Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/include/ceres/solver.h')
-rw-r--r--extern/ceres/include/ceres/solver.h494
1 files changed, 256 insertions, 238 deletions
diff --git a/extern/ceres/include/ceres/solver.h b/extern/ceres/include/ceres/solver.h
index 0d77d242dfe..62631744fe2 100644
--- a/extern/ceres/include/ceres/solver.h
+++ b/extern/ceres/include/ceres/solver.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2015 Google Inc. All rights reserved.
+// Copyright 2019 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -32,20 +32,21 @@
#define CERES_PUBLIC_SOLVER_H_
#include <cmath>
+#include <memory>
#include <string>
+#include <unordered_set>
#include <vector>
+
#include "ceres/crs_matrix.h"
-#include "ceres/internal/macros.h"
+#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/port.h"
#include "ceres/iteration_callback.h"
#include "ceres/ordered_groups.h"
+#include "ceres/problem.h"
#include "ceres/types.h"
-#include "ceres/internal/disable_warnings.h"
namespace ceres {
-class Problem;
-
// Interface for non-linear least squares solvers.
class CERES_EXPORT Solver {
public:
@@ -57,87 +58,6 @@ class CERES_EXPORT Solver {
//
// The constants are defined inside types.h
struct CERES_EXPORT Options {
- // Default constructor that sets up a generic sparse problem.
- Options() {
- minimizer_type = TRUST_REGION;
- line_search_direction_type = LBFGS;
- line_search_type = WOLFE;
- nonlinear_conjugate_gradient_type = FLETCHER_REEVES;
- max_lbfgs_rank = 20;
- use_approximate_eigenvalue_bfgs_scaling = false;
- line_search_interpolation_type = CUBIC;
- min_line_search_step_size = 1e-9;
- line_search_sufficient_function_decrease = 1e-4;
- max_line_search_step_contraction = 1e-3;
- min_line_search_step_contraction = 0.6;
- max_num_line_search_step_size_iterations = 20;
- max_num_line_search_direction_restarts = 5;
- line_search_sufficient_curvature_decrease = 0.9;
- max_line_search_step_expansion = 10.0;
- trust_region_strategy_type = LEVENBERG_MARQUARDT;
- dogleg_type = TRADITIONAL_DOGLEG;
- use_nonmonotonic_steps = false;
- max_consecutive_nonmonotonic_steps = 5;
- max_num_iterations = 50;
- max_solver_time_in_seconds = 1e9;
- num_threads = 1;
- initial_trust_region_radius = 1e4;
- max_trust_region_radius = 1e16;
- min_trust_region_radius = 1e-32;
- min_relative_decrease = 1e-3;
- min_lm_diagonal = 1e-6;
- max_lm_diagonal = 1e32;
- max_num_consecutive_invalid_steps = 5;
- function_tolerance = 1e-6;
- gradient_tolerance = 1e-10;
- parameter_tolerance = 1e-8;
-
-#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) && !defined(CERES_ENABLE_LGPL_CODE) // NOLINT
- linear_solver_type = DENSE_QR;
-#else
- linear_solver_type = SPARSE_NORMAL_CHOLESKY;
-#endif
-
- preconditioner_type = JACOBI;
- visibility_clustering_type = CANONICAL_VIEWS;
- dense_linear_algebra_library_type = EIGEN;
-
- // Choose a default sparse linear algebra library in the order:
- //
- // SUITE_SPARSE > CX_SPARSE > EIGEN_SPARSE > NO_SPARSE
- sparse_linear_algebra_library_type = NO_SPARSE;
-#if !defined(CERES_NO_SUITESPARSE)
- sparse_linear_algebra_library_type = SUITE_SPARSE;
-#else
- #if !defined(CERES_NO_CXSPARSE)
- sparse_linear_algebra_library_type = CX_SPARSE;
- #else
- #if defined(CERES_USE_EIGEN_SPARSE)
- sparse_linear_algebra_library_type = EIGEN_SPARSE;
- #endif
- #endif
-#endif
-
- num_linear_solver_threads = 1;
- use_explicit_schur_complement = false;
- use_postordering = false;
- dynamic_sparsity = false;
- min_linear_solver_iterations = 0;
- max_linear_solver_iterations = 500;
- eta = 1e-1;
- jacobi_scaling = true;
- use_inner_iterations = false;
- inner_iteration_tolerance = 1e-3;
- logging_type = PER_MINIMIZER_ITERATION;
- minimizer_progress_to_stdout = false;
- trust_region_problem_dump_directory = "/tmp";
- trust_region_problem_dump_format_type = TEXTFILE;
- check_gradients = false;
- gradient_check_relative_precision = 1e-8;
- gradient_check_numeric_derivative_relative_step_size = 1e-6;
- update_state_every_iteration = false;
- }
-
// Returns true if the options struct has a valid
// configuration. Returns false otherwise, and fills in *error
// with a message describing the problem.
@@ -157,7 +77,7 @@ class CERES_EXPORT Solver {
// exactly or inexactly.
