Welcome to mirror list, hosted at ThFree Co, Russian Federation.

add_mesh_solid.py « add_mesh_extra_objects - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0d1a72c5a786dc7bf4ef77a4df8e6caad3dc2764 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# SPDX-License-Identifier: GPL-2.0-or-later

# Author: DreamPainter

import bpy
from math import sqrt
from mathutils import Vector
from functools import reduce
from bpy.props import (
        FloatProperty,
        EnumProperty,
        BoolProperty,
        )
from bpy_extras.object_utils import object_data_add


# this function creates a chain of quads and, when necessary, a remaining tri
# for each polygon created in this script. be aware though, that this function
# assumes each polygon is convex.
#  poly: list of faces, or a single face, like those
#        needed for mesh.from_pydata.
#  returns the tessellated faces.

def createPolys(poly):
    # check for faces
    if len(poly) == 0:
        return []
    # one or more faces
    if type(poly[0]) == type(1):
        poly = [poly]  # if only one,  make it a list of one face
    faces = []
    for i in poly:
        L = len(i)
        # let all faces of 3 or 4 verts be
        if L < 5:
            faces.append(i)
        # split all polygons in half and bridge the two halves
        else:
            f = [[i[x], i[x + 1], i[L - 2 - x], i[L - 1 - x]] for x in range(L // 2 - 1)]
            faces.extend(f)
            if L & 1 == 1:
                faces.append([i[L // 2 - 1 + x] for x in [0, 1, 2]])
    return faces


# function to make the reduce function work as a workaround to sum a list of vectors

def vSum(list):
    return reduce(lambda a, b: a + b, list)


# creates the 5 platonic solids as a base for the rest
#  plato: should be one of {"4","6","8","12","20"}. decides what solid the
#         outcome will be.
#  returns a list of vertices and faces

def source(plato):
    verts = []
    faces = []

    # Tetrahedron
    if plato == "4":
        # Calculate the necessary constants
        s = sqrt(2) / 3.0
        t = -1 / 3
        u = sqrt(6) / 3

        # create the vertices and faces
        v = [(0, 0, 1), (2 * s, 0, t), (-s, u, t), (-s, -u, t)]
        faces = [[0, 1, 2], [0, 2, 3], [0, 3, 1], [1, 3, 2]]

    # Hexahedron (cube)
    elif plato == "6":
        # Calculate the necessary constants
        s = 1 / sqrt(3)

        # create the vertices and faces
        v = [(-s, -s, -s), (s, -s, -s), (s, s, -s), (-s, s, -s), (-s, -s, s), (s, -s, s), (s, s, s), (-s, s, s)]
        faces = [[0, 3, 2, 1], [0, 1, 5, 4], [0, 4, 7, 3], [6, 5, 1, 2], [6, 2, 3, 7], [6, 7, 4, 5]]

    # Octahedron
    elif plato == "8":
        # create the vertices and faces
        v = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
        faces = [[4, 0, 2], [4, 2, 1], [4, 1, 3], [4, 3, 0], [5, 2, 0], [5, 1, 2], [5, 3, 1], [5, 0, 3]]

    # Dodecahedron
    elif plato == "12":
        # Calculate the necessary constants
        s = 1 / sqrt(3)
        t = sqrt((3 - sqrt(5)) / 6)
        u = sqrt((3 + sqrt(5)) / 6)

        # create the vertices and faces
        v = [(s, s, s), (s, s, -s), (s, -s, s), (s, -s, -s), (-s, s, s), (-s, s, -s), (-s, -s, s), (-s, -s, -s),
             (t, u, 0), (-t, u, 0), (t, -u, 0), (-t, -u, 0), (u, 0, t), (u, 0, -t), (-u, 0, t), (-u, 0, -t), (0, t, u),
             (0, -t, u), (0, t, -u), (0, -t, -u)]
        faces = [[0, 8, 9, 4, 16], [0, 12, 13, 1, 8], [0, 16, 17, 2, 12], [8, 1, 18, 5, 9], [12, 2, 10, 3, 13],
                 [16, 4, 14, 6, 17], [9, 5, 15, 14, 4], [6, 11, 10, 2, 17], [3, 19, 18, 1, 13], [7, 15, 5, 18, 19],
                 [7, 11, 6, 14, 15], [7, 19, 3, 10, 11]]

