Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/internal/ceres/cxsparse.cc')
-rw-r--r--extern/ceres/internal/ceres/cxsparse.cc37
1 files changed, 19 insertions, 18 deletions
diff --git a/extern/ceres/internal/ceres/cxsparse.cc b/extern/ceres/internal/ceres/cxsparse.cc
index 0167f988648..b1eb2055e35 100644
--- a/extern/ceres/internal/ceres/cxsparse.cc
+++ b/extern/ceres/internal/ceres/cxsparse.cc
@@ -29,10 +29,11 @@
// Author: strandmark@google.com (Petter Strandmark)
// This include must come before any #ifndef check on Ceres compile options.
-#include "ceres/internal/port.h"
+#include "ceres/internal/config.h"
#ifndef CERES_NO_CXSPARSE
+#include <memory>
#include <string>
#include <vector>
@@ -47,7 +48,7 @@ namespace internal {
using std::vector;
-CXSparse::CXSparse() : scratch_(NULL), scratch_size_(0) {}
+CXSparse::CXSparse() : scratch_(nullptr), scratch_size_(0) {}
CXSparse::~CXSparse() {
if (scratch_size_ > 0) {
@@ -116,7 +117,7 @@ cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A,
block_matrix.nzmax = block_rows.size();
block_matrix.p = &block_cols[0];
block_matrix.i = &block_rows[0];
- block_matrix.x = NULL;
+ block_matrix.x = nullptr;
int* ordering = cs_amd(1, &block_matrix);
vector<int> block_ordering(num_row_blocks, -1);
@@ -126,7 +127,7 @@ cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A,
vector<int> scalar_ordering;
BlockOrderingToScalarOrdering(row_blocks, block_ordering, &scalar_ordering);
- cs_dis* symbolic_factor =
+ auto* symbolic_factor =
reinterpret_cast<cs_dis*>(cs_calloc(1, sizeof(cs_dis)));
symbolic_factor->pinv = cs_pinv(&scalar_ordering[0], A->n);
cs* permuted_A = cs_symperm(A, symbolic_factor->pinv, 0);
@@ -138,7 +139,7 @@ cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A,
cs_free(postordering);
cs_spfree(permuted_A);
- symbolic_factor->cp = (int*)cs_malloc(A->n + 1, sizeof(int));
+ symbolic_factor->cp = static_cast<int*>(cs_malloc(A->n + 1, sizeof(int)));
symbolic_factor->lnz = cs_cumsum(symbolic_factor->cp, column_counts, A->n);
symbolic_factor->unz = symbolic_factor->lnz;
@@ -146,7 +147,7 @@ cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A,
if (symbolic_factor->lnz < 0) {
cs_sfree(symbolic_factor);
- symbolic_factor = NULL;
+ symbolic_factor = nullptr;
}
return symbolic_factor;
@@ -206,8 +207,8 @@ CompressedRowSparseMatrix::StorageType CXSparseCholesky::StorageType() const {
CXSparseCholesky::CXSparseCholesky(const OrderingType ordering_type)
: ordering_type_(ordering_type),
- symbolic_factor_(NULL),
- numeric_factor_(NULL) {}
+ symbolic_factor_(nullptr),
+ numeric_factor_(nullptr) {}
CXSparseCholesky::~CXSparseCholesky() {
FreeSymbolicFactorization();
@@ -217,14 +218,14 @@ CXSparseCholesky::~CXSparseCholesky() {
LinearSolverTerminationType CXSparseCholesky::Factorize(
CompressedRowSparseMatrix* lhs, std::string* message) {
CHECK_EQ(lhs->storage_type(), StorageType());
- if (lhs == NULL) {
- *message = "Failure: Input lhs is NULL.";
+ if (lhs == nullptr) {
+ *message = "Failure: Input lhs is nullptr.";
return LINEAR_SOLVER_FATAL_ERROR;
}
cs_di cs_lhs = cs_.CreateSparseMatrixTransposeView(lhs);
- if (symbolic_factor_ == NULL) {
+ if (symbolic_factor_ == nullptr) {
if (ordering_type_ == NATURAL) {
symbolic_factor_ = cs_.AnalyzeCholeskyWithNaturalOrdering(&cs_lhs);
} else {
@@ -236,7 +237,7 @@ LinearSolverTerminationType CXSparseCholesky::Factorize(
}
}
- if (symbolic_factor_ == NULL) {
+ if (symbolic_factor_ == nullptr) {
*message = "CXSparse Failure : Symbolic factorization failed.";
return LINEAR_SOLVER_FATAL_ERROR;
}
@@ -244,7 +245,7 @@ LinearSolverTerminationType CXSparseCholesky::Factorize(
FreeNumericFactorization();
numeric_factor_ = cs_.Cholesky(&cs_lhs, symbolic_factor_);
- if (numeric_factor_ == NULL) {
+ if (numeric_factor_ == nullptr) {
*message = "CXSparse Failure : Numeric factorization failed.";
return LINEAR_SOLVER_FAILURE;
}
@@ -255,7 +256,7 @@ LinearSolverTerminationType CXSparseCholesky::Factorize(
LinearSolverTerminationType CXSparseCholesky::Solve(const double* rhs,
double* solution,
std::string* message) {
- CHECK(numeric_factor_ != NULL)
+ CHECK(numeric_factor_ != nullptr)
<< "Solve called without a call to Factorize first.";
const int num_cols = numeric_factor_->L->n;
memcpy(solution, rhs, num_cols * sizeof(*solution));
@@ -264,16 +265,16 @@ LinearSolverTerminationType CXSparseCholesky::Solve(const double* rhs,
}
void CXSparseCholesky::FreeSymbolicFactorization() {
- if (symbolic_factor_ != NULL) {
+ if (symbolic_factor_ != nullptr) {
cs_.Free(symbolic_factor_);
- symbolic_factor_ = NULL;
+ symbolic_factor_ = nullptr;
}
}
void CXSparseCholesky::FreeNumericFactorization() {
- if (numeric_factor_ != NULL) {
+ if (numeric_factor_ != nullptr) {
cs_.Free(numeric_factor_);
- numeric_factor_ = NULL;
+ numeric_factor_ = nullptr;
}
}