Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/Eigen2/Eigen/src/SVD/SVD.h')
-rw-r--r--extern/Eigen2/Eigen/src/SVD/SVD.h645
1 files changed, 645 insertions, 0 deletions
diff --git a/extern/Eigen2/Eigen/src/SVD/SVD.h b/extern/Eigen2/Eigen/src/SVD/SVD.h
new file mode 100644
index 00000000000..0a52acf3d5b
--- /dev/null
+++ b/extern/Eigen2/Eigen/src/SVD/SVD.h
@@ -0,0 +1,645 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_SVD_H
+#define EIGEN_SVD_H
+
+/** \ingroup SVD_Module
+ * \nonstableyet
+ *
+ * \class SVD
+ *
+ * \brief Standard SVD decomposition of a matrix and associated features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
+ *
+ * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
+ * with \c M \>= \c N.
+ *
+ *
+ * \sa MatrixBase::SVD()
+ */
+template<typename MatrixType> class SVD
+{
+ private:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+
+ enum {
+ PacketSize = ei_packet_traits<Scalar>::size,
+ AlignmentMask = int(PacketSize)-1,
+ MinSize = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
+ };
+
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
+
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
+ typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
+
+ public:
+
+ SVD(const MatrixType& matrix)
+ : m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
+ m_matV(matrix.cols(),matrix.cols()),
+ m_sigma(std::min(matrix.rows(),matrix.cols()))
+ {
+ compute(matrix);
+ }
+
+ template<typename OtherDerived, typename ResultType>
+ bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
+
+ const MatrixUType& matrixU() const { return m_matU; }
+ const SingularValuesType& singularValues() const { return m_sigma; }
+ const MatrixVType& matrixV() const { return m_matV; }
+
+ void compute(const MatrixType& matrix);
+ SVD& sort();
+
+ template<typename UnitaryType, typename PositiveType>
+ void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
+ template<typename PositiveType, typename UnitaryType>
+ void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
+ template<typename RotationType, typename ScalingType>
+ void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
+ template<typename ScalingType, typename RotationType>
+ void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
+
+ protected:
+ /** \internal */
+ MatrixUType m_matU;
+ /** \internal */
+ MatrixVType m_matV;
+ /** \internal */
+ SingularValuesType m_sigma;
+};
+
+/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
+ *
+ * \note this code has been adapted from JAMA (public domain)
+ */
+template<typename MatrixType>
+void SVD<MatrixType>::compute(const MatrixType& matrix)
+{
+ const int m = matrix.rows();
+ const int n = matrix.cols();
+ const int nu = std::min(m,n);
+
+ m_matU.resize(m, nu);
+ m_matU.setZero();
+ m_sigma.resize(std::min(m,n));
+ m_matV.resize(n,n);
+
+ RowVector e(n);
+ ColVector work(m);
+ MatrixType matA(matrix);
+ const bool wantu = true;
+ const bool wantv = true;
+ int i=0, j=0, k=0;
+
+ // Reduce A to bidiagonal form, storing the diagonal elements
+ // in s and the super-diagonal elements in e.
+ int nct = std::min(m-1,n);
+ int nrt = std::max(0,std::min(n-2,m));
+ for (k = 0; k < std::max(nct,nrt); ++k)
+ {
+ if (k < nct)
+ {
+ // Compute the transformation for the k-th column and
+ // place the k-th diagonal in m_sigma[k].
+ m_sigma[k] = matA.col(k).end(m-k).norm();
+ if (m_sigma[k] != 0.0) // FIXME
+ {
+ if (matA(k,k) < 0.0)
+ m_sigma[k] = -m_sigma[k];
+ matA.col(k).end(m-k) /= m_sigma[k];
+ matA(k,k) += 1.0;
+ }
+ m_sigma[k] = -m_sigma[k];
+ }
+
+ for (j = k+1; j < n; ++j)
+ {
+ if ((k < nct) && (m_sigma[k] != 0.0))
+ {
+ // Apply the transformation.
+ Scalar t = matA.col(k).end(m-k).dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
+ t = -t/matA(k,k);
+ matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
+ }
+
+ // Place the k-th row of A into e for the
+ // subsequent calculation of the row transformation.
+ e[j] = matA(k,j);
+ }
+
+ // Place the transformation in U for subsequent back multiplication.