    # Icosahedron
    elif plato == "20":
        # Calculate the necessary constants
        s = (1 + sqrt(5)) / 2
        t = sqrt(1 + s * s)
        s = s / t
        t = 1 / t

        # create the vertices and faces
        v = [(s, t, 0), (-s, t, 0), (s, -t, 0), (-s, -t, 0), (t, 0, s), (t, 0, -s), (-t, 0, s), (-t, 0, -s),
             (0, s, t), (0, -s, t), (0, s, -t), (0, -s, -t)]
        faces = [[0, 8, 4], [0, 5, 10], [2, 4, 9], [2, 11, 5], [1, 6, 8], [1, 10, 7], [3, 9, 6], [3, 7, 11],
                 [0, 10, 8], [1, 8, 10], [2, 9, 11], [3, 11, 9], [4, 2, 0], [5, 0, 2], [6, 1, 3], [7, 3, 1],
                 [8, 6, 4], [9, 4, 6], [10, 5, 7], [11, 7, 5]]

    # convert the tuples to Vectors
    verts = [Vector(i) for i in v]

    return verts, faces


# processes the raw data from source

def createSolid(plato, vtrunc, etrunc, dual, snub):
    # the duals from each platonic solid
    dualSource = {"4": "4",
                  "6": "8",
                  "8": "6",
                  "12": "20",
                  "20": "12"}

    # constants saving space and readability
    vtrunc *= 0.5
    etrunc *= 0.5
    supposedSize = 0
    noSnub = (snub == "None") or (etrunc == 0.5) or (etrunc == 0)
    lSnub = (snub == "Left") and (0 < etrunc < 0.5)
    rSnub = (snub == "Right") and (0 < etrunc < 0.5)

    # no truncation
    if vtrunc == 0:
        if dual:  # dual is as simple as another, but mirrored platonic solid
            vInput, fInput = source(dualSource[plato])
            supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
            vInput = [-i * supposedSize for i in vInput]            # mirror it
            return vInput, fInput
        return source(plato)
    elif 0 < vtrunc <= 0.5:  # simple truncation of the source
        vInput, fInput = source(plato)
    else:
        # truncation is now equal to simple truncation of the dual of the source
        vInput, fInput = source(dualSource[plato])
        supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
        vtrunc = 1 - vtrunc  # account for the source being a dual
        if vtrunc == 0:    # no truncation needed
            if dual:
                vInput, fInput = source(plato)
                vInput = [i * supposedSize for i in vInput]
                return vInput, fInput
            vInput = [-i * supposedSize for i in vInput]
            return vInput, fInput

    # generate connection database
    vDict = [{} for i in vInput]
    # for every face, store what vertex comes after and before the current vertex
    for x in range(len(fInput)):
        i = fInput[x]
        for j in range(len(i)):
            vDict[i[j - 1]][i[j]] = [i[j - 2], x]
            if len(vDict[i[j - 1]]) == 1:
                vDict[i[j - 1]][-1] = i[j]

