pitch lag                       */
    const opus_int signal_type,                /* I    Signal type                     */
    const opus_int decisionDelay               /* I    Decision delay                  */
)
{
    opus_int lag;
    opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
    NSQ_del_dec_sample_struct *psSample;

    lag = pitchL[subfr];
    inv_gain_Q31 = silk_INVERSE32_varQ(silk_max(Gains_Q16[subfr], 1), 47);
    silk_assert(inv_gain_Q31 != 0);

    /* Scale input */
    inv_gain_Q26 = silk_sar_round_32(inv_gain_Q31, 5);
    for (int i = 0; i < psEncC->subfr_length; i+=4)
    {
        __m256i x = _mm256_cvtepi16_epi64(_mm_loadu_si64(&x16[i]));
        x = _mm256_slli_epi64(_mm256_mul_epi32(x, _mm256_set1_epi32(inv_gain_Q26)), 16);
        _mm_storeu_si128((__m128i_u*)&x_sc_Q10[i], silk_cvtepi64_epi32_high(x));
    }

    /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
    if (NSQ->rewhite_flag)
    {
        if (subfr == 0)
        {
            /* Do LTP downscaling */
            inv_gain_Q31 = silk_LSHIFT(silk_SMULWB(inv_gain_Q31, LTP_scale_Q14), 2);
        }
        for (int i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++)
        {
            silk_assert(i < MAX_FRAME_LENGTH);
            sLTP_Q15[i] = silk_SMULWB(inv_gain_Q31, sLTP[i]);
        }
    }

    /* Adjust for changing gain */
    if (Gains_Q16[subfr] != NSQ->prev_gain_Q16)
    {
        gain_adj_Q16 = silk_DIV32_varQ(NSQ->prev_gain_Q16, Gains_Q16[subfr], 16);

        /* Scale long-term shaping state */
        for (int i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i+=4)
        {
            __m128i_u* p = (__m128i_u*)&NSQ->sLTP_shp_Q14[i];
            *p = silk_mm_smulww_epi32(*p, gain_adj_Q16);
        }

        /* Scale long-term prediction state */
        if (signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0)
        {
            for (int i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++)
            {
                sLTP_Q15[i] = ((opus_int64)sLTP_Q15[i]) * ((opus_int64)gain_adj_Q16) >> 16;
            }
        }

        /* Scale scalar states */
        psDelDec->LF_AR_Q14 = silk_mm_smulww_epi32(psDelDec->LF_AR_Q14, gain_adj_Q16);
        psDelDec->Diff_Q14 = silk_mm_smulww_epi32(psDelDec->Diff_Q14, gain_adj_Q16);

        /* Scale short-term prediction and shaping states */
        for (int i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
        {
            psDelDec->sLPC_Q14[i] = silk_mm_smulww_epi32(psDelDec->sLPC_Q14[i], gain_adj_Q16);
        }
        for (int i = 0; i < DECISION_DELAY; i++)
        {
            psSample = &psDelDec->Samples[i];
            psSample->Pred_Q15 = silk_mm_smulww_epi32(psSample->Pred_Q15, gain_adj_Q16);
            psSample->Shape_Q14 = silk_mm_smulww_epi32(psSample->Shape_Q14, gain_adj_Q16);
        }
        for (int i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
        {
            psDelDec->sAR2_Q14[i] = silk_mm_smulww_epi32(psDelDec->sAR2_Q14[i], gain_adj_Q16);
        }

        /* Save inverse gain */
        NSQ->prev_gain_Q16 = Gains_Q16[subfr];
    }
}

static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
    opus_int16                  *out,               /* O    Output signal                           */
    const opus_int16            *in,                /* I    Input signal                            */
    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order] */
    const opus_int32            len,                /* I    Signal length                           */
    const opus_int32            order               /* I    Filter order                            */
)
{
    opus_int32       out32_Q12, out32;
    silk_assert(order == 10 || order == 16);

    for(int i = order; i < len; i++ )
    {
        const opus_int16 *in_ptr = &in[ i ];
        /* Allowing wrap around so that two wraps can cancel each other. The rare
           cases where the result wraps around can only be triggered by invalid streams*/

        __m256i in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i_u*)&in_ptr[-8]));
        __m256i B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i_u*)&      B[0]));
        __m256i sum = _mm256_mullo_epi32(in_v, silk_mm256_reverse_epi32(B_v));
        if (order > 10)
        {
            in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i_u*)&in_ptr[-16]));
            B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i_u*)&B       [8]));
            B_v  = silk_mm256_reverse_epi32(B_v);
        }
        else
        {
            in_v = _mm256_cvtepi16_epi32(_mm_loadu_si32(&in_ptr[-10]));
            B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si32(&B       [8]));
            B_v  = _mm256_shuffle_epi32(B_v, 0x01);
        }
        sum = _mm256_add_epi32(sum, _mm256_mullo_epi32(in_v, B_v));

        out32_Q12 = silk_mm256_hsum_epi32(sum);

        /* Subtract prediction */
        out32_Q12 = silk_LSHIFT((opus_int32)*in_ptr, 12 ) - out32_Q12;

        /* Scale to Q0 */
        out32 = silk_sar_round_32(out32_Q12, 12);

        /* Saturate output */
        out[ i ] = silk_sat16(out32);
    }

    /* Set first d output samples to zero */
    silk_memset( out, 0, order * sizeof( opus_int16 ) );
}