//
// 2. The trust region approach approximates the objective
- // function using using a model function (often a quadratic) over
+ // function using a model function (often a quadratic) over
// a subset of the search space known as the trust region. If the
// model function succeeds in minimizing the true objective
// function the trust region is expanded; conversely, otherwise it
@@ -168,11 +88,12 @@ class CERES_EXPORT Solver {
// trust region methods first choose a step size (the size of the
// trust region) and then a step direction while line search methods
// first choose a step direction and then a step size.
- MinimizerType minimizer_type;
+ MinimizerType minimizer_type = TRUST_REGION;
- LineSearchDirectionType line_search_direction_type;
- LineSearchType line_search_type;
- NonlinearConjugateGradientType nonlinear_conjugate_gradient_type;
+ LineSearchDirectionType line_search_direction_type = LBFGS;
+ LineSearchType line_search_type = WOLFE;
+ NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =
+ FLETCHER_REEVES;
// The LBFGS hessian approximation is a low rank approximation to
// the inverse of the Hessian matrix. The rank of the
@@ -197,8 +118,8 @@ class CERES_EXPORT Solver {
// method, please see:
//
// Nocedal, J. (1980). "Updating Quasi-Newton Matrices with
- // Limited Storage". Mathematics of Computation 35 (151): 773–782.
- int max_lbfgs_rank;
+ // Limited Storage". Mathematics of Computation 35 (151): 773-782.
+ int max_lbfgs_rank = 20;
// As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS),
// the initial inverse Hessian approximation is taken to be the Identity.
@@ -220,18 +141,18 @@ class CERES_EXPORT Solver {
// Oren S.S., Self-scaling variable metric (SSVM) algorithms
// Part II: Implementation and experiments, Management Science,
// 20(5), 863-874, 1974.
- bool use_approximate_eigenvalue_bfgs_scaling;
+ bool use_approximate_eigenvalue_bfgs_scaling = false;
// Degree of the polynomial used to approximate the objective
// function. Valid values are BISECTION, QUADRATIC and CUBIC.
//
// BISECTION corresponds to pure backtracking search with no
// interpolation.
- LineSearchInterpolationType line_search_interpolation_type;
+ LineSearchInterpolationType line_search_interpolation_type = CUBIC;
// If during the line search, the step_size falls below this
// value, it is truncated to zero.
- double min_line_search_step_size;
+ double min_line_search_step_size = 1e-9;
// Line search parameters.
@@ -245,7 +166,7 @@ class CERES_EXPORT Solver {
//
// f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
//
- double line_search_sufficient_function_decrease;
+ double line_search_sufficient_function_decrease = 1e-4;
// In each iteration of the line search,
//
@@ -255,7 +176,7 @@ class CERES_EXPORT Solver {
//
// 0 < max_step_contraction < min_step_contraction < 1
//
- double max_line_search_step_contraction;
+ double max_line_search_step_contraction = 1e-3;
// In each iteration of the line search,
//
@@ -265,19 +186,25 @@ class CERES_EXPORT Solver {
//
// 0 < max_step_contraction < min_step_contraction < 1
//
- double min_line_search_step_contraction;
+ double min_line_search_step_contraction = 0.6;
- // Maximum number of trial step size iterations during each line search,
- // if a step size satisfying the search conditions cannot be found within
- // this number of trials, the line search will terminate.
- int max_num_line_search_step_size_iterations;
+ // Maximum number of trial step size iterations during each line
+ // search, if a step size satisfying the search conditions cannot
+ // be found within this number of trials, the line search will
+ // terminate.
+
+ // The minimum allowed value is 0 for trust region minimizer and 1
+ // otherwise. If 0 is specified for the trust region minimizer,
+ // then line search will not be used when solving constrained
+ // optimization problems.
+ int max_num_line_search_step_size_iterations = 20;
// Maximum number of restarts of the line search direction algorithm before
// terminating the optimization. Restarts of the line search direction
// algorithm occur when the current algorithm fails to produce a new descent
// direction. This typically indicates a numerical failure, or a breakdown
// in the validity of the approximations used.
- int max_num_line_search_direction_restarts;
+ int max_num_line_search_direction_restarts = 5;
// The strong Wolfe conditions consist of the Armijo sufficient
// decrease condition, and an additional requirement that the
@@ -290,7 +217,7 @@ class CERES_EXPORT Solver {
//
// Where f() is the line search objective and f'() is the derivative
// of f w.r.t step_size (d f / d step_size).
- double line_search_sufficient_curvature_decrease;
+ double line_search_sufficient_curvature_decrease = 0.9;
// During the bracketing phase of the Wolfe search, the step size is
// increased until either a point satisfying the Wolfe conditions is
@@ -301,12 +228,12 @@ class CERES_EXPORT Solver {
// new_step_size <= max_step_expansion * step_size.
//
// By definition for expansion, max_step_expansion > 1.0.