+ if (wantu & (k < nct))
+ m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
+
+ if (k < nrt)
+ {
+ // Compute the k-th row transformation and place the
+ // k-th super-diagonal in e[k].
+ e[k] = e.end(n-k-1).norm();
+ if (e[k] != 0.0)
+ {
+ if (e[k+1] < 0.0)
+ e[k] = -e[k];
+ e.end(n-k-1) /= e[k];
+ e[k+1] += 1.0;
+ }
+ e[k] = -e[k];
+ if ((k+1 < m) & (e[k] != 0.0))
+ {
+ // Apply the transformation.
+ work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
+ for (j = k+1; j < n; ++j)
+ matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
+ }
+
+ // Place the transformation in V for subsequent back multiplication.
+ if (wantv)
+ m_matV.col(k).end(n-k-1) = e.end(n-k-1);
+ }
+ }
+
+
+ // Set up the final bidiagonal matrix or order p.
+ int p = std::min(n,m+1);
+ if (nct < n)
+ m_sigma[nct] = matA(nct,nct);
+ if (m < p)
+ m_sigma[p-1] = 0.0;
+ if (nrt+1 < p)
+ e[nrt] = matA(nrt,p-1);
+ e[p-1] = 0.0;
+
+ // If required, generate U.
+ if (wantu)
+ {
+ for (j = nct; j < nu; ++j)
+ {
+ m_matU.col(j).setZero();
+ m_matU(j,j) = 1.0;
+ }
+ for (k = nct-1; k >= 0; k--)
+ {
+ if (m_sigma[k] != 0.0)
+ {
+ for (j = k+1; j < nu; ++j)
+ {
+ Scalar t = m_matU.col(k).end(m-k).dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
+ t = -t/m_matU(k,k);
+ m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
+ }
+ m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
+ m_matU(k,k) = Scalar(1) + m_matU(k,k);
+ if (k-1>0)
+ m_matU.col(k).start(k-1).setZero();
+ }
+ else
+ {
+ m_matU.col(k).setZero();
+ m_matU(k,k) = 1.0;
+ }
+ }
+ }
+
+ // If required, generate V.
+ if (wantv)
+ {
+ for (k = n-1; k >= 0; k--)
+ {
+ if ((k < nrt) & (e[k] != 0.0))
+ {
+ for (j = k+1; j < nu; ++j)
+ {
+ Scalar t = m_matV.col(k).end(n-k-1).dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
+ t = -t/m_matV(k+1,k);
+ m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
+ }
+ }
+ m_matV.col(k).setZero();
+ m_matV(k,k) = 1.0;
+ }
+ }
+
+ // Main iteration loop for the singular values.
+ int pp = p-1;
+ int iter = 0;
+ Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
+ while (p > 0)
+ {
+ int k=0;
+ int kase=0;
+
+ // Here is where a test for too many iterations would go.
+
+ // This section of the program inspects for
+ // negligible elements in the s and e arrays. On
+ // completion the variables kase and k are set as follows.
+
+ // kase = 1 if s(p) and e[k-1] are negligible and k<p
+ // kase = 2 if s(k) is negligible and k<p
+ // kase = 3 if e[k-1] is negligible, k<p, and
+ // s(k), ..., s(p) are not negligible (qr step).
+ // kase = 4 if e(p-1) is negligible (convergence).
+
+ for (k = p-2; k >= -1; --k)
+ {
+ if (k == -1)
+ break;
+ if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
+ {
+ e[k] = 0.0;
+ break;
+ }
+ }
+ if (k == p-2)
+ {
+ kase = 4;
+ }
+ else
+ {
+ int ks;
+ for (ks = p-1; ks >= k; --ks)
+ {
+ if (ks == k)
+ break;
+ Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
+ if (ei_abs(m_sigma[ks]) <= eps*t)
+ {
+ m_sigma[ks] = 0.0;
+ break;
+ }
+ }
+ if (ks == k)
+ {
+ kase = 3;
+ }
+ else if (ks == p-1)
+ {
+ kase = 1;
+ }
+ else
+ {
+ kase = 2;
+ k = ks;
+ }
+ }
+ ++k;
+
+ // Perform the task indicated by kase.
+ switch (kase)
+ {
+
+ // Deflate negligible s(p).
