Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/bvh/bvh8.cpp')
-rw-r--r--intern/cycles/bvh/bvh8.cpp515
1 files changed, 515 insertions, 0 deletions
diff --git a/intern/cycles/bvh/bvh8.cpp b/intern/cycles/bvh/bvh8.cpp
new file mode 100644
index 00000000000..e8b6726602c
--- /dev/null
+++ b/intern/cycles/bvh/bvh8.cpp
@@ -0,0 +1,515 @@
+/*
+Copyright (c) 2017, Intel Corporation
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+* Redistributions of source code must retain the above copyright notice,
+this list of conditions and the following disclaimer.
+* Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+* Neither the name of Intel Corporation nor the names of its contributors
+may be used to endorse or promote products derived from this software
+without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "bvh/bvh8.h"
+
+#include "render/mesh.h"
+#include "render/object.h"
+
+#include "bvh/bvh_node.h"
+#include "bvh/bvh_unaligned.h"
+
+CCL_NAMESPACE_BEGIN
+
+BVH8::BVH8(const BVHParams& params_, const vector<Object*>& objects_)
+: BVH(params_, objects_)
+{
+}
+
+void BVH8::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf)
+{
+ float4 data[BVH_ONODE_LEAF_SIZE];
+ memset(data, 0, sizeof(data));
+ if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
+ /* object */
+ data[0].x = __int_as_float(~(leaf->lo));
+ data[0].y = __int_as_float(0);
+ }
+ else {
+ /* triangle */
+ data[0].x = __int_as_float(leaf->lo);
+ data[0].y = __int_as_float(leaf->hi);
+ }
+ data[0].z = __uint_as_float(leaf->visibility);
+ if(leaf->num_triangles() != 0) {
+ data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
+ }
+
+ memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_ONODE_LEAF_SIZE);
+}
+
+void BVH8::pack_inner(const BVHStackEntry& e,
+ const BVHStackEntry *en,
+ int num)
+{
+ bool has_unaligned = false;
+ /* Check whether we have to create unaligned node or all nodes are aligned
+ * and we can cut some corner here.
+ */
+ if(params.use_unaligned_nodes) {
+ for(int i = 0; i < num; i++) {
+ if(en[i].node->is_unaligned) {
+ has_unaligned = true;
+ break;
+ }
+ }
+ }
+ if(has_unaligned) {
+ /* There's no unaligned children, pack into AABB node. */
+ pack_unaligned_inner(e, en, num);
+ }
+ else {
+ /* Create unaligned node with orientation transform for each of the
+ * children.
+ */
+ pack_aligned_inner(e, en, num);
+ }
+}
+
+void BVH8::pack_aligned_inner(const BVHStackEntry& e,
+ const BVHStackEntry *en,
+ int num)
+{
+ BoundBox bounds[8];
+ int child[8];
+ for(int i = 0; i < num; ++i) {
+ bounds[i] = en[i].node->bounds;
+ child[i] = en[i].encodeIdx();
+ }
+ pack_aligned_node(e.idx,
+ bounds,
+ child,
+ e.node->visibility,
+ e.node->time_from,
+ e.node->time_to,
+ num);
+}
+
+void BVH8::pack_aligned_node(int idx,
+ const BoundBox *bounds,
+ const int *child,
+ const uint visibility,
+ const float time_from,
+ const float time_to,
+ const int num)
+{
+ float8 data[8];
+ memset(data, 0, sizeof(data));
+
+ data[0].a = __uint_as_float(visibility & ~PATH_RAY_NODE_UNALIGNED);
+ data[0].b = time_from;
+ data[0].c = time_to;
+ for(int i = 0; i < num; i++) {
+ float3 bb_min = bounds[i].min;
+ float3 bb_max = bounds[i].max;
+
+ data[1][i] = bb_min.x;
+ data[2][i] = bb_max.x;
+ data[3][i] = bb_min.y;
+ data[4][i] = bb_max.y;
+ data[5][i] = bb_min.z;
+ data[6][i] = bb_max.z;
+
+ data[7][i] = __int_as_float(child[i]);
+ }
+
+ for(int i = num; i < 8; i++) {
+ /* We store BB which would never be recorded as intersection
+ * so kernel might safely assume there are always 4 child nodes.