    # the actual connection database: exists out of:
    # [vtrunc pos, etrunc pos, connected vert IDs, connected face IDs]
    vData = [[[], [], [], []] for i in vInput]
    fvOutput = []      # faces created from truncated vertices
    feOutput = []      # faces created from truncated edges
    vOutput = []       # newly created vertices
    for x in range(len(vInput)):
        i = vDict[x]   # lookup the current vertex
        current = i[-1]
        while True:    # follow the chain to get a ccw order of connected verts and faces
            vData[x][2].append(i[current][0])
            vData[x][3].append(i[current][1])
            # create truncated vertices
            vData[x][0].append((1 - vtrunc) * vInput[x] + vtrunc * vInput[vData[x][2][-1]])
            current = i[current][0]
            if current == i[-1]:
                break                   # if we're back at the first: stop the loop
        fvOutput.append([])             # new face from truncated vert
        fOffset = x * (len(i) - 1)      # where to start off counting faceVerts
        # only create one vert where one is needed (v1 todo: done)
        if etrunc == 0.5:
            for j in range(len(i) - 1):
                vOutput.append((vData[x][0][j] + vData[x][0][j - 1]) * etrunc)  # create vert
                fvOutput[x].append(fOffset + j)                                 # add to face
            fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]]                    # rotate face for ease later on
            # create faces from truncated edges.
            for j in range(len(i) - 1):
                if x > vData[x][2][j]:     # only create when other vertex has been added
                    index = vData[vData[x][2][j]][2].index(x)
                    feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
                                     fvOutput[vData[x][2][j]][index],
                                     fvOutput[vData[x][2][j]][index - 1]])
        # edge truncation between none and full
        elif etrunc > 0:
            for j in range(len(i) - 1):
                # create snubs from selecting verts from rectified meshes
                if rSnub:
                    vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1])
                    fvOutput[x].append(fOffset + j)
                elif lSnub:
                    vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1])
                    fvOutput[x].append(fOffset + j)
                else:   # noSnub,  select both verts from rectified mesh
                    vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1])
                    vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1])
                    fvOutput[x].append(2 * fOffset + 2 * j)
                    fvOutput[x].append(2 * fOffset + 2 * j + 1)
            # rotate face for ease later on
            if noSnub:
                fvOutput[x] = fvOutput[x][2:] + fvOutput[x][:2]
            else:
                fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]]
            # create single face for each edge
            if noSnub:
                for j in range(len(i) - 1):
                    if x > vData[x][2][j]:
                        index = vData[vData[x][2][j]][2].index(x)
                        feOutput.append([fvOutput[x][j * 2], fvOutput[x][2 * j - 1],
                                         fvOutput[vData[x][2][j]][2 * index],
                                         fvOutput[vData[x][2][j]][2 * index - 1]])
            # create 2 tri's for each edge for the snubs
            elif rSnub:
                for j in range(len(i) - 1):
                    if x > vData[x][2][j]:
                        index = vData[vData[x][2][j]][2].index(x)
                        feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
                                         fvOutput[vData[x][2][j]][index]])
                        feOutput.append([fvOutput[x][j], fvOutput[vData[x][2][j]][index],
                                         fvOutput[vData[x][2][j]][index - 1]])
            elif lSnub:
                for j in range(len(i) - 1):
                    if x > vData[x][2][j]:
                        index = vData[vData[x][2][j]][2].index(x)
                        feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
                                         fvOutput[vData[x][2][j]][index - 1]])
                        feOutput.append([fvOutput[x][j - 1], fvOutput[vData[x][2][j]][index],
                                         fvOutput[vData[x][2][j]][index - 1]])
        # special rules for birectified mesh (v1 todo: done)
        elif vtrunc == 0.5:
            for j in range(len(i) - 1):
                if x < vData[x][2][j]:  # use current vert,  since other one has not passed yet
                    vOutput.append(vData[x][0][j])
                    fvOutput[x].append(len(vOutput) - 1)
                else:
                    # search for other edge to avoid duplicity
                    connectee = vData[x][2][j]
                    fvOutput[x].append(fvOutput[connectee][vData[connectee][2].index(x)])
        else:   # vert truncation only
            vOutput.extend(vData[x][0])   # use generated verts from way above
            for j in range(len(i) - 1):   # create face from them
                fvOutput[x].append(fOffset + j)

    # calculate supposed vertex length to ensure continuity
    if supposedSize and not dual:                    # this to make the vtrunc > 1 work
        supposedSize *= len(fvOutput[0]) / vSum(vOutput[i] for i in fvOutput[0]).length
        vOutput = [-i * supposedSize for i in vOutput]

    # create new faces by replacing old vert IDs by newly generated verts
    ffOutput = [[] for i in fInput]
    for x in range(len(fInput)):
        # only one generated vert per vertex,  so choose accordingly
        if etrunc == 0.5 or (etrunc == 0 and vtrunc == 0.5) or lSnub or rSnub:
            ffOutput[x] = [fvOutput[i][vData[i][3].index(x) - 1] for i in fInput[x]]
        # two generated verts per vertex
        elif etrunc > 0:
            for i in fInput[x]:
                ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 1])
                ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 2])
        else:   # cutting off corners also makes 2 verts
            for i in fInput[x]:
                ffOutput[x].append(fvOutput[i][vData[i][3].index(x)])
                ffOutput[x].append(fvOutput[i][vData[i][3].index(x) - 1])

    if not dual:
        return vOutput, fvOutput + feOutput + ffOutput
    else:
        # do the same procedure as above,  only now on the generated mesh
        # generate connection database
        vDict = [{} for i in vOutput]
        dvOutput = [0 for i in fvOutput + feOutput + ffOutput]
        dfOutput = []

