Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/Cholesky/LLT.h')
-rw-r--r--extern/Eigen2/Eigen/src/Cholesky/LLT.h219
1 files changed, 219 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/Cholesky/LLT.h b/extern/Eigen2/Eigen/src/Cholesky/LLT.h
new file mode 100644
index 00000000000..42c959f83a2
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/Cholesky/LLT.h
@@ -0,0 +1,219 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_LLT_H
+#define EIGEN_LLT_H
+
+/** \ingroup cholesky_Module
+ *
+ * \class LLT
+ *
+ * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
+ *
+ * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
+ * matrix A such that A = LL^* = U^*U, where L is lower triangular.
+ *
+ * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
+ * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
+ * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
+ * situations like generalised eigen problems with hermitian matrices.
+ *
+ * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
+ * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
+ * has a solution.
+ *
+ * \sa MatrixBase::llt(), class LDLT
+ */
+ /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
+ * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
+ * the strict lower part does not have to store correct values.
+ */
+template<typename MatrixType> class LLT
+{
+ private:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
+
+ enum {
+ PacketSize = ei_packet_traits<Scalar>::size,
+ AlignmentMask = int(PacketSize)-1
+ };
+
+ public:
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via LLT::compute(const MatrixType&).
+ */
+ LLT() : m_matrix(), m_isInitialized(false) {}
+
+ LLT(const MatrixType& matrix)
+ : m_matrix(matrix.rows(), matrix.cols()),
+ m_isInitialized(false)
+ {
+ compute(matrix);
+ }
+
+ /** \returns the lower triangular matrix L */
+ inline Part<MatrixType, LowerTriangular> matrixL(void) const
+ {
+ ei_assert(m_isInitialized && "LLT is not initialized.");
+ return m_matrix;
+ }
+
+ /** \deprecated */
+ inline bool isPositiveDefinite(void) const { return m_isInitialized && m_isPositiveDefinite; }
+
+ template<typename RhsDerived, typename ResultType>
+ bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;
+
+ template<typename Derived>
+ bool solveInPlace(MatrixBase<Derived> &bAndX) const;
+
+ void compute(const MatrixType& matrix);
+
+ protected:
+ /** \internal
+ * Used to compute and store L
+ * The strict upper part is not used and even not initialized.
+ */
+ MatrixType m_matrix;
+ bool m_isInitialized;
+ bool m_isPositiveDefinite;
+};
+
+/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
+ */
+template<typename MatrixType>
+void LLT<MatrixType>::compute(const MatrixType& a)
+{
+ assert(a.rows()==a.cols());
+ m_isPositiveDefinite = true;
+ const int size = a.rows();
+ m_matrix.resize(size, size);
+ // The biggest overall is the point of reference to which further diagonals
+ // are compared; if any diagonal is negligible compared
+ // to the largest overall, the algorithm bails. This cutoff is suggested
+ // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
+ // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
+ // Algorithms" page 217, also by Higham.
+ const RealScalar cutoff = machine_epsilon<Scalar>() * size * a.diagonal().cwise().abs().maxCoeff();
+ RealScalar x;
+ x = ei_real(a.coeff(0,0));
+ m_matrix.coeffRef(0,0) = ei_sqrt(x);
+ if(size==1)
+ {
+ m_isInitialized = true;
+ return;
+ }
+ m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
+ for (int j = 1; j < size; ++j)
+ {
+ x = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm();
+ if (x < cutoff)
+ {
+ m_isPositiveDefinite = false;
+ continue;
+ }
+
+ m_matrix.coeffRef(j,j) = x = ei_sqrt(x);
+
+ int endSize = size-j-1;
+ if (endSize>0) {
+ // Note that when all matrix columns have good alignment, then the following
+ // product is guaranteed to be optimal with respect to alignment.
+ m_matrix.col(j).end(endSize) =
+ (m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy();
+
+ // FIXME could use a.col instead of a.row
+ m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
+ - m_matrix.col(j).end(endSize) ) / x;
+ }
+ }
+
+ m_isInitialized = true;
+}
+
+/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ * The result is stored in \a result
+ *
+ * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
+ *
+ * In other words, it computes \f$ b = A^{-1} b \f$ with
+ * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
+ *
+ * Example: \include LLT_solve.cpp
+ * Output: \verbinclude LLT_solve.out
+ *
+ * \sa LLT::solveInPlace(), MatrixBase::llt()
+ */
+template<typename MatrixType>
+template<typename RhsDerived, typename ResultType>
+bool LLT<MatrixType>::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
+{
+ ei_assert(m_isInitialized && "LLT is not initialized.");
+ const int size = m_matrix.rows();
+ ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
+ return solveInPlace((*result) = b);
+}
+
+/** This is the \em in-place version of solve().
+ *
+ * \param bAndX represents both the right-hand side matrix b and result x.
+ *
+ * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
+ *
+ * This version avoids a copy when the right hand side matrix b is not
+ * needed anymore.
+ *
+ * \sa LLT::solve(), MatrixBase::llt()
+ */
+template<typename MatrixType>
+template<typename Derived>
+bool LLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
+{
+ ei_assert(m_isInitialized && "LLT is not initialized.");
+ const int size = m_matrix.rows();
+ ei_assert(size==bAndX.rows());
+ matrixL().solveTriangularInPlace(bAndX);
+ m_matrix.adjoint().template part<UpperTriangular>().solveTriangularInPlace(bAndX);
+ return true;
+}
+
+/** \cholesky_module
+ * \returns the LLT decomposition of \c *this
+ */
+template<typename Derived>
+inline const LLT<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::llt() const
+{
+ return LLT<PlainMatrixType>(derived());
+}
+
+#endif // EIGEN_LLT_H