- double max_line_search_step_expansion;
+ double max_line_search_step_expansion = 10.0;
- TrustRegionStrategyType trust_region_strategy_type;
+ TrustRegionStrategyType trust_region_strategy_type = LEVENBERG_MARQUARDT;
// Type of dogleg strategy to use.
- DoglegType dogleg_type;
+ DoglegType dogleg_type = TRADITIONAL_DOGLEG;
// The classical trust region methods are descent methods, in that
// they only accept a point if it strictly reduces the value of
@@ -317,7 +244,7 @@ class CERES_EXPORT Solver {
// in the value of the objective function.
//
// This is because allowing for non-decreasing objective function
- // values in a princpled manner allows the algorithm to "jump over
+ // values in a principled manner allows the algorithm to "jump over
// boulders" as the method is not restricted to move into narrow
// valleys while preserving its convergence properties.
//
@@ -333,30 +260,30 @@ class CERES_EXPORT Solver {
// than the minimum value encountered over the course of the
// optimization, the final parameters returned to the user are the
// ones corresponding to the minimum cost over all iterations.
- bool use_nonmonotonic_steps;
- int max_consecutive_nonmonotonic_steps;
+ bool use_nonmonotonic_steps = false;
+ int max_consecutive_nonmonotonic_steps = 5;
// Maximum number of iterations for the minimizer to run for.
- int max_num_iterations;
+ int max_num_iterations = 50;
// Maximum time for which the minimizer should run for.
- double max_solver_time_in_seconds;
+ double max_solver_time_in_seconds = 1e9;
// Number of threads used by Ceres for evaluating the cost and
// jacobians.
- int num_threads;
+ int num_threads = 1;
// Trust region minimizer settings.
- double initial_trust_region_radius;
- double max_trust_region_radius;
+ double initial_trust_region_radius = 1e4;
+ double max_trust_region_radius = 1e16;
// Minimizer terminates when the trust region radius becomes
// smaller than this value.
- double min_trust_region_radius;
+ double min_trust_region_radius = 1e-32;
// Lower bound for the relative decrease before a step is
// accepted.
- double min_relative_decrease;
+ double min_relative_decrease = 1e-3;
// For the Levenberg-Marquadt algorithm, the scaled diagonal of
// the normal equations J'J is used to control the size of the
@@ -365,46 +292,75 @@ class CERES_EXPORT Solver {
// fail. max_lm_diagonal and min_lm_diagonal, clamp the values of
// diag(J'J) from above and below. In the normal course of
// operation, the user should not have to modify these parameters.
- double min_lm_diagonal;
- double max_lm_diagonal;
+ double min_lm_diagonal = 1e-6;
+ double max_lm_diagonal = 1e32;
// Sometimes due to numerical conditioning problems or linear
// solver flakiness, the trust region strategy may return a
// numerically invalid step that can be fixed by reducing the
// trust region size. So the TrustRegionMinimizer allows for a few
// successive invalid steps before it declares NUMERICAL_FAILURE.
- int max_num_consecutive_invalid_steps;
+ int max_num_consecutive_invalid_steps = 5;
// Minimizer terminates when
//
// (new_cost - old_cost) < function_tolerance * old_cost;
//
- double function_tolerance;
+ double function_tolerance = 1e-6;
// Minimizer terminates when
//
// max_i |x - Project(Plus(x, -g(x))| < gradient_tolerance
//
// This value should typically be 1e-4 * function_tolerance.
- double gradient_tolerance;
+ double gradient_tolerance = 1e-10;
// Minimizer terminates when
//
// |step|_2 <= parameter_tolerance * ( |x|_2 + parameter_tolerance)
//
- double parameter_tolerance;
+ double parameter_tolerance = 1e-8;
// Linear least squares solver options -------------------------------------
- LinearSolverType linear_solver_type;
+ LinearSolverType linear_solver_type =
+#if defined(CERES_NO_SPARSE)
+ DENSE_QR;
+#else
+ SPARSE_NORMAL_CHOLESKY;
+#endif
// Type of preconditioner to use with the iterative linear solvers.
- PreconditionerType preconditioner_type;
+ PreconditionerType preconditioner_type = JACOBI;
// Type of clustering algorithm to use for visibility based
// preconditioning. This option is used only when the
// preconditioner_type is CLUSTER_JACOBI or CLUSTER_TRIDIAGONAL.
- VisibilityClusteringType visibility_clustering_type;
+ VisibilityClusteringType visibility_clustering_type = CANONICAL_VIEWS;
+
+ // Subset preconditioner is a preconditioner for problems with
+ // general sparsity. Given a subset of residual blocks of a
+ // problem, it uses the corresponding subset of the rows of the
+ // Jacobian to construct a preconditioner.
+ //
+ // Suppose the Jacobian J has been horizontally partitioned as
+ //
+ // J = [P]
+ // [Q]
+ //
+ // Where, Q is the set of rows corresponding to the residual
+ // blocks in residual_blocks_for_subset_preconditioner.
+ //
+ // The preconditioner is the inverse of the matrix Q'Q.
