Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/QR/EigenSolver.h')
-rw-r--r--extern/Eigen2/Eigen/src/QR/EigenSolver.h722
1 files changed, 722 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/QR/EigenSolver.h b/extern/Eigen2/Eigen/src/QR/EigenSolver.h
new file mode 100644
index 00000000000..70f21cebcdb
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/QR/EigenSolver.h
@@ -0,0 +1,722 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_EIGENSOLVER_H
+#define EIGEN_EIGENSOLVER_H
+
+/** \ingroup QR_Module
+ * \nonstableyet
+ *
+ * \class EigenSolver
+ *
+ * \brief Eigen values/vectors solver for non selfadjoint matrices
+ *
+ * \param MatrixType the type of the matrix of which we are computing the eigen decomposition
+ *
+ * Currently it only support real matrices.
+ *
+ * \note this code was adapted from JAMA (public domain)
+ *
+ * \sa MatrixBase::eigenvalues(), SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class EigenSolver
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef std::complex<RealScalar> Complex;
+ typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
+ typedef Matrix<Complex, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> EigenvectorType;
+ typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
+ typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via EigenSolver::compute(const MatrixType&).
+ */
+ EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false) {}
+
+ EigenSolver(const MatrixType& matrix)
+ : m_eivec(matrix.rows(), matrix.cols()),
+ m_eivalues(matrix.cols()),
+ m_isInitialized(false)
+ {
+ compute(matrix);
+ }
+
+
+ EigenvectorType eigenvectors(void) const;
+
+ /** \returns a real matrix V of pseudo eigenvectors.
+ *
+ * Let D be the block diagonal matrix with the real eigenvalues in 1x1 blocks,
+ * and any complex values u+iv in 2x2 blocks [u v ; -v u]. Then, the matrices D
+ * and V satisfy A*V = V*D.
+ *
+ * More precisely, if the diagonal matrix of the eigen values is:\n
+ * \f$
+ * \left[ \begin{array}{cccccc}
+ * u+iv & & & & & \\
+ * & u-iv & & & & \\
+ * & & a+ib & & & \\
+ * & & & a-ib & & \\
+ * & & & & x & \\
+ * & & & & & y \\
+ * \end{array} \right]
+ * \f$ \n
+ * then, we have:\n
+ * \f$
+ * D =\left[ \begin{array}{cccccc}
+ * u & v & & & & \\
+ * -v & u & & & & \\
+ * & & a & b & & \\
+ * & & -b & a & & \\
+ * & & & & x & \\
+ * & & & & & y \\
+ * \end{array} \right]
+ * \f$
+ *
+ * \sa pseudoEigenvalueMatrix()
+ */
+ const MatrixType& pseudoEigenvectors() const
+ {
+ ei_assert(m_isInitialized && "EigenSolver is not initialized.");
+ return m_eivec;
+ }
+
+ MatrixType pseudoEigenvalueMatrix() const;
+
+ /** \returns the eigenvalues as a column vector */
+ EigenvalueType eigenvalues() const
+ {
+ ei_assert(m_isInitialized && "EigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ void compute(const MatrixType& matrix);
+
+ private:
+
+ void orthes(MatrixType& matH, RealVectorType& ort);
+ void hqr2(MatrixType& matH);
+
+ protected:
+ MatrixType m_eivec;
+ EigenvalueType m_eivalues;
+ bool m_isInitialized;
+};
+
+/** \returns the real block diagonal matrix D of the eigenvalues.
+ *
+ * See pseudoEigenvectors() for the details.
+ */
+template<typename MatrixType>
+MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
+{
+ ei_assert(m_isInitialized && "EigenSolver is not initialized.");
+ int n = m_eivec.cols();
+ MatrixType matD = MatrixType::Zero(n,n);
+ for (int i=0; i<n; ++i)
+ {
+ if (ei_isMuchSmallerThan(ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i))))
+ matD.coeffRef(i,i) = ei_real(m_eivalues.coeff(i));
+ else
+ {
+ matD.template block<2,2>(i,i) << ei_real(m_eivalues.coeff(i)), ei_imag(m_eivalues.coeff(i)),
+ -ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i));
+ ++i;
+ }
+ }
+ return matD;
+}
+
+/** \returns the normalized complex eigenvectors as a matrix of column vectors.