+ */
+ data[1][i] = FLT_MAX;
+ data[2][i] = -FLT_MAX;
+
+ data[3][i] = FLT_MAX;
+ data[4][i] = -FLT_MAX;
+
+ data[5][i] = FLT_MAX;
+ data[6][i] = -FLT_MAX;
+
+ data[7][i] = __int_as_float(0);
+ }
+ memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_ONODE_SIZE);
+}
+
+void BVH8::pack_unaligned_inner(const BVHStackEntry& e,
+ const BVHStackEntry *en,
+ int num)
+{
+ Transform aligned_space[8];
+ BoundBox bounds[8];
+ int child[8];
+ for(int i = 0; i < num; ++i) {
+ aligned_space[i] = en[i].node->get_aligned_space();
+ bounds[i] = en[i].node->bounds;
+ child[i] = en[i].encodeIdx();
+ }
+ pack_unaligned_node(e.idx,
+ aligned_space,
+ bounds,
+ child,
+ e.node->visibility,
+ e.node->time_from,
+ e.node->time_to,
+ num);
+}
+
+void BVH8::pack_unaligned_node(int idx,
+ const Transform *aligned_space,
+ const BoundBox *bounds,
+ const int *child,
+ const uint visibility,
+ const float time_from,
+ const float time_to,
+ const int num)
+{
+ float8 data[BVH_UNALIGNED_ONODE_SIZE];
+ memset(data, 0, sizeof(data));
+ data[0].a = __uint_as_float(visibility | PATH_RAY_NODE_UNALIGNED);
+ data[0].b = time_from;
+ data[0].c = time_to;
+
+ for(int i = 0; i < num; i++) {
+ Transform space = BVHUnaligned::compute_node_transform(
+ bounds[i],
+ aligned_space[i]);
+
+ data[1][i] = space.x.x;
+ data[2][i] = space.x.y;
+ data[3][i] = space.x.z;
+
+ data[4][i] = space.y.x;
+ data[5][i] = space.y.y;
+ data[6][i] = space.y.z;
+
+ data[7][i] = space.z.x;
+ data[8][i] = space.z.y;
+ data[9][i] = space.z.z;
+
+ data[10][i] = space.x.w;
+ data[11][i] = space.y.w;
+ data[12][i] = space.z.w;
+
+ data[13][i] = __int_as_float(child[i]);
+ }
+
+ for(int i = num; i < 8; i++) {
+ /* We store BB which would never be recorded as intersection
+ * so kernel might safely assume there are always 4 child nodes.
+ */
+
+ data[1][i] = 1.0f;
+ data[2][i] = 0.0f;
+ data[3][i] = 0.0f;
+
+ data[4][i] = 0.0f;
+ data[5][i] = 0.0f;
+ data[6][i] = 0.0f;
+
+ data[7][i] = 0.0f;
+ data[8][i] = 0.0f;
+ data[9][i] = 0.0f;
+
+ data[10][i] = -FLT_MAX;
+ data[11][i] = -FLT_MAX;
+ data[12][i] = -FLT_MAX;
+
+ data[13][i] = __int_as_float(0);
+ }
+
+ memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_ONODE_SIZE);
+}
+
+/* Quad SIMD Nodes */
+
+void BVH8::pack_nodes(const BVHNode *root)
+{
+ /* Calculate size of the arrays required. */
+ const size_t num_nodes = root->getSubtreeSize(BVH_STAT_ONODE_COUNT);
+ const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
+ assert(num_leaf_nodes <= num_nodes);
+ const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
+ size_t node_size;
+ if(params.use_unaligned_nodes) {
+ const size_t num_unaligned_nodes =
+ root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_ONODE_COUNT);
+ node_size = (num_unaligned_nodes * BVH_UNALIGNED_ONODE_SIZE) +
+ (num_inner_nodes - num_unaligned_nodes) * BVH_ONODE_SIZE;
+ }
+ else {
+ node_size = num_inner_nodes * BVH_ONODE_SIZE;
+ }
+ /* Resize arrays. */
+ pack.nodes.clear();
+ pack.leaf_nodes.clear();
+ /* For top level BVH, first merge existing BVH's so we know the offsets. */