        for x in range(len(dvOutput)):               # for every face
            i = (fvOutput + feOutput + ffOutput)[x]  # choose face to work with
            # find vertex from face
            normal = (vOutput[i[0]] - vOutput[i[1]]).cross(vOutput[i[2]] - vOutput[i[1]]).normalized()
            dvOutput[x] = normal / (normal.dot(vOutput[i[0]]))
            for j in range(len(i)):  # create vert chain
                vDict[i[j - 1]][i[j]] = [i[j - 2], x]
                if len(vDict[i[j - 1]]) == 1:
                    vDict[i[j - 1]][-1] = i[j]

        # calculate supposed size for continuity
        supposedSize = vSum([vInput[i] for i in fInput[0]]).length / len(fInput[0])
        supposedSize /= dvOutput[-1].length
        dvOutput = [i * supposedSize for i in dvOutput]

        # use chains to create faces
        for x in range(len(vOutput)):
            i = vDict[x]
            current = i[-1]
            face = []
            while True:
                face.append(i[current][1])
                current = i[current][0]
                if current == i[-1]:
                    break
            dfOutput.append(face)

        return dvOutput, dfOutput


class Solids(bpy.types.Operator):
    """Add one of the (regular) solids (mesh)"""
    bl_idname = "mesh.primitive_solid_add"
    bl_label = "(Regular) solids"
    bl_description = "Add one of the Platonic, Archimedean or Catalan solids"
    bl_options = {'REGISTER', 'UNDO', 'PRESET'}

    source: EnumProperty(
                    items=(("4", "Tetrahedron", ""),
                            ("6", "Hexahedron", ""),
                            ("8", "Octahedron", ""),
                            ("12", "Dodecahedron", ""),
                            ("20", "Icosahedron", "")),
                    name="Source",
                    description="Starting point of your solid"
                    )
    size: FloatProperty(
                    name="Size",
                    description="Radius of the sphere through the vertices",
                    min=0.01,
                    soft_min=0.01,
                    max=100,
                    soft_max=100,
                    default=1.0
                    )
    vTrunc: FloatProperty(
                    name="Vertex Truncation",
                    description="Amount of vertex truncation",
                    min=0.0,
                    soft_min=0.0,
                    max=2.0,
                    soft_max=2.0,
                    default=0.0,
                    precision=3,
                    step=0.5
                    )
    eTrunc: FloatProperty(
                    name="Edge Truncation",
                    description="Amount of edge truncation",
                    min=0.0,
                    soft_min=0.0,
                    max=1.0,
                    soft_max=1.0,
                    default=0.0,
                    precision=3,
                    step=0.2
                    )
    snub: EnumProperty(
                    items=(("None", "No Snub", ""),
                           ("Left", "Left Snub", ""),
                           ("Right", "Right Snub", "")),
                    name="Snub",
                    description="Create the snub version"
                    )
    dual: BoolProperty(
                    name="Dual",
                    description="Create the dual of the current solid",
                    default=False
                    )
    keepSize: BoolProperty(
                    name="Keep Size",
                    description="Keep the whole solid at a constant size",
                    default=False
                    )
    preset: EnumProperty(
                    items=(("0", "Custom", ""),
                           ("t4", "Truncated Tetrahedron", ""),
                           ("r4", "Cuboctahedron", ""),
                           ("t6", "Truncated Cube", ""),
                           ("t8", "Truncated Octahedron", ""),
                           ("b6", "Rhombicuboctahedron", ""),
                           ("c6", "Truncated Cuboctahedron", ""),
                           ("s6", "Snub Cube", ""),
                           ("r12", "Icosidodecahedron", ""),
                           ("t12", "Truncated Dodecahedron", ""),
                           ("t20", "Truncated Icosahedron", ""),
                           ("b12", "Rhombicosidodecahedron", ""),
                           ("c12", "Truncated Icosidodecahedron", ""),
                           ("s12", "Snub Dodecahedron", ""),
                           ("dt4", "Triakis Tetrahedron", ""),
                           ("dr4", "Rhombic Dodecahedron", ""),
                           ("dt6", "Triakis Octahedron", ""),
                           ("dt8", "Tetrakis Hexahedron", ""),
                           ("db6", "Deltoidal Icositetrahedron", ""),
                           ("dc6", "Disdyakis Dodecahedron", ""),
                           ("ds6", "Pentagonal Icositetrahedron", ""),
                           ("dr12", "Rhombic Triacontahedron", ""),
                           ("dt12", "Triakis Icosahedron", ""),
                           ("dt20", "Pentakis Dodecahedron", ""),
                           ("db12", "Deltoidal Hexecontahedron", ""),
                           ("dc12", "Disdyakis Triacontahedron", ""),
                           ("ds12", "Pentagonal Hexecontahedron", "")),
                    name="Presets",
                    description="Parameters for some hard names"
                    )

