Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/LinearMath/btVector3.h')
-rw-r--r--extern/bullet2/src/LinearMath/btVector3.h341
1 files changed, 263 insertions, 78 deletions
diff --git a/extern/bullet2/src/LinearMath/btVector3.h b/extern/bullet2/src/LinearMath/btVector3.h
index 96548c6ba60..5d5c39e8587 100644
--- a/extern/bullet2/src/LinearMath/btVector3.h
+++ b/extern/bullet2/src/LinearMath/btVector3.h
@@ -17,127 +17,190 @@ subject to the following restrictions:
#ifndef SIMD__VECTOR3_H
#define SIMD__VECTOR3_H
-#include "btQuadWord.h"
-///btVector3 can be used to represent 3D points and vectors.
-///It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
-///Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
-class btVector3 : public btQuadWord {
+#include "btScalar.h"
+#include "btScalar.h"
+#include "btMinMax.h"
+/**@brief btVector3 can be used to represent 3D points and vectors.
+ * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
+ * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
+ */
+ATTRIBUTE_ALIGNED16(class) btVector3
+{
public:
- SIMD_FORCE_INLINE btVector3() {}
- SIMD_FORCE_INLINE btVector3(const btQuadWordStorage& q)
- : btQuadWord(q)
+#if defined (__SPU__) && defined (__CELLOS_LV2__)
+ union {
+ vec_float4 mVec128;
+ btScalar m_floats[4];
+ };
+public:
+ vec_float4 get128() const
{
+ return mVec128;
}
-
-
- SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z)
- :btQuadWord(x,y,z,btScalar(0.))
+public:
+#else //__CELLOS_LV2__ __SPU__
+#ifdef BT_USE_SSE // WIN32
+ union {
+ __m128 mVec128;
+ btScalar m_floats[4];
+ };
+ SIMD_FORCE_INLINE __m128 get128() const
{
+ return mVec128;
}
+ SIMD_FORCE_INLINE void set128(__m128 v128)
+ {
+ mVec128 = v128;
+ }
+#else
+ btScalar m_floats[4];
+#endif
+#endif //__CELLOS_LV2__ __SPU__
+
+ public:
-// SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w)
-// : btQuadWord(x,y,z,w)
-// {
-// }
+ /**@brief No initialization constructor */
+ SIMD_FORCE_INLINE btVector3() {}
+
+ /**@brief Constructor from scalars
+ * @param x X value
+ * @param y Y value
+ * @param z Z value
+ */
+ SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z)
+ {
+ m_floats[0] = x;
+ m_floats[1] = y;
+ m_floats[2] = z;
+ m_floats[3] = btScalar(0.);
+ }
+
+/**@brief Add a vector to this one
+ * @param The vector to add to this one */
SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
{
- m_x += v.x(); m_y += v.y(); m_z += v.z();
+ m_floats[0] += v.m_floats[0]; m_floats[1] += v.m_floats[1];m_floats[2] += v.m_floats[2];
return *this;
}
-
+ /**@brief Subtract a vector from this one
+ * @param The vector to subtract */
SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
{
- m_x -= v.x(); m_y -= v.y(); m_z -= v.z();
+ m_floats[0] -= v.m_floats[0]; m_floats[1] -= v.m_floats[1];m_floats[2] -= v.m_floats[2];
return *this;
}
-
+ /**@brief Scale the vector
+ * @param s Scale factor */
SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
{
- m_x *= s; m_y *= s; m_z *= s;
+ m_floats[0] *= s; m_floats[1] *= s;m_floats[2] *= s;
return *this;
}
+ /**@brief Inversely scale the vector
+ * @param s Scale factor to divide by */
SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s)
{
btFullAssert(s != btScalar(0.0));
return *this *= btScalar(1.0) / s;
}
+ /**@brief Return the dot product
+ * @param v The other vector in the dot product */
SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
{
- return m_x * v.x() + m_y * v.y() + m_z * v.z();
+ return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] +m_floats[2] * v.m_floats[2];
}
+ /**@brief Return the length of the vector squared */
SIMD_FORCE_INLINE btScalar length2() const
{
return dot(*this);
}
+ /**@brief Return the length of the vector */
SIMD_FORCE_INLINE btScalar length() const
{
return btSqrt(length2());
}
+ /**@brief Return the distance squared between the ends of this and another vector