+ if(params.top_level) {
+ pack_instances(node_size, num_leaf_nodes*BVH_ONODE_LEAF_SIZE);
+ }
+ else {
+ pack.nodes.resize(node_size);
+ pack.leaf_nodes.resize(num_leaf_nodes*BVH_ONODE_LEAF_SIZE);
+ }
+
+ int nextNodeIdx = 0, nextLeafNodeIdx = 0;
+
+ vector<BVHStackEntry> stack;
+ stack.reserve(BVHParams::MAX_DEPTH*2);
+ if(root->is_leaf()) {
+ stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
+ }
+ else {
+ stack.push_back(BVHStackEntry(root, nextNodeIdx));
+ nextNodeIdx += node_is_unaligned(root, bvh8)
+ ? BVH_UNALIGNED_ONODE_SIZE
+ : BVH_ONODE_SIZE;
+ }
+
+ while(stack.size()) {
+ BVHStackEntry e = stack.back();
+ stack.pop_back();
+
+ if(e.node->is_leaf()) {
+ /* leaf node */
+ const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
+ pack_leaf(e, leaf);
+ }
+ else {
+ /* Inner node. */
+ const BVHNode *node = e.node;
+ const BVHNode *node0 = node->get_child(0);
+ const BVHNode *node1 = node->get_child(1);
+ /* Collect nodes. */
+ const BVHNode *nodes[8];
+ int numnodes = 0;
+ if(node0->is_leaf()) {
+ nodes[numnodes++] = node0;
+ }
+ else {
+ const BVHNode *node00 = node0->get_child(0),
+ *node01 = node0->get_child(1);
+ if(node00->is_leaf()) {
+ nodes[numnodes++] = node00;
+ }
+ else {
+ nodes[numnodes++] = node00->get_child(0);
+ nodes[numnodes++] = node00->get_child(1);
+ }
+ if(node01->is_leaf()) {
+ nodes[numnodes++] = node01;
+ }
+ else {
+ nodes[numnodes++] = node01->get_child(0);
+ nodes[numnodes++] = node01->get_child(1);
+ }
+ }
+ if(node1->is_leaf()) {
+ nodes[numnodes++] = node1;
+ }
+ else {
+ const BVHNode *node10 = node1->get_child(0),
+ *node11 = node1->get_child(1);
+ if(node10->is_leaf()) {
+ nodes[numnodes++] = node10;
+ }
+ else {
+ nodes[numnodes++] = node10->get_child(0);
+ nodes[numnodes++] = node10->get_child(1);
+ }
+ if(node11->is_leaf()) {
+ nodes[numnodes++] = node11;
+ }
+ else {
+ nodes[numnodes++] = node11->get_child(0);
+ nodes[numnodes++] = node11->get_child(1);
+ }
+ }
+ /* Push entries on the stack. */
+ for(int i = 0; i < numnodes; ++i) {
+ int idx;
+ if(nodes[i]->is_leaf()) {
+ idx = nextLeafNodeIdx++;
+ }
+ else {
+ idx = nextNodeIdx;
+ nextNodeIdx += node_is_unaligned(nodes[i], bvh8)
+ ? BVH_UNALIGNED_ONODE_SIZE
+ : BVH_ONODE_SIZE;
+ }
+ stack.push_back(BVHStackEntry(nodes[i], idx));
+ }
+ /* Set node. */
+ pack_inner(e, &stack[stack.size() - numnodes], numnodes);
+ }
+ }
+ assert(node_size == nextNodeIdx);
+ /* Root index to start traversal at, to handle case of single leaf node. */
+ pack.root_index = (root->is_leaf()) ? -1 : 0;
+}
+
+void BVH8::refit_nodes()
+{
+ assert(!params.top_level);
+
+ BoundBox bbox = BoundBox::empty;
+ uint visibility = 0;
+ refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
+}
+
+void BVH8::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
+{
+ if(leaf) {
+ int4 *data = &pack.leaf_nodes[idx];
+ int4 c = data[0];
+ /* Refit leaf node. */
+ for(int prim = c.x; prim < c.y; prim++) {
+ int pidx = pack.prim_index[prim];
+ int tob = pack.prim_object[prim];