+ *
+ * \sa eigenvalues(), pseudoEigenvectors()
+ */
+template<typename MatrixType>
+typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigenvectors(void) const
+{
+ ei_assert(m_isInitialized && "EigenSolver is not initialized.");
+ int n = m_eivec.cols();
+ EigenvectorType matV(n,n);
+ for (int j=0; j<n; ++j)
+ {
+ if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j)))))
+ {
+ // we have a real eigen value
+ matV.col(j) = m_eivec.col(j).template cast<Complex>();
+ }
+ else
+ {
+ // we have a pair of complex eigen values
+ for (int i=0; i<n; ++i)
+ {
+ matV.coeffRef(i,j) = Complex(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
+ matV.coeffRef(i,j+1) = Complex(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
+ }
+ matV.col(j).normalize();
+ matV.col(j+1).normalize();
+ ++j;
+ }
+ }
+ return matV;
+}
+
+template<typename MatrixType>
+void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
+{
+ assert(matrix.cols() == matrix.rows());
+ int n = matrix.cols();
+ m_eivalues.resize(n,1);
+
+ MatrixType matH = matrix;
+ RealVectorType ort(n);
+
+ // Reduce to Hessenberg form.
+ orthes(matH, ort);
+
+ // Reduce Hessenberg to real Schur form.
+ hqr2(matH);
+
+ m_isInitialized = true;
+}
+
+// Nonsymmetric reduction to Hessenberg form.
+template<typename MatrixType>
+void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
+{
+ // This is derived from the Algol procedures orthes and ortran,
+ // by Martin and Wilkinson, Handbook for Auto. Comp.,
+ // Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutines in EISPACK.
+
+ int n = m_eivec.cols();
+ int low = 0;
+ int high = n-1;
+
+ for (int m = low+1; m <= high-1; ++m)
+ {
+ // Scale column.
+ RealScalar scale = matH.block(m, m-1, high-m+1, 1).cwise().abs().sum();
+ if (scale != 0.0)
+ {
+ // Compute Householder transformation.
+ RealScalar h = 0.0;
+ // FIXME could be rewritten, but this one looks better wrt cache
+ for (int i = high; i >= m; i--)
+ {
+ ort.coeffRef(i) = matH.coeff(i,m-1)/scale;
+ h += ort.coeff(i) * ort.coeff(i);
+ }
+ RealScalar g = ei_sqrt(h);
+ if (ort.coeff(m) > 0)
+ g = -g;
+ h = h - ort.coeff(m) * g;
+ ort.coeffRef(m) = ort.coeff(m) - g;
+
+ // Apply Householder similarity transformation
+ // H = (I-u*u'/h)*H*(I-u*u')/h)
+ int bSize = high-m+1;
+ matH.block(m, m, bSize, n-m) -= ((ort.segment(m, bSize)/h)
+ * (ort.segment(m, bSize).transpose() * matH.block(m, m, bSize, n-m)).lazy()).lazy();
+
+ matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize)).lazy()
+ * (ort.segment(m, bSize)/h).transpose()).lazy();
+
+ ort.coeffRef(m) = scale*ort.coeff(m);
+ matH.coeffRef(m,m-1) = scale*g;
+ }
+ }
+
+ // Accumulate transformations (Algol's ortran).
+ m_eivec.setIdentity();
+
+ for (int m = high-1; m >= low+1; m--)
+ {
+ if (matH.coeff(m,m-1) != 0.0)
+ {
+ ort.segment(m+1, high-m) = matH.col(m-1).segment(m+1, high-m);
+
+ int bSize = high-m+1;
+ m_eivec.block(m, m, bSize, bSize) += ( (ort.segment(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m) ) )
+ * (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
+ }
+ }
+}
+
+// Complex scalar division.
+template<typename Scalar>
+std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
+{
+ Scalar r,d;
+ if (ei_abs(yr) > ei_abs(yi))
+ {
+ r = yi/yr;
+ d = yr + r*yi;
+ return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
+ }
+ else
+ {
+ r = yr/yi;
+ d = yi + r*yr;
+ return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
+ }
+}
+
+
+// Nonsymmetric reduction from Hessenberg to real Schur form.