+ * This is symantically treating the vector like a point */
SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;
+ /**@brief Return the distance between the ends of this and another vector
+ * This is symantically treating the vector like a point */
SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;
+ /**@brief Normalize this vector
+ * x^2 + y^2 + z^2 = 1 */
SIMD_FORCE_INLINE btVector3& normalize()
{
return *this /= length();
}
+ /**@brief Return a normalized version of this vector */
SIMD_FORCE_INLINE btVector3 normalized() const;
+ /**@brief Rotate this vector
+ * @param wAxis The axis to rotate about
+ * @param angle The angle to rotate by */
SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle );
+ /**@brief Return the angle between this and another vector
+ * @param v The other vector */
SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const
{
btScalar s = btSqrt(length2() * v.length2());
btFullAssert(s != btScalar(0.0));
return btAcos(dot(v) / s);
}
-
+ /**@brief Return a vector will the absolute values of each element */
SIMD_FORCE_INLINE btVector3 absolute() const
{
return btVector3(
- btFabs(m_x),
- btFabs(m_y),
- btFabs(m_z));
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
+ btFabs(m_floats[2]));
}
-
+ /**@brief Return the cross product between this and another vector
+ * @param v The other vector */
SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
{
return btVector3(
- m_y * v.z() - m_z * v.y(),
- m_z * v.x() - m_x * v.z(),
- m_x * v.y() - m_y * v.x());
+ m_floats[1] * v.m_floats[2] -m_floats[2] * v.m_floats[1],
+ m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
+ m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
}
SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
{
- return m_x * (v1.y() * v2.z() - v1.z() * v2.y()) +
- m_y * (v1.z() * v2.x() - v1.x() * v2.z()) +
- m_z * (v1.x() * v2.y() - v1.y() * v2.x());
+ return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) +
+ m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) +
+ m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
}
+ /**@brief Return the axis with the smallest value
+ * Note return values are 0,1,2 for x, y, or z */
SIMD_FORCE_INLINE int minAxis() const
{
- return m_x < m_y ? (m_x < m_z ? 0 : 2) : (m_y < m_z ? 1 : 2);
+ return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
}
+ /**@brief Return the axis with the largest value
+ * Note return values are 0,1,2 for x, y, or z */
SIMD_FORCE_INLINE int maxAxis() const
{
- return m_x < m_y ? (m_y < m_z ? 2 : 1) : (m_x < m_z ? 2 : 0);
+ return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
}
SIMD_FORCE_INLINE int furthestAxis() const
@@ -153,67 +216,150 @@ public:
SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
{
btScalar s = btScalar(1.0) - rt;
- m_x = s * v0.x() + rt * v1.x();
- m_y = s * v0.y() + rt * v1.y();
- m_z = s * v0.z() + rt * v1.z();
+ m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
+ m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
+ m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
//don't do the unused w component
// m_co[3] = s * v0[3] + rt * v1[3];
}
+ /**@brief Return the linear interpolation between this and another vector
+ * @param v The other vector
+ * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
{
- return btVector3(m_x + (v.x() - m_x) * t,
- m_y + (v.y() - m_y) * t,
- m_z + (v.z() - m_z) * t);
+ return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
+ m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
+ m_floats[2] + (v.m_floats[2] -m_floats[2]) * t);
}
-
+ /**@brief Elementwise multiply this vector by the other
+ * @param v The other vector */
SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
{
- m_x *= v.x(); m_y *= v.y(); m_z *= v.z();
+ m_floats[0] *= v.m_floats[0]; m_floats[1] *= v.m_floats[1];m_floats[2] *= v.m_floats[2];
return *this;