+ case 1:
+ {
+ Scalar f(e[p-2]);
+ e[p-2] = 0.0;
+ for (j = p-2; j >= k; --j)
+ {
+ Scalar t(ei_hypot(m_sigma[j],f));
+ Scalar cs(m_sigma[j]/t);
+ Scalar sn(f/t);
+ m_sigma[j] = t;
+ if (j != k)
+ {
+ f = -sn*e[j-1];
+ e[j-1] = cs*e[j-1];
+ }
+ if (wantv)
+ {
+ for (i = 0; i < n; ++i)
+ {
+ t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
+ m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
+ m_matV(i,j) = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Split at negligible s(k).
+ case 2:
+ {
+ Scalar f(e[k-1]);
+ e[k-1] = 0.0;
+ for (j = k; j < p; ++j)
+ {
+ Scalar t(ei_hypot(m_sigma[j],f));
+ Scalar cs( m_sigma[j]/t);
+ Scalar sn(f/t);
+ m_sigma[j] = t;
+ f = -sn*e[j];
+ e[j] = cs*e[j];
+ if (wantu)
+ {
+ for (i = 0; i < m; ++i)
+ {
+ t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
+ m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
+ m_matU(i,j) = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Perform one qr step.
+ case 3:
+ {
+ // Calculate the shift.
+ Scalar scale = std::max(std::max(std::max(std::max(
+ ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
+ ei_abs(m_sigma[k])),ei_abs(e[k]));
+ Scalar sp = m_sigma[p-1]/scale;
+ Scalar spm1 = m_sigma[p-2]/scale;
+ Scalar epm1 = e[p-2]/scale;
+ Scalar sk = m_sigma[k]/scale;
+ Scalar ek = e[k]/scale;
+ Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
+ Scalar c = (sp*epm1)*(sp*epm1);
+ Scalar shift = 0.0;
+ if ((b != 0.0) || (c != 0.0))
+ {
+ shift = ei_sqrt(b*b + c);
+ if (b < 0.0)
+ shift = -shift;
+ shift = c/(b + shift);
+ }
+ Scalar f = (sk + sp)*(sk - sp) + shift;
+ Scalar g = sk*ek;
+
+ // Chase zeros.
+
+ for (j = k; j < p-1; ++j)
+ {
+ Scalar t = ei_hypot(f,g);
+ Scalar cs = f/t;
+ Scalar sn = g/t;
+ if (j != k)
+ e[j-1] = t;
+ f = cs*m_sigma[j] + sn*e[j];
+ e[j] = cs*e[j] - sn*m_sigma[j];
+ g = sn*m_sigma[j+1];
+ m_sigma[j+1] = cs*m_sigma[j+1];
+ if (wantv)
+ {
+ for (i = 0; i < n; ++i)
+ {
+ t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
+ m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
+ m_matV(i,j) = t;
+ }
+ }
+ t = ei_hypot(f,g);
+ cs = f/t;
+ sn = g/t;
+ m_sigma[j] = t;
+ f = cs*e[j] + sn*m_sigma[j+1];
+ m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
+ g = sn*e[j+1];
+ e[j+1] = cs*e[j+1];
+ if (wantu && (j < m-1))
+ {
+ for (i = 0; i < m; ++i)
+ {
+ t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
+ m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
+ m_matU(i,j) = t;
+ }
+ }
+ }
+ e[p-2] = f;
+ iter = iter + 1;
+ }
+ break;
+
+ // Convergence.
+ case 4:
+ {
+ // Make the singular values positive.
+ if (m_sigma[k] <= 0.0)
+ {
+ m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
+ if (wantv)
+ m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
+ }
+
+ // Order the singular values.
+ while (k < pp)
+ {
+ if (m_sigma[k] >= m_sigma[k+1])
+ break;
+ Scalar t = m_sigma[k];
+ m_sigma[k] = m_sigma[k+1];
+ m_sigma[k+1] = t;
+ if (wantv && (k < n-1))
+ m_matV.col(k).swap(m_matV.col(k+1));
+ if (wantu && (k < m-1))
+ m_matU.col(k).swap(m_matU.col(k+1));
+ ++k;
+ }
+ iter = 0;
+ p--;
+ }
+ break;
+ } // end big switch
+ } // end iterations
+}
+
+template<typename MatrixType>
+SVD<MatrixType>& SVD<MatrixType>::sort()
+{
+ int mu = m_matU.rows();
+ int mv = m_matV.rows();
+ int n = m_matU.cols();
+
+ for (int i=0; i<n; ++i)
+ {
+ int k = i;
+ Scalar p = m_sigma.coeff(i);
+
+ for (int j=i+1; j<n; ++j)
+ {
+ if (m_sigma.coeff(j) > p)
+ {
+ k = j;
+ p = m_sigma.coeff(j);
+ }
+ }
+ if (k != i)
+ {
+ m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e.