+ //
+ // Obviously, the efficacy of the preconditioner depends on how
+ // well the matrix Q approximates J'J, or how well the chosen
+ // residual blocks approximate the non-linear least squares
+ // problem.
+ //
+ // If Solver::Options::preconditioner_type == SUBSET, then
+ // residual_blocks_for_subset_preconditioner must be non-empty.
+ std::unordered_set<ResidualBlockId> residual_blocks_for_subset_preconditioner;
// Ceres supports using multiple dense linear algebra libraries
// for dense matrix factorizations. Currently EIGEN and LAPACK are
@@ -413,22 +369,28 @@ class CERES_EXPORT Solver {
// available.
//
// This setting affects the DENSE_QR, DENSE_NORMAL_CHOLESKY and
- // DENSE_SCHUR solvers. For small to moderate sized probem EIGEN
+ // DENSE_SCHUR solvers. For small to moderate sized problem EIGEN
// is a fine choice but for large problems, an optimized LAPACK +
// BLAS implementation can make a substantial difference in
// performance.
- DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
+ DenseLinearAlgebraLibraryType dense_linear_algebra_library_type = EIGEN;
// Ceres supports using multiple sparse linear algebra libraries
// for sparse matrix ordering and factorizations. Currently,
// SUITE_SPARSE and CX_SPARSE are the valid choices, depending on
// whether they are linked into Ceres at build time.
- SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
-
- // Number of threads used by Ceres to solve the Newton
- // step. Currently only the SPARSE_SCHUR solver is capable of
- // using this setting.
- int num_linear_solver_threads;
+ SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type =
+#if !defined(CERES_NO_SUITESPARSE)
+ SUITE_SPARSE;
+#elif defined(CERES_USE_EIGEN_SPARSE)
+ EIGEN_SPARSE;
+#elif !defined(CERES_NO_CXSPARSE)
+ CX_SPARSE;
+#elif !defined(CERES_NO_ACCELERATE_SPARSE)
+ ACCELERATE_SPARSE;
+#else
+ NO_SPARSE;
+#endif
// The order in which variables are eliminated in a linear solver
// can have a significant of impact on the efficiency and accuracy
@@ -456,7 +418,7 @@ class CERES_EXPORT Solver {
//
// Given such an ordering, Ceres ensures that the parameter blocks in
// the lowest numbered group are eliminated first, and then the
- // parmeter blocks in the next lowest numbered group and so on. Within
+ // parameter blocks in the next lowest numbered group and so on. Within
// each group, Ceres is free to order the parameter blocks as it
// chooses.
//
@@ -496,13 +458,13 @@ class CERES_EXPORT Solver {
// the parameter blocks into two groups, one for the points and one
// for the cameras, where the group containing the points has an id
// smaller than the group containing cameras.
- shared_ptr<ParameterBlockOrdering> linear_solver_ordering;
+ std::shared_ptr<ParameterBlockOrdering> linear_solver_ordering;
// Use an explicitly computed Schur complement matrix with
// ITERATIVE_SCHUR.
//
// By default this option is disabled and ITERATIVE_SCHUR
- // evaluates evaluates matrix-vector products between the Schur
+ // evaluates matrix-vector products between the Schur
// complement and a vector implicitly by exploiting the algebraic
// expression for the Schur complement.
//
@@ -519,7 +481,7 @@ class CERES_EXPORT Solver {
//
// NOTE: This option can only be used with the SCHUR_JACOBI
// preconditioner.
- bool use_explicit_schur_complement;
+ bool use_explicit_schur_complement = false;
// Sparse Cholesky factorization algorithms use a fill-reducing
// ordering to permute the columns of the Jacobian matrix. There
@@ -540,7 +502,7 @@ class CERES_EXPORT Solver {
// reordering algorithm which has slightly better runtime
// performance at the expense of an extra copy of the Jacobian
// matrix. Setting use_postordering to true enables this tradeoff.
- bool use_postordering;
+ bool use_postordering = false;
// Some non-linear least squares problems are symbolically dense but
// numerically sparse. i.e. at any given state only a small number
@@ -554,8 +516,32 @@ class CERES_EXPORT Solver {
// then it is probably best to keep this false, otherwise it will
// likely lead to worse performance.
- // This settings affects the SPARSE_NORMAL_CHOLESKY solver.
- bool dynamic_sparsity;
+ // This settings only affects the SPARSE_NORMAL_CHOLESKY solver.
+ bool dynamic_sparsity = false;
+
+ // TODO(sameeragarwal): Further expand the documentation for the
+ // following two options.
+
+ // NOTE1: EXPERIMENTAL FEATURE, UNDER DEVELOPMENT, USE AT YOUR OWN RISK.
+ //
+ // If use_mixed_precision_solves is true, the Gauss-Newton matrix
+ // is computed in double precision, but its factorization is
+ // computed in single precision. This can result in significant
+ // time and memory savings at the cost of some accuracy in the
+ // Gauss-Newton step. Iterative refinement is used to recover some
+ // of this accuracy back.