}
-
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
+ /**@brief Set the x value */
+ SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x;};
+ /**@brief Set the y value */
+ SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y;};
+ /**@brief Set the z value */
+ SIMD_FORCE_INLINE void setZ(btScalar z) {m_floats[2] = z;};
+ /**@brief Set the w value */
+ SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w;};
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
+ /**@brief Return the w value */
+ SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
+
+ //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
+ //SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
+ ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
+ SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
+ SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
+
+ SIMD_FORCE_INLINE bool operator==(const btVector3& other) const
+ {
+ return ((m_floats[3]==other.m_floats[3]) && (m_floats[2]==other.m_floats[2]) && (m_floats[1]==other.m_floats[1]) && (m_floats[0]==other.m_floats[0]));
+ }
+
+ SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const
+ {
+ return !(*this == other);
+ }
+
+ /**@brief Set each element to the max of the current values and the values of another btVector3
+ * @param other The other btVector3 to compare with
+ */
+ SIMD_FORCE_INLINE void setMax(const btVector3& other)
+ {
+ btSetMax(m_floats[0], other.m_floats[0]);
+ btSetMax(m_floats[1], other.m_floats[1]);
+ btSetMax(m_floats[2], other.m_floats[2]);
+ btSetMax(m_floats[3], other.w());
+ }
+ /**@brief Set each element to the min of the current values and the values of another btVector3
+ * @param other The other btVector3 to compare with
+ */
+ SIMD_FORCE_INLINE void setMin(const btVector3& other)
+ {
+ btSetMin(m_floats[0], other.m_floats[0]);
+ btSetMin(m_floats[1], other.m_floats[1]);
+ btSetMin(m_floats[2], other.m_floats[2]);
+ btSetMin(m_floats[3], other.w());
+ }
+
+ SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z)
+ {
+ m_floats[0]=x;
+ m_floats[1]=y;
+ m_floats[2]=z;
+ m_floats[3] = 0.f;
+ }
+
+ void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
+ {
+ v0->setValue(0. ,-z() ,y());
+ v1->setValue(z() ,0. ,-x());
+ v2->setValue(-y() ,x() ,0.);
+ }
};
+/**@brief Return the sum of two vectors (Point symantics)*/
SIMD_FORCE_INLINE btVector3
operator+(const btVector3& v1, const btVector3& v2)
{
- return btVector3(v1.x() + v2.x(), v1.y() + v2.y(), v1.z() + v2.z());
+ return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]);
}
+/**@brief Return the elementwise product of two vectors */
SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v1, const btVector3& v2)
{
- return btVector3(v1.x() * v2.x(), v1.y() * v2.y(), v1.z() * v2.z());
+ return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]);
}
+/**@brief Return the difference between two vectors */
SIMD_FORCE_INLINE btVector3
operator-(const btVector3& v1, const btVector3& v2)
{
- return btVector3(v1.x() - v2.x(), v1.y() - v2.y(), v1.z() - v2.z());
+ return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]);
}
-
+/**@brief Return the negative of the vector */
SIMD_FORCE_INLINE btVector3
operator-(const btVector3& v)
{
- return btVector3(-v.x(), -v.y(), -v.z());
+ return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
}
+/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v, const btScalar& s)
{
- return btVector3(v.x() * s, v.y() * s, v.z() * s);
+ return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
}
+/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3
operator*(const btScalar& s, const btVector3& v)
{
return v * s;
}
+/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v, const btScalar& s)
{
@@ -221,12 +367,14 @@ operator/(const btVector3& v, const btScalar& s)
return v * (btScalar(1.0) / s);
}