+ m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements
+
+ int j = mu;
+ for(int s=0; j!=0; ++s, --j)
+ std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
+
+ j = mv;
+ for (int s=0; j!=0; ++s, --j)
+ std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
+ }
+ }
+ return *this;
+}
+
+/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
+ * The parts of the solution corresponding to zero singular values are ignored.
+ *
+ * \sa MatrixBase::svd(), LU::solve(), LLT::solve()
+ */
+template<typename MatrixType>
+template<typename OtherDerived, typename ResultType>
+bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
+{
+ const int rows = m_matU.rows();
+ ei_assert(b.rows() == rows);
+
+ Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
+ for (int j=0; j<b.cols(); ++j)
+ {
+ Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
+
+ for (int i = 0; i <m_matU.cols(); ++i)
+ {
+ Scalar si = m_sigma.coeff(i);
+ if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
+ aux.coeffRef(i) = 0;
+ else
+ aux.coeffRef(i) /= si;
+ }
+
+ result->col(j) = m_matV * aux;
+ }
+ return true;
+}
+
+/** Computes the polar decomposition of the matrix, as a product unitary x positive.
+ *
+ * If either pointer is zero, the corresponding computation is skipped.
+ *
+ * Only for square matrices.
+ *
+ * \sa computePositiveUnitary(), computeRotationScaling()
+ */
+template<typename MatrixType>
+template<typename UnitaryType, typename PositiveType>
+void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
+ PositiveType *positive) const
+{
+ ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
+ if(unitary) *unitary = m_matU * m_matV.adjoint();
+ if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
+}
+
+/** Computes the polar decomposition of the matrix, as a product positive x unitary.
+ *
+ * If either pointer is zero, the corresponding computation is skipped.
+ *
+ * Only for square matrices.
+ *
+ * \sa computeUnitaryPositive(), computeRotationScaling()
+ */
+template<typename MatrixType>
+template<typename UnitaryType, typename PositiveType>
+void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
+ PositiveType *unitary) const
+{
+ ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
+ if(unitary) *unitary = m_matU * m_matV.adjoint();
+ if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
+}
+
+/** decomposes the matrix as a product rotation x scaling, the scaling being
+ * not necessarily positive.
+ *
+ * If either pointer is zero, the corresponding computation is skipped.
+ *
+ * This method requires the Geometry module.
+ *
+ * \sa computeScalingRotation(), computeUnitaryPositive()
+ */
+template<typename MatrixType>
+template<typename RotationType, typename ScalingType>
+void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
+{
+ ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
+ Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
+ Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
+ sv.coeffRef(0) *= x;
+ if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
+ if(rotation)
+ {
+ MatrixType m(m_matU);
+ m.col(0) /= x;
+ rotation->lazyAssign(m * m_matV.adjoint());
+ }
+}
+
+/** decomposes the matrix as a product scaling x rotation, the scaling being
+ * not necessarily positive.
+ *
+ * If either pointer is zero, the corresponding computation is skipped.
+ *
+ * This method requires the Geometry module.
+ *
+ * \sa computeRotationScaling(), computeUnitaryPositive()
+ */
+template<typename MatrixType>
+template<typename ScalingType, typename RotationType>
+void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
+{
+ ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
+ Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
+ Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
+ sv.coeffRef(0) *= x;
+ if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
+ if(rotation)
+ {
+ MatrixType m(m_matU);
+ m.col(0) /= x;
+ rotation->lazyAssign(m * m_matV.adjoint());
+ }
+}
+
+
+/** \svd_module
+ * \returns the SVD decomposition of \c *this
+ */
+template<typename Derived>
+inline SVD<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::svd() const
+{
+ return SVD<PlainMatrixType>(derived());
+}
+
+#endif // EIGEN_SVD_H