+ //
+ // If use_mixed_precision_solves is true, we recommend setting
+ // max_num_refinement_iterations to 2-3.
+ //
+ // NOTE2: The following two options are currently only applicable
+ // if sparse_linear_algebra_library_type is EIGEN_SPARSE and
+ // linear_solver_type is SPARSE_NORMAL_CHOLESKY, or SPARSE_SCHUR.
+ bool use_mixed_precision_solves = false;
+
+ // Number steps of the iterative refinement process to run when
+ // computing the Gauss-Newton step.
+ int max_num_refinement_iterations = 0;
// Some non-linear least squares problems have additional
// structure in the way the parameter blocks interact that it is
@@ -583,7 +569,7 @@ class CERES_EXPORT Solver {
// known as Wiberg's algorithm.
//
// Ruhe & Wedin (Algorithms for Separable Nonlinear Least Squares
- // Problems, SIAM Reviews, 22(3), 1980) present an analyis of
+ // Problems, SIAM Reviews, 22(3), 1980) present an analysis of
// various algorithms for solving separable non-linear least
// squares problems and refer to "Variable Projection" as
// Algorithm I in their paper.
@@ -615,7 +601,7 @@ class CERES_EXPORT Solver {
// displays better convergence behaviour per iteration. Setting
// Solver::Options::num_threads to the maximum number possible is
// highly recommended.
- bool use_inner_iterations;
+ bool use_inner_iterations = false;
// If inner_iterations is true, then the user has two choices.
//
@@ -627,7 +613,7 @@ class CERES_EXPORT Solver {
// the lower numbered groups are optimized before the higher
// number groups. Each group must be an independent set. Not
// all parameter blocks need to be present in the ordering.
- shared_ptr<ParameterBlockOrdering> inner_iteration_ordering;
+ std::shared_ptr<ParameterBlockOrdering> inner_iteration_ordering;
// Generally speaking, inner iterations make significant progress
// in the early stages of the solve and then their contribution
@@ -638,17 +624,17 @@ class CERES_EXPORT Solver {
// inner iterations drops below inner_iteration_tolerance, the use
// of inner iterations in subsequent trust region minimizer
// iterations is disabled.
- double inner_iteration_tolerance;
+ double inner_iteration_tolerance = 1e-3;
// Minimum number of iterations for which the linear solver should
// run, even if the convergence criterion is satisfied.
- int min_linear_solver_iterations;
+ int min_linear_solver_iterations = 0;
// Maximum number of iterations for which the linear solver should
// run. If the solver does not converge in less than
// max_linear_solver_iterations, then it returns MAX_ITERATIONS,
// as its termination type.
- int max_linear_solver_iterations;
+ int max_linear_solver_iterations = 500;
// Forcing sequence parameter. The truncated Newton solver uses
// this number to control the relative accuracy with which the
@@ -658,21 +644,21 @@ class CERES_EXPORT Solver {
// it to terminate the iterations when
//
// (Q_i - Q_{i-1})/Q_i < eta/i
- double eta;
+ double eta = 1e-1;
// Normalize the jacobian using Jacobi scaling before calling
// the linear least squares solver.
- bool jacobi_scaling;
+ bool jacobi_scaling = true;
// Logging options ---------------------------------------------------------
- LoggingType logging_type;
+ LoggingType logging_type = PER_MINIMIZER_ITERATION;
// By default the Minimizer progress is logged to VLOG(1), which
// is sent to STDERR depending on the vlog level. If this flag is
// set to true, and logging_type is not SILENT, the logging output
// is sent to STDOUT.
- bool minimizer_progress_to_stdout;
+ bool minimizer_progress_to_stdout = false;
// List of iterations at which the minimizer should dump the trust
// region problem. Useful for testing and benchmarking. If empty
@@ -683,8 +669,8 @@ class CERES_EXPORT Solver {
// non-empty if trust_region_minimizer_iterations_to_dump is
// non-empty and trust_region_problem_dump_format_type is not
// CONSOLE.
- std::string trust_region_problem_dump_directory;
- DumpFormatType trust_region_problem_dump_format_type;
+ std::string trust_region_problem_dump_directory = "/tmp";
+ DumpFormatType trust_region_problem_dump_format_type = TEXTFILE;
// Finite differences options ----------------------------------------------
@@ -694,12 +680,12 @@ class CERES_EXPORT Solver {
// etc), then also computing it using finite differences. The
// results are compared, and if they differ substantially, details
// are printed to the log.
- bool check_gradients;
+ bool check_gradients = false;
// Relative precision to check for in the gradient checker. If the
// relative difference between an element in a jacobian exceeds
// this number, then the jacobian for that cost term is dumped.