+template<typename MatrixType>
+void EigenSolver<MatrixType>::hqr2(MatrixType& matH)
+{
+ // This is derived from the Algol procedure hqr2,
+ // by Martin and Wilkinson, Handbook for Auto. Comp.,
+ // Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ // Initialize
+ int nn = m_eivec.cols();
+ int n = nn-1;
+ int low = 0;
+ int high = nn-1;
+ Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
+ Scalar exshift = 0.0;
+ Scalar p=0,q=0,r=0,s=0,z=0,t,w,x,y;
+
+ // Store roots isolated by balanc and compute matrix norm
+ // FIXME to be efficient the following would requires a triangular reduxion code
+ // Scalar norm = matH.upper().cwise().abs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwise().abs().sum();
+ Scalar norm = 0.0;
+ for (int j = 0; j < nn; ++j)
+ {
+ // FIXME what's the purpose of the following since the condition is always false
+ if ((j < low) || (j > high))
+ {
+ m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0);
+ }
+ norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwise().abs().sum();
+ }
+
+ // Outer loop over eigenvalue index
+ int iter = 0;
+ while (n >= low)
+ {
+ // Look for single small sub-diagonal element
+ int l = n;
+ while (l > low)
+ {
+ s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
+ if (s == 0.0)
+ s = norm;
+ if (ei_abs(matH.coeff(l,l-1)) < eps * s)
+ break;
+ l--;
+ }
+
+ // Check for convergence
+ // One root found
+ if (l == n)
+ {
+ matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
+ m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0);
+ n--;
+ iter = 0;
+ }
+ else if (l == n-1) // Two roots found
+ {
+ w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
+ p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5);
+ q = p * p + w;
+ z = ei_sqrt(ei_abs(q));
+ matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
+ matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
+ x = matH.coeff(n,n);
+
+ // Scalar pair
+ if (q >= 0)
+ {
+ if (p >= 0)
+ z = p + z;
+ else
+ z = p - z;
+
+ m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0);
+ m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
+
+ x = matH.coeff(n,n-1);
+ s = ei_abs(x) + ei_abs(z);
+ p = x / s;
+ q = z / s;
+ r = ei_sqrt(p * p+q * q);
+ p = p / r;
+ q = q / r;
+
+ // Row modification
+ for (int j = n-1; j < nn; ++j)
+ {
+ z = matH.coeff(n-1,j);
+ matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
+ matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
+ }
+
+ // Column modification
+ for (int i = 0; i <= n; ++i)
+ {
+ z = matH.coeff(i,n-1);
+ matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
+ matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
+ }
+
+ // Accumulate transformations
+ for (int i = low; i <= high; ++i)
+ {
+ z = m_eivec.coeff(i,n-1);
+ m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
+ m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
+ }
+ }
+ else // Complex pair
+ {
+ m_eivalues.coeffRef(n-1) = Complex(x + p, z);
+ m_eivalues.coeffRef(n) = Complex(x + p, -z);
+ }
+ n = n - 2;
+ iter = 0;
+ }
+ else // No convergence yet
+ {
+ // Form shift
+ x = matH.coeff(n,n);
+ y = 0.0;
+ w = 0.0;
+ if (l < n)
+ {
+ y = matH.coeff(n-1,n-1);
+ w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
+ }
+
+ // Wilkinson's original ad hoc shift
+ if (iter == 10)
+ {
+ exshift += x;
+ for (int i = low; i <= n; ++i)
+ matH.coeffRef(i,i) -= x;
+ s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
+ x = y = Scalar(0.75) * s;
+ w = Scalar(-0.4375) * s * s;
+ }
+
+ // MATLAB's new ad hoc shift
+ if (iter == 30)
+ {
+ s = Scalar((y - x) / 2.0);
+ s = s * s + w;
+ if (s > 0)
+ {
+ s = ei_sqrt(s);
+ if (y < x)
+ s = -s;
+ s = Scalar(x - w / ((y - x) / 2.0 + s));
+ for (int i = low; i <= n; ++i)
+ matH.coeffRef(i,i) -= s;
+ exshift += s;
+ x = y = w = Scalar(0.964);
+ }
+ }
+
+ iter = iter + 1; // (Could check iteration count here.)