+/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v1, const btVector3& v2)
{
- return btVector3(v1.x() / v2.x(),v1.y() / v2.y(),v1.z() / v2.z());
+ return btVector3(v1.m_floats[0] / v2.m_floats[0],v1.m_floats[1] / v2.m_floats[1],v1.m_floats[2] / v2.m_floats[2]);
}
+/**@brief Return the dot product between two vectors */
SIMD_FORCE_INLINE btScalar
dot(const btVector3& v1, const btVector3& v2)
{
@@ -234,7 +382,7 @@ dot(const btVector3& v1, const btVector3& v2)
}
-
+/**@brief Return the distance squared between two vectors */
SIMD_FORCE_INLINE btScalar
distance2(const btVector3& v1, const btVector3& v2)
{
@@ -242,18 +390,21 @@ distance2(const btVector3& v1, const btVector3& v2)
}
+/**@brief Return the distance between two vectors */
SIMD_FORCE_INLINE btScalar
distance(const btVector3& v1, const btVector3& v2)
{
return v1.distance(v2);
}
+/**@brief Return the angle between two vectors */
SIMD_FORCE_INLINE btScalar
angle(const btVector3& v1, const btVector3& v2)
{
return v1.angle(v2);
}
+/**@brief Return the cross product of two vectors */
SIMD_FORCE_INLINE btVector3
cross(const btVector3& v1, const btVector3& v2)
{
@@ -266,6 +417,10 @@ triple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
return v1.triple(v2, v3);
}
+/**@brief Return the linear interpolation between two vectors
+ * @param v1 One vector
+ * @param v2 The other vector
+ * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
SIMD_FORCE_INLINE btVector3
lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
{
@@ -273,10 +428,6 @@ lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
}
-SIMD_FORCE_INLINE bool operator==(const btVector3& p1, const btVector3& p2)
-{
- return p1.x() == p2.x() && p1.y() == p2.y() && p1.z() == p2.z();
-}
SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
{
@@ -316,47 +467,47 @@ public:
SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w)
: btVector3(x,y,z)
{
- m_unusedW = w;
+ m_floats[3] = w;
}
SIMD_FORCE_INLINE btVector4 absolute4() const
{
return btVector4(
- btFabs(m_x),
- btFabs(m_y),
- btFabs(m_z),
- btFabs(m_unusedW));
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
+ btFabs(m_floats[2]),
+ btFabs(m_floats[3]));
}
- btScalar getW() const { return m_unusedW;}
+ btScalar getW() const { return m_floats[3];}
SIMD_FORCE_INLINE int maxAxis4() const
{
int maxIndex = -1;
btScalar maxVal = btScalar(-1e30);
- if (m_x > maxVal)
+ if (m_floats[0] > maxVal)
{
maxIndex = 0;
- maxVal = m_x;
+ maxVal = m_floats[0];
}
- if (m_y > maxVal)
+ if (m_floats[1] > maxVal)
{
maxIndex = 1;
- maxVal = m_y;
+ maxVal = m_floats[1];
}
- if (m_z > maxVal)
+ if (m_floats[2] > maxVal)
{
maxIndex = 2;
- maxVal = m_z;
+ maxVal =m_floats[2];
}
- if (m_unusedW > maxVal)
+ if (m_floats[3] > maxVal)
{
maxIndex = 3;
- maxVal = m_unusedW;
+ maxVal = m_floats[3];
}
@@ -371,25 +522,25 @@ public:
{
int minIndex = -1;
btScalar minVal = btScalar(1e30);
- if (m_x < minVal)
+ if (m_floats[0] < minVal)
{
minIndex = 0;
- minVal = m_x;
+ minVal = m_floats[0];
}
- if (m_y < minVal)
+ if (m_floats[1] < minVal)
{
minIndex = 1;
- minVal = m_y;
+ minVal = m_floats[1];
}
- if (m_z < minVal)
+ if (m_floats[2] < minVal)
{
minIndex = 2;
- minVal = m_z;
+ minVal =m_floats[2];
}
- if (m_unusedW < minVal)
+ if (m_floats[3] < minVal)
{
minIndex = 3;
- minVal = m_unusedW;
+ minVal = m_floats[3];
}
return minIndex;
@@ -402,6 +553,40 @@ public:
return absolute4().maxAxis4();
}
+
+
+
+ /**@brief Set x,y,z and zero w
+ * @param x Value of x
+ * @param y Value of y
+ * @param z Value of z
+ */
+
+
+/* void getValue(btScalar *m) const
+ {
+ m[0] = m_floats[0];
+ m[1] = m_floats[1];
+ m[2] =m_floats[2];
+ }
+*/
+/**@brief Set the values
+ * @param x Value of x
+ * @param y Value of y
+ * @param z Value of z
+ * @param w Value of w
+ */
+ SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w)
+ {
+ m_floats[0]=x;
+ m_floats[1]=y;
+ m_floats[2]=z;
+ m_floats[3]=w;
+ }
+
+
+
+
};