- double gradient_check_relative_precision;
+ double gradient_check_relative_precision = 1e-8;
// WARNING: This option only applies to the to the numeric
// differentiation used for checking the user provided derivatives
@@ -723,7 +709,7 @@ class CERES_EXPORT Solver {
//
// The finite differencing is done along each dimension. The
// reason to use a relative (rather than absolute) step size is
- // that this way, numeric differentation works for functions where
+ // that this way, numeric differentiation works for functions where
// the arguments are typically large (e.g. 1e9) and when the
// values are small (e.g. 1e-5). It is possible to construct
// "torture cases" which break this finite difference heuristic,
@@ -733,14 +719,21 @@ class CERES_EXPORT Solver {
// theory a good choice is sqrt(eps) * x, which for doubles means
// about 1e-8 * x. However, I have found this number too
// optimistic. This number should be exposed for users to change.
- double gradient_check_numeric_derivative_relative_step_size;
-
- // If true, the user's parameter blocks are updated at the end of
- // every Minimizer iteration, otherwise they are updated when the
- // Minimizer terminates. This is useful if, for example, the user
- // wishes to visualize the state of the optimization every
- // iteration.
- bool update_state_every_iteration;
+ double gradient_check_numeric_derivative_relative_step_size = 1e-6;
+
+ // If update_state_every_iteration is true, then Ceres Solver will
+ // guarantee that at the end of every iteration and before any
+ // user provided IterationCallback is called, the parameter blocks
+ // are updated to the current best solution found by the
+ // solver. Thus the IterationCallback can inspect the values of
+ // the parameter blocks for purposes of computation, visualization
+ // or termination.
+
+ // If update_state_every_iteration is false then there is no such
+ // guarantee, and user provided IterationCallbacks should not
+ // expect to look at the parameter blocks and interpret their
+ // values.
+ bool update_state_every_iteration = false;
// Callbacks that are executed at the end of each iteration of the
// Minimizer. An iteration may terminate midway, either due to
@@ -749,20 +742,18 @@ class CERES_EXPORT Solver {
// executed.
// Callbacks are executed in the order that they are specified in
- // this vector. By default, parameter blocks are updated only at
- // the end of the optimization, i.e when the Minimizer
- // terminates. This behaviour is controlled by
- // update_state_every_variable. If the user wishes to have access
- // to the update parameter blocks when his/her callbacks are
- // executed, then set update_state_every_iteration to true.
+ // this vector. By default, parameter blocks are updated only at the
+ // end of the optimization, i.e when the Minimizer terminates. This
+ // behaviour is controlled by update_state_every_iteration. If the
+ // user wishes to have access to the updated parameter blocks when
+ // his/her callbacks are executed, then set
+ // update_state_every_iteration to true.
//
// The solver does NOT take ownership of these pointers.
std::vector<IterationCallback*> callbacks;
};
struct CERES_EXPORT Summary {
- Summary();
-
// A brief one line description of the state of the solver after
// termination.
std::string BriefReport() const;
@@ -774,25 +765,25 @@ class CERES_EXPORT Solver {
bool IsSolutionUsable() const;
// Minimizer summary -------------------------------------------------
- MinimizerType minimizer_type;
+ MinimizerType minimizer_type = TRUST_REGION;
- TerminationType termination_type;
+ TerminationType termination_type = FAILURE;
// Reason why the solver terminated.
- std::string message;
+ std::string message = "ceres::Solve was not called.";
// Cost of the problem (value of the objective function) before
// the optimization.
- double initial_cost;
+ double initial_cost = -1.0;
// Cost of the problem (value of the objective function) after the
// optimization.
- double final_cost;
+ double final_cost = -1.0;
// The part of the total cost that comes from residual blocks that
// were held fixed by the preprocessor because all the parameter
// blocks that they depend on were fixed.
- double fixed_cost;
+ double fixed_cost = -1.0;
// IterationSummary for each minimizer iteration in order.
std::vector<IterationSummary> iterations;
@@ -801,22 +792,22 @@ class CERES_EXPORT Solver {
// accepted. Unless use_non_monotonic_steps is true this is also
// the number of steps in which the objective function value/cost
// went down.
- int num_successful_steps;
+ int num_successful_steps = -1;
// Number of minimizer iterations in which the step was rejected
// either because it did not reduce the cost enough or the step
// was not numerically valid.
- int num_unsuccessful_steps;
+ int num_unsuccessful_steps = -1;
// Number of times inner iterations were performed.
- int num_inner_iteration_steps;
+ int num_inner_iteration_steps = -1;
// Total number of iterations inside the line search algorithm
// across all invocations. We call these iterations "steps" to
// distinguish them from the outer iterations of the line search
// and trust region minimizer algorithms which call the line
// search algorithm as a subroutine.
- int num_line_search_steps;
+ int num_line_search_steps = -1;
// All times reported below are wall times.
@@ -824,31 +815,42 @@ class CERES_EXPORT Solver {
// occurs, Ceres performs a number of preprocessing steps. These
// include error checks, memory allocations, and reorderings. This
// time is accounted for as preprocessing time.
- double preprocessor_time_in_seconds;
+ double preprocessor_time_in_seconds = -1.0;
// Time spent in the TrustRegionMinimizer.