+ Object *ob = objects[tob];
+
+ if(pidx == -1) {
+ /* Object instance. */
+ bbox.grow(ob->bounds);
+ }
+ else {
+ /* Primitives. */
+ const Mesh *mesh = ob->mesh;
+
+ if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
+ /* Curves. */
+ int str_offset = (params.top_level) ? mesh->curve_offset : 0;
+ Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
+ int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
+
+ curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
+
+ visibility |= PATH_RAY_CURVE;
+
+ /* Motion curves. */
+ if(mesh->use_motion_blur) {
+ Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
+
+ if(attr) {
+ size_t mesh_size = mesh->curve_keys.size();
+ size_t steps = mesh->motion_steps - 1;
+ float3 *key_steps = attr->data_float3();
+
+ for(size_t i = 0; i < steps; i++) {
+ curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
+ }
+ }
+ }
+ }
+ else {
+ /* Triangles. */
+ int tri_offset = (params.top_level) ? mesh->tri_offset : 0;
+ Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
+ const float3 *vpos = &mesh->verts[0];
+
+ triangle.bounds_grow(vpos, bbox);
+
+ /* Motion triangles. */
+ if(mesh->use_motion_blur) {
+ Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
+
+ if(attr) {
+ size_t mesh_size = mesh->verts.size();
+ size_t steps = mesh->motion_steps - 1;
+ float3 *vert_steps = attr->data_float3();
+
+ for(size_t i = 0; i < steps; i++) {
+ triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
+ }
+ }
+ }
+ }
+ }
+
+ visibility |= ob->visibility;
+ }
+
+ float4 leaf_data[BVH_ONODE_LEAF_SIZE];
+ leaf_data[0].x = __int_as_float(c.x);
+ leaf_data[0].y = __int_as_float(c.y);
+ leaf_data[0].z = __uint_as_float(visibility);
+ leaf_data[0].w = __uint_as_float(c.w);
+ memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_ONODE_LEAF_SIZE);
+ }
+ else {
+ int4 *data = &pack.nodes[idx];
+ bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
+ int4 c;
+ if(is_unaligned) {
+ c = data[BVH_UNALIGNED_ONODE_SIZE-1];
+ }
+ else {
+ c = data[BVH_ONODE_SIZE-1];
+ }
+ /* Refit inner node, set bbox from children. */
+ BoundBox child_bbox[8] = { BoundBox::empty, BoundBox::empty,
+ BoundBox::empty, BoundBox::empty,
+ BoundBox::empty, BoundBox::empty,
+ BoundBox::empty, BoundBox::empty };
+ uint child_visibility[8] = { 0 };
+ int num_nodes = 0;
+
+ for(int i = 0; i < 8; ++i) {
+ if(c[i] != 0) {
+ refit_node((c[i] < 0)? -c[i]-1: c[i], (c[i] < 0),
+ child_bbox[i], child_visibility[i]);
+ ++num_nodes;
+ bbox.grow(child_bbox[i]);
+ visibility |= child_visibility[i];
+ }
+ }
+
+ if(is_unaligned) {
+ Transform aligned_space[8] = { transform_identity(), transform_identity(),
+ transform_identity(), transform_identity(),
+ transform_identity(), transform_identity(),
+ transform_identity(), transform_identity()};
+ pack_unaligned_node(idx,
+ aligned_space,
+ child_bbox,
+ &c[0],
+ visibility,
+ 0.0f,
+ 1.0f,
+ num_nodes);
+ }
+ else {
+ pack_aligned_node(idx,
+ child_bbox,
+ &c[0],
+ visibility,
+ 0.0f,
+ 1.0f,
+ num_nodes);
+ }
+ }
+}
+
+CCL_NAMESPACE_END