+
+ // Look for two consecutive small sub-diagonal elements
+ int m = n-2;
+ while (m >= l)
+ {
+ z = matH.coeff(m,m);
+ r = x - z;
+ s = y - z;
+ p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
+ q = matH.coeff(m+1,m+1) - z - r - s;
+ r = matH.coeff(m+2,m+1);
+ s = ei_abs(p) + ei_abs(q) + ei_abs(r);
+ p = p / s;
+ q = q / s;
+ r = r / s;
+ if (m == l) {
+ break;
+ }
+ if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
+ eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
+ ei_abs(matH.coeff(m+1,m+1)))))
+ {
+ break;
+ }
+ m--;
+ }
+
+ for (int i = m+2; i <= n; ++i)
+ {
+ matH.coeffRef(i,i-2) = 0.0;
+ if (i > m+2)
+ matH.coeffRef(i,i-3) = 0.0;
+ }
+
+ // Double QR step involving rows l:n and columns m:n
+ for (int k = m; k <= n-1; ++k)
+ {
+ int notlast = (k != n-1);
+ if (k != m) {
+ p = matH.coeff(k,k-1);
+ q = matH.coeff(k+1,k-1);
+ r = notlast ? matH.coeff(k+2,k-1) : Scalar(0);
+ x = ei_abs(p) + ei_abs(q) + ei_abs(r);
+ if (x != 0.0)
+ {
+ p = p / x;
+ q = q / x;
+ r = r / x;
+ }
+ }
+
+ if (x == 0.0)
+ break;
+
+ s = ei_sqrt(p * p + q * q + r * r);
+
+ if (p < 0)
+ s = -s;
+
+ if (s != 0)
+ {
+ if (k != m)
+ matH.coeffRef(k,k-1) = -s * x;
+ else if (l != m)
+ matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
+
+ p = p + s;
+ x = p / s;
+ y = q / s;
+ z = r / s;
+ q = q / p;
+ r = r / p;
+
+ // Row modification
+ for (int j = k; j < nn; ++j)
+ {
+ p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
+ if (notlast)
+ {
+ p = p + r * matH.coeff(k+2,j);
+ matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
+ }
+ matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
+ matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
+ }
+
+ // Column modification
+ for (int i = 0; i <= std::min(n,k+3); ++i)
+ {
+ p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
+ if (notlast)
+ {
+ p = p + z * matH.coeff(i,k+2);
+ matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
+ }
+ matH.coeffRef(i,k) = matH.coeff(i,k) - p;
+ matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
+ }
+
+ // Accumulate transformations
+ for (int i = low; i <= high; ++i)
+ {
+ p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
+ if (notlast)
+ {
+ p = p + z * m_eivec.coeff(i,k+2);
+ m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
+ }
+ m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
+ m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
+ }
+ } // (s != 0)
+ } // k loop
+ } // check convergence
+ } // while (n >= low)
+
+ // Backsubstitute to find vectors of upper triangular form
+ if (norm == 0.0)
+ {
+ return;
+ }
+
+ for (n = nn-1; n >= 0; n--)
+ {
+ p = m_eivalues.coeff(n).real();
+ q = m_eivalues.coeff(n).imag();
+
+ // Scalar vector
+ if (q == 0)
+ {
+ int l = n;
+ matH.coeffRef(n,n) = 1.0;
+ for (int i = n-1; i >= 0; i--)
+ {
+ w = matH.coeff(i,i) - p;
+ r = (matH.row(i).segment(l,n-l+1) * matH.col(n).segment(l, n-l+1))(0,0);
+
+ if (m_eivalues.coeff(i).imag() < 0.0)
+ {
+ z = w;
+ s = r;
+ }
+ else
+ {
+ l = i;
+ if (m_eivalues.coeff(i).imag() == 0.0)
+ {
+ if (w != 0.0)
+ matH.coeffRef(i,n) = -r / w;
+ else
+ matH.coeffRef(i,n) = -r / (eps * norm);
+ }
+ else // Solve real equations
+ {
+ x = matH.coeff(i,i+1);
+ y = matH.coeff(i+1,i);
+ q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
+ t = (x * s - z * r) / q;
+ matH.coeffRef(i,n) = t;
+ if (ei_abs(x) > ei_abs(z))
+ matH.coeffRef(i+1,n) = (-r - w * t) / x;
+ else
+ matH.coeffRef(i+1,n) = (-s - y * t) / z;
+ }
+
+ // Overflow control
+ t = ei_abs(matH.coeff(i,n));
+ if ((eps * t) * t > 1)
+ matH.col(n).end(nn-i) /= t;
+ }
+ }
+ }
+ else if (q < 0) // Complex vector
+ {
+ std::complex<Scalar> cc;
+ int l = n-1;
+
+ // Last vector component imaginary so matrix is triangular
+ if (ei_abs(matH.coeff(n,n-1)) > ei_abs(matH.coeff(n-1,n)))
+ {
+ matH.coeffRef(n-1,n-1) = q / matH.coeff(n,n-1);
+ matH.coeffRef(n-1,n) = -(matH.coeff(n,n) - p) / matH.coeff(n,n-1);
+ }
+ else
+ {
+ cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
+ matH.coeffRef(n-1,n-1) = ei_real(cc);
+ matH.coeffRef(n-1,n) = ei_imag(cc);
+ }
+ matH.coeffRef(n,n-1) = 0.0;
+ matH.coeffRef(n,n) = 1.0;
+ for (int i = n-2; i >= 0; i--)
+ {
+ Scalar ra,sa,vr,vi;
+ ra = (matH.block(i,l, 1, n-l+1) * matH.block(l,n-1, n-l+1, 1)).lazy()(0,0);
+ sa = (matH.block(i,l, 1, n-l+1) * matH.block(l,n, n-l+1, 1)).lazy()(0,0);
+ w = matH.coeff(i,i) - p;
+
+ if (m_eivalues.coeff(i).imag() < 0.0)
+ {
+ z = w;
+ r = ra;
+ s = sa;
+ }
+ else
+ {
+ l = i;
+ if (m_eivalues.coeff(i).imag() == 0)
+ {
+ cc = cdiv(-ra,-sa,w,q);
+ matH.coeffRef(i,n-1) = ei_real(cc);
+ matH.coeffRef(i,n) = ei_imag(cc);
+ }
+ else
+ {
+ // Solve complex equations
+ x = matH.coeff(i,i+1);
+ y = matH.coeff(i+1,i);
+ vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
+ vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
+ if ((vr == 0.0) && (vi == 0.0))
+ vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));
+
+ cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
+ matH.coeffRef(i,n-1) = ei_real(cc);
+ matH.coeffRef(i,n) = ei_imag(cc);
+ if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
+ {
+ matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x;
+ matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x;
+ }
+ else
+ {
+ cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q);
+ matH.coeffRef(i+1,n-1) = ei_real(cc);
+ matH.coeffRef(i+1,n) = ei_imag(cc);
+ }
+ }
+
+ // Overflow control
+ t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
+ if ((eps * t) * t > 1)
+ matH.block(i, n-1, nn-i, 2) /= t;
+
+ }
+ }
+ }
+ }
+
+ // Vectors of isolated roots
+ for (int i = 0; i < nn; ++i)
+ {
+ // FIXME again what's the purpose of this test ?
+ // in this algo low==0 and high==nn-1 !!
+ if (i < low || i > high)
+ {
+ m_eivec.row(i).end(nn-i) = matH.row(i).end(nn-i);
+ }
+ }
+
+ // Back transformation to get eigenvectors of original matrix
+ int bRows = high-low+1;
+ for (int j = nn-1; j >= low; j--)
+ {
+ int bSize = std::min(j,high)-low+1;
+ m_eivec.col(j).segment(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).segment(low, bSize));
+ }
+}
+
+#endif // EIGEN_EIGENSOLVER_H