- double minimizer_time_in_seconds;
+ double minimizer_time_in_seconds = -1.0;
// After the Minimizer is finished, some time is spent in
// re-evaluating residuals etc. This time is accounted for in the
// postprocessor time.
- double postprocessor_time_in_seconds;
+ double postprocessor_time_in_seconds = -1.0;
// Some total of all time spent inside Ceres when Solve is called.
- double total_time_in_seconds;
+ double total_time_in_seconds = -1.0;
// Time (in seconds) spent in the linear solver computing the
// trust region step.
- double linear_solver_time_in_seconds;
+ double linear_solver_time_in_seconds = -1.0;
+
+ // Number of times the Newton step was computed by solving a
+ // linear system. This does not include linear solves used by
+ // inner iterations.
+ int num_linear_solves = -1;
// Time (in seconds) spent evaluating the residual vector.
- double residual_evaluation_time_in_seconds;
+ double residual_evaluation_time_in_seconds = 1.0;
+
+ // Number of residual only evaluations.
+ int num_residual_evaluations = -1;
// Time (in seconds) spent evaluating the jacobian matrix.
- double jacobian_evaluation_time_in_seconds;
+ double jacobian_evaluation_time_in_seconds = -1.0;
+
+ // Number of Jacobian (and residual) evaluations.
+ int num_jacobian_evaluations = -1;
// Time (in seconds) spent doing inner iterations.
- double inner_iteration_time_in_seconds;
+ double inner_iteration_time_in_seconds = -1.0;
// Cumulative timing information for line searches performed as part of the
// solve. Note that in addition to the case when the Line Search minimizer
@@ -857,89 +859,89 @@ class CERES_EXPORT Solver {
// Time (in seconds) spent evaluating the univariate cost function as part
// of a line search.
- double line_search_cost_evaluation_time_in_seconds;
+ double line_search_cost_evaluation_time_in_seconds = -1.0;
// Time (in seconds) spent evaluating the gradient of the univariate cost
// function as part of a line search.
- double line_search_gradient_evaluation_time_in_seconds;
+ double line_search_gradient_evaluation_time_in_seconds = -1.0;
// Time (in seconds) spent minimizing the interpolating polynomial
// to compute the next candidate step size as part of a line search.
- double line_search_polynomial_minimization_time_in_seconds;
+ double line_search_polynomial_minimization_time_in_seconds = -1.0;
// Total time (in seconds) spent performing line searches.
- double line_search_total_time_in_seconds;
+ double line_search_total_time_in_seconds = -1.0;
// Number of parameter blocks in the problem.
- int num_parameter_blocks;
+ int num_parameter_blocks = -1;
- // Number of parameters in the probem.
- int num_parameters;
+ // Number of parameters in the problem.
+ int num_parameters = -1;
// Dimension of the tangent space of the problem (or the number of
// columns in the Jacobian for the problem). This is different
// from num_parameters if a parameter block is associated with a
// LocalParameterization
- int num_effective_parameters;
+ int num_effective_parameters = -1;
// Number of residual blocks in the problem.
- int num_residual_blocks;
+ int num_residual_blocks = -1;
// Number of residuals in the problem.
- int num_residuals;
+ int num_residuals = -1;
// Number of parameter blocks in the problem after the inactive
// and constant parameter blocks have been removed. A parameter
// block is inactive if no residual block refers to it.
- int num_parameter_blocks_reduced;
+ int num_parameter_blocks_reduced = -1;
// Number of parameters in the reduced problem.
- int num_parameters_reduced;
+ int num_parameters_reduced = -1;
// Dimension of the tangent space of the reduced problem (or the
// number of columns in the Jacobian for the reduced
// problem). This is different from num_parameters_reduced if a
// parameter block in the reduced problem is associated with a
// LocalParameterization.
- int num_effective_parameters_reduced;
+ int num_effective_parameters_reduced = -1;
// Number of residual blocks in the reduced problem.
- int num_residual_blocks_reduced;
+ int num_residual_blocks_reduced = -1;
// Number of residuals in the reduced problem.
- int num_residuals_reduced;
+ int num_residuals_reduced = -1;
// Is the reduced problem bounds constrained.
- bool is_constrained;
+ bool is_constrained = false;
// Number of threads specified by the user for Jacobian and
// residual evaluation.
- int num_threads_given;
+ int num_threads_given = -1;
// Number of threads actually used by the solver for Jacobian and
// residual evaluation. This number is not equal to
// num_threads_given if OpenMP is not available.
- int num_threads_used;
-
- // Number of threads specified by the user for solving the trust
- // region problem.
- int num_linear_solver_threads_given;
-
- // Number of threads actually used by the solver for solving the
- // trust region problem. This number is not equal to
- // num_threads_given if OpenMP is not available.
- int num_linear_solver_threads_used;
+ int num_threads_used = -1;
// Type of the linear solver requested by the user.
- LinearSolverType linear_solver_type_given;
-
+ LinearSolverType linear_solver_type_given =
+#if defined(CERES_NO_SPARSE)
+ DENSE_QR;
+#else
+ SPARSE_NORMAL_CHOLESKY;
+#endif
// Type of the linear solver actually used. This may be different
// from linear_solver_type_given if Ceres determines that the
// problem structure is not compatible with the linear solver
// requested or if the linear solver requested by the user is not
// available, e.g. The user requested SPARSE_NORMAL_CHOLESKY but
// no sparse linear algebra library was available.
- LinearSolverType linear_solver_type_used;
+ LinearSolverType linear_solver_type_used =
+#if defined(CERES_NO_SPARSE)
+ DENSE_QR;
+#else
+ SPARSE_NORMAL_CHOLESKY;
+#endif
// Size of the elimination groups given by the user as hints to
// the linear solver.
@@ -953,15 +955,29 @@ class CERES_EXPORT Solver {
// parameter blocks.
std::vector<int> linear_solver_ordering_used;
+ // For Schur type linear solvers, this string describes the
+ // template specialization which was detected in the problem and
+ // should be used.
+ std::string schur_structure_given;
+
+ // This is the Schur template specialization that was actually
+ // instantiated and used. The reason this will be different from
+ // schur_structure_given is because the corresponding template
+ // specialization does not exist.
+ //
+ // Template specializations can be added to ceres by editing
+ // internal/ceres/generate_template_specializations.py
+ std::string schur_structure_used;
+
// True if the user asked for inner iterations to be used as part
// of the optimization.
- bool inner_iterations_given;
+ bool inner_iterations_given = false;
// True if the user asked for inner iterations to be used as part
// of the optimization and the problem structure was such that
// they were actually performed. e.g., in a problem with just one
// parameter block, inner iterations are not performed.
- bool inner_iterations_used;
+ bool inner_iterations_used = false;
// Size of the parameter groups given by the user for performing
// inner iterations.
@@ -976,57 +992,59 @@ class CERES_EXPORT Solver {
std::vector<int> inner_iteration_ordering_used;
// Type of the preconditioner requested by the user.
- PreconditionerType preconditioner_type_given;
+ PreconditionerType preconditioner_type_given = IDENTITY;
// Type of the preconditioner actually used. This may be different
// from linear_solver_type_given if Ceres determines that the
// problem structure is not compatible with the linear solver
// requested or if the linear solver requested by the user is not
// available.
- PreconditionerType preconditioner_type_used;
+ PreconditionerType preconditioner_type_used = IDENTITY;
// Type of clustering algorithm used for visibility based
// preconditioning. Only meaningful when the preconditioner_type
// is CLUSTER_JACOBI or CLUSTER_TRIDIAGONAL.
- VisibilityClusteringType visibility_clustering_type;
+ VisibilityClusteringType visibility_clustering_type = CANONICAL_VIEWS;
// Type of trust region strategy.
- TrustRegionStrategyType trust_region_strategy_type;
+ TrustRegionStrategyType trust_region_strategy_type = LEVENBERG_MARQUARDT;
// Type of dogleg strategy used for solving the trust region
// problem.
- DoglegType dogleg_type;
+ DoglegType dogleg_type = TRADITIONAL_DOGLEG;
// Type of the dense linear algebra library used.
- DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
+ DenseLinearAlgebraLibraryType dense_linear_algebra_library_type = EIGEN;
// Type of the sparse linear algebra library used.
- SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
+ SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type =
+ NO_SPARSE;
// Type of line search direction used.
- LineSearchDirectionType line_search_direction_type;
+ LineSearchDirectionType line_search_direction_type = LBFGS;
// Type of the line search algorithm used.
- LineSearchType line_search_type;
+ LineSearchType line_search_type = WOLFE;
// When performing line search, the degree of the polynomial used
// to approximate the objective function.
- LineSearchInterpolationType line_search_interpolation_type;
+ LineSearchInterpolationType line_search_interpolation_type = CUBIC;
// If the line search direction is NONLINEAR_CONJUGATE_GRADIENT,
// then this indicates the particular variant of non-linear
// conjugate gradient used.
- NonlinearConjugateGradientType nonlinear_conjugate_gradient_type;
+ NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =
+ FLETCHER_REEVES;
// If the type of the line search direction is LBFGS, then this
// indicates the rank of the Hessian approximation.
- int max_lbfgs_rank;
+ int max_lbfgs_rank = -1;
};
// Once a least squares problem has been built, this function takes
// the problem and optimizes it based on the values of the options
// parameters. Upon return, a detailed summary of the work performed
- // by the preprocessor, the non-linear minmizer and the linear
+ // by the preprocessor, the non-linear minimizer and the linear
// solver are reported in the summary object.
virtual void Solve(const Options& options,
Problem* problem,
@@ -1035,8 +1053,8 @@ class CERES_EXPORT Solver {
// Helper function which avoids going through the interface.
CERES_EXPORT void Solve(const Solver::Options& options,
- Problem* problem,
- Solver::Summary* summary);
+ Problem* problem,
+ Solver::Summary* summary);
} // namespace ceres