    # actual preset values
    p = {"t4": ["4", 2 / 3, 0, 0, "None"],
         "r4": ["4", 1, 1, 0, "None"],
         "t6": ["6", 2 / 3, 0, 0, "None"],
         "t8": ["8", 2 / 3, 0, 0, "None"],
         "b6": ["6", 1.0938, 1, 0, "None"],
         "c6": ["6", 1.0572, 0.585786, 0, "None"],
         "s6": ["6", 1.0875, 0.704, 0, "Left"],
         "r12": ["12", 1, 0, 0, "None"],
         "t12": ["12", 2 / 3, 0, 0, "None"],
         "t20": ["20", 2 / 3, 0, 0, "None"],
         "b12": ["12", 1.1338, 1, 0, "None"],
         "c12": ["20", 0.921, 0.553, 0, "None"],
         "s12": ["12", 1.1235, 0.68, 0, "Left"],
         "dt4": ["4", 2 / 3, 0, 1, "None"],
         "dr4": ["4", 1, 1, 1, "None"],
         "dt6": ["6", 2 / 3, 0, 1, "None"],
         "dt8": ["8", 2 / 3, 0, 1, "None"],
         "db6": ["6", 1.0938, 1, 1, "None"],
         "dc6": ["6", 1.0572, 0.585786, 1, "None"],
         "ds6": ["6", 1.0875, 0.704, 1, "Left"],
         "dr12": ["12", 1, 0, 1, "None"],
         "dt12": ["12", 2 / 3, 0, 1, "None"],
         "dt20": ["20", 2 / 3, 0, 1, "None"],
         "db12": ["12", 1.1338, 1, 1, "None"],
         "dc12": ["20", 0.921, 0.553, 1, "None"],
         "ds12": ["12", 1.1235, 0.68, 1, "Left"]}

    # previous preset, for User-friendly reasons
    previousSetting = ""

    def execute(self, context):
        # piece of code to make presets remain until parameters are changed
        if self.preset != "0":
            # if preset, set preset
            if self.previousSetting != self.preset:
                using = self.p[self.preset]
                self.source = using[0]
                self.vTrunc = using[1]
                self.eTrunc = using[2]
                self.dual = using[3]
                self.snub = using[4]
            else:
                using = self.p[self.preset]
                result0 = self.source == using[0]
                result1 = abs(self.vTrunc - using[1]) < 0.004
                result2 = abs(self.eTrunc - using[2]) < 0.0015
                result4 = using[4] == self.snub or ((using[4] == "Left") and
                                                self.snub in ["Left", "Right"])
                if (result0 and result1 and result2 and result4):
                    if self.p[self.previousSetting][3] != self.dual:
                        if self.preset[0] == "d":
                            self.preset = self.preset[1:]
                        else:
                            self.preset = "d" + self.preset
                else:
                    self.preset = "0"

        self.previousSetting = self.preset

        # generate mesh
        verts, faces = createSolid(self.source,
                                   self.vTrunc,
                                   self.eTrunc,
                                   self.dual,
                                   self.snub
                                   )

        # turn n-gons in quads and tri's
        faces = createPolys(faces)

        # resize to normal size, or if keepSize, make sure all verts are of length 'size'
        if self.keepSize:
            rad = self.size / verts[-1 if self.dual else 0].length
        else:
            rad = self.size
        verts = [i * rad for i in verts]

        # generate object
        # Create new mesh
        mesh = bpy.data.meshes.new("Solid")

        # Make a mesh from a list of verts/edges/faces.
        mesh.from_pydata(verts, [], faces)

        # Update mesh geometry after adding stuff.
        mesh.update()

        object_data_add(context, mesh, operator=None)
        # object generation done

        return {'